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Systems biology is an inter-disciplinary science that studies the complex interactions and
the collective behavior of a cell or an organism. Synthetic biology, as a technological subject,
combines biological science and engineering, allowing the design and manipulation
of a system for certain applications. Both systems and synthetic biology have played
important roles in the recent development of microbial platforms for energy, materials, and
environmental applications. More importantly, systems biology provides the knowledge
necessary for the development of synthetic biology tools, which in turn facilitates the
manipulation and understanding of complex biological systems. Thus, the combination of
systems and synthetic biology has huge potential for studying and engineering microbes,
especially to perform advanced tasks, such as producing biofuels. Although there have
been very few studies in integrating systems and synthetic biology, existing examples
have demonstrated great power in extending microbiological capabilities. This review
focuses on recent efforts in microbiological genomics, transcriptomics, proteomics, and
metabolomics, aiming to fill the gap between systems and synthetic biology.
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INTRODUCTION
Recent advances in genetics and molecular biology, including
genome sequencing, bioinformatics, and high-throughput exper-
imentation, have enabled the collection of large sets of data. These
data provide a comprehensive understanding of complex biolog-
ical systems, boosting the development of both systems biology
and synthetic biology.

Systems biology aims to develop novel methodologies to study
the functionality of the biological system as a whole. When
studying microorganisms, these methodologies not only help to
understand how microbes adapt, evolve, and interact with other
organisms (Navid et al., 2009; Zaneveld et al., 2011), but also reveal
the profile and the dynamics of RNAs, proteins, and metabolites,
elucidate their intracellular interactions, and uncover complex reg-
ulatory networks. Several review articles have discussed the role
of systems biology in the study of microbes (Brul et al., 2008;
de Lorenzo and Galperin, 2009; Heinemann and Sauer, 2010;
Kohlstedt et al., 2010).

Synthetic biology focuses on constructing artificial tools to
achieve particular functions. Microbes are excellent hosts for
many important applications such as bioremediation, biodegrada-
tion, bioconversion, and bioproduction. Particularly, engineered
microbes have been extensively used to produce therapeutic
proteins, industrial enzymes, small molecular pharmaceuticals,
chemicals, biofuels, and materials. Review articles focusing on
engineering microbes as cell factories are also available (Picataggio,
2009; Gowen and Fong, 2011).

Although systems biology and synthetic biology focus, respec-
tively, on science and technology, knowledge of systems biology
guides the design of better synthetic biology tools, which can in
turn provide insights to systems biology. Here we review the recent

development of systems and synthetic biology methodologies
for the understanding and control of genomics, transcriptomics,
proteomics, and metabolomics in microbes. We also discuss
the further possibilities for these two fields to benefit from
each other.

GENOMICS
As the basic unit of heredity, a gene is transcribed to an mRNA,
which is translated to a protein, and all these molecules work
together to perform complex functions within a living organism.
Systems biology methodologies, such as whole genome sequenc-
ing, enable better understanding of gene function, which in turn
allows the development of synthetic biology tools to manipulate
genetics.

At the systems biology level, deciphering genetic codes pro-
vides valuable information on the structure and function of genes.
Initiated in the 1970s, sequencing techniques have gone through
striking development, and now fully automated DNA sequenc-
ing instruments coupled with high-throughput capabilities are
available to many research labs. On average, bacterial genome
sequencing can now be completed within hours or days, at the cost
of $25 per Mb assembled sequence (Didelot et al., 2012; Loman
et al., 2012). The analysis of the raw sequencing data is largely
aided by bioinformatics, which integrates techniques from dif-
ferent disciplines, such as computer science and mathematics, to
interpret biological data. Bioinformatics not only helps in genome
annotation, but also provides insights on the corresponding pro-
tein functions and homologies between species. Proteogenomics,
for example, unifies genomic data and protein identification tech-
niques, allowing for new gene discovery and accurate gene annota-
tion (Armengaud, 2010). Proteogenomics plays an important role
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in systems biology by providing a detailed picture of cell systems.
For example, Banfield et al. (2005) implemented proteogenomics
in the characterization of bacterial communities living deep in
mine tunnels: specifically those that produce chemoautotrophic
biofilms.

At the synthetic biology level, the ability to edit genetic
sequences is the basis for manipulating any synthetic system,
which creates an obvious need for such editing. Stimulated by
this need, DNA synthesis methods have been developing fast over
the past few years. Many methods have been developed in the
pursuit of efficient, high fidelity, and low cost DNA synthesis tech-
niques. For example, Tian et al. (2004) used photo-programmable
microfluidic chips for multiplex gene synthesis, coupled with a
hybridization-based method for error correction. The current
cost for commercial gene synthesis is $0.28/bp or even lower
(Genscript, Inc.), rendering genetic manipulation easier than
ever. While chemical synthesis of the whole microbial genome
has been demonstrated for Mycoplasma mycoides, at the current
stage of development, complete chemical synthesis of microbial
genome could be complicated and costly (Gibson et al., 2010).
An alternative approach to construct large pieces of DNA or
metabolic pathways is to assemble multiple existing DNA frag-
ments. For example, the well-established Gibson DNA assembly
approach utilized the activity of 5′ exonucleases to generate single-
stranded DNA overhangs, which can then be sealed and ligated
with high accuracy and efficiency using a DNA polymerase and a
ligase (Gibson et al., 2009). This method allows scar-less assem-
bly of multiple DNA fragments in one-pot. Other DNA assembly
methods, such as CPEC (circular polymerase extension cloning;
Quan and Tian, 2009) and Golden Gate (Engler et al., 2008),
have their own advantages and are suitable for certain purposes
(Table 1).

By the traditional homologous recombination, genomic DNA
can be inserted, deleted, and mutