
OPINION ARTICLE
published: 10      July 2013

doi: 10.3389/fmicb.2013.00192

Evolution in action: dissemination of tet(X) into pathogenic
microbiota
Rustam I. Aminov*

Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
*Correspondence: rustam.aminov@uwimona.edu.jm

Edited by:

Kunihiko Nishino, Osaka University, Japan

In a recent publication by Leski et al.
(2013), the authors reported the occur-
rence of multidrug-resistant tet(X)-
containing bacterial strains in a hospital in
Sierra Leone. Among 52 clinical isolates,
11 (21%) have been confirmed tet(X)-
positive. All the positive strains have been
isolated from urinary tract infections
and identified as Enterobacter cloa-
cae, Comamonas testosteroni, Escherichia
coli, Klebsiella pneumoniae, Delftia aci-
dovorans, Enterobacter sp., and other
members of Enterobacteriaceae and
Pseudomonadaceae (Leski et al., 2013).

The need for careful monitoring of
tet(X) dissemination is dictated by the
fact that the enzyme encoded by the gene,
a flavin-dependent monooxygenase, is
capable of degrading almost all tetra-
cyclines, including the third-generation
tetracycline, tigecycline (the minocycline
derivative 9-tert-butyl-glycylamido-
minocycline) (Yang et al., 2004; Moore
et al., 2005). The US FDA approved tige-
cycline in 2005, and its use in the EU was
authorized in 2006. Its use is approved
for complicated skin and intra-abdominal
infections as well as community-acquired
pneumonia (http://www.accessdata.
fda.gov/drugsatfda_docs/label/2010/02182
1s021lbl.pdf). The antibiotic is very
efficient in treatment of a number of
infections, including those resistant to the
first- and second-generation tetracyclines
(Bertrand and Dowzicky, 2012). Despite
being considered as a drug of last resort,
its use is steadily increasing, at least in the
US (Huttner et al., 2012).

Although tigecycline resistance has not
been tested at the time of isolation (Leski
et al., 2013), the high frequency of tet(X)
encountered in clinical samples signifies a
worrying trend. In the previous analysis of
the occurrence and phylogeny of the tet(X)
genes it has been established that these
genes can be detected in environmental

DNAs and isolates as well as commensal
bacteria (Aminov, 2009). Further studies
have not spotted any expansion beyond
these ecological niches. The presence of
tet(X) has been detected in the human
gut bacteria (de Vries et al., 2011), intesti-
nal Bacteroides strains (Bartha et al.,
2011), sewage treatment plants (Zhang
and Zhang, 2011), and an oxytetracycline
production wastewater treatment system
(Liu et al., 2012). But now tet(X) is
detected in a variety of clinical isolates and
accepted human pathogens (Leski et al.,
2013). The tet(X) sequences from this
study have been added to the previous
dataset (Aminov, 2009), and the phyloge-
netic tree has been recomputed (Figure 1).
It is not surprising to see a tight cluster-
ing, with a 100% bootstrap support, of the
tet(X) sequences from Enterobacteriaceae
bacterium SL1 and Delftia sp. SL20 with
the known tet(X) genes, given the high
similarity of sequences within the cluster
that exceeds 99%.

It is important to note here that there
is no access to tigecycline (Tygacil®, Pfizer
Inc.) in the hospital where tet(X)-positive
samples were collected nor it is avail-
able through the independent pharmacies
and hospital dispensaries operating in the
area (Leski et al., 2013). Still, 87% of
pharmacies dispense the “older” tetracy-
clines without prescription. As the authors
suggest, this selective pressure of con-
tinuous application of tetracyclines may
serve to maintain and spread tet(X) and
other tetracycline resistance genes into
pathogenic microbiota. Also, the prob-
ability of co-selection cannot be ruled
out. The authors indicated the presence
of mobile genetic elements in some iso-
lates, and 10 out of 11 isolates appeared
to be harboring multidrug resistance
determinants.

In animal production systems,
the penetration of tet(X) into the

pathogens happened earlier. This can
be demonstrated with the example of
Riemerella anatipestifer, a causative agent
of septicaemia anserum exsudativa (Segers
et al., 1993). Septicaemia leads to major
economic losses in duck production (Ryll
et al., 2001; Sarver et al., 2005) but it
also affects other bird species (Sandhu
and Rimler, 1997; Hess et al., 2013).
The R. anatipestifer strain, resistant to
ampicillin, chloramphenicol, gentam-
icin, amikacin, tetracycline, nalidixic
acid, and trimethoprim/sulfamethoxazole,
was isolated in 2005 from waterfowl in
Taiwan (Chen et al., 2010). It carries
pRA0511 plasmid, which, in addition to
two chloramphenicol acetyltransferases
and a multi-drug ABC transporter per-
mease/ATPase, also encodes TetX. The
gene sequence has been incorporated into
the existing dataset (Aminov, 2009) and
recomputed (Figure 1). Similar to the
genes from human pathogens, the gene
from the poultry pathogen is confidently
grouped into the tet(X) cluster. Three
genomic sequences of R. anatipestifer,
published (Yuan et al., 2011) or available
as database entries (GenBank accession
numbers CP003787 and CP004020), also
carry chromosomally encoded genes sim-
ilar to tet(X) (Figure 1). Interestingly,
four other strains of R. anatipestifer, for
which genome sequences are available
(Mavromatis et al., 2011; Zhou et al., 2011;
Wang et al., 2012; Yuan et al., 2013), have
not yet acquired tet(X). No information
regarding antibiotic use practices at sam-
pling sites where R. anatipestifer strains
have been isolated is available in the cited
publications.

It seems that the use of even ‘older’
antibiotics may contribute to the resis-
tance to newer antibiotics. There is no
access to the third-generation tetracycline,
tigecycline (Tygacil®, Pfizer Inc.), in the
areas sampled in Sierra Leone (Leski et al.,
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FIGURE 1 | Neighbor-joining tree of the tet(X) and flavin

monooxygenase-encoding genes. Numbers above each node show the
percentage of tree configurations that occurred during 1000 bootstrap trials.

The scale bar is in fixed nucleotide substitutions per sequence position.
GenBank accession numbers of nucleotide sequences used in this analysis
are given in parenthesis.

2013). It is also highly unlikely that this
expensive new antibiotic is used in duck
production, most likely these are the first-
generation tetracyclines. Thus the conclu-
sion is that the selective pressure by older
antibiotics drives the resistance to a newer

antibiotic and contributes to the dissemi-
nation of this resistance to pathogens.

The flavoprotein monooxygenase
group of enzymes is found in many
metabolic pathways involved in the
region-specific hydroxylation of organic

substrates in all three domains of life
(Harayama et al., 1992). Based on
sequence similarity and 3D structural
data, the enzymes are divided into six
classes (van Berkel et al., 2006). Class
A enzymes, to which TetX belongs, are
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generally involved in the degradation
of phenolic compounds by ortho- or
para-hydroxylation of the aromatic ring
(Moonen et al., 2002).

Bacteria that carry these genes are
omnipresent and can be encountered
in a variety of ecosystems, including
soil, aquatic ecosystems, and intestinal
tract; some are opportunistic pathogens.
Accordingly, the range of biochemi-
cal reactions performed by this class
of enzymes is quite broad, and they
may play an important role in the
global carbon and nitrogen cycles (Chen
et al., 2011; Wang and Shao, 2012).
Interestingly, the range of metabolic activ-
ities expressed by these enzymes also
includes the modification of many antibi-
otics. Besides the tetracylines discussed
here, this range is extended to such struc-
turally different antibiotics as rifampin
(Andersen et al., 1997), mithramycin
(Prado et al., 1999), griseorhodin (Li
and Piel, 2002), chromomycin (Menendez
et al., 2004), and auricin (Novakova et al.,
2005).

The genetic context of flavin monooxy-
genase genes has been discussed earlier
(Aminov, 2009). In brief, the majority of
the genes analysed is almost uniformly
associated with mobile genetic elements,
including the plasmid-encoded tet(X) dis-
cussed here (Chen et al., 2010). The genes
in this class are also highly incongru-
ent with taxonomic positioning suggesting
horizontal gene transfer events. They are
also subject to frequent duplication events,
which are partially illustrated here with
the paralogous genes from Flavobacterium
johnsoniae UW101 and Pedobacter sp.
BAL39 (Figure 1).

The case of flavin monooxygenases is
a vivid example demonstrating enormous
adaptability of bacteria: they can freely
move their protective armours amongst
a variety of ecological compartments in
response to yet another challenge, this
time inflicted by humans in the form of
antibiotic selective pressure. The global
microbiota has been dealing with envi-
ronmental challenges for billions of years
to become sophisticated genetic engineers
moving genes around with ease (Aminov,
2011). Combined with the readily avail-
able massive metabolic resources of the
environmental metagenome, the micro-
biota seem capable of countering any

kind of environmental or anthropogenic
assault.

We are living in a fascinating era with
technological advancements that allow us
to see almost instantaneously the evolu-
tionary events leading to the emergence
of novel pathogens armed with resistance
mechanisms against the most advanced
antibiotics that we have been able to
design. We should not underestimate the
enormous genetic flexibility and the vast
metabolic capabilities of the environmen-
tal microbiota. Based on our technical
capabilities and knowledge acquired dur-
ing the antibiotic era (Aminov, 2010), we
have to make every effort, at every level
possible, to preserve the power of antibi-
otics. Taking a bystander position in this
situation is not acceptable.
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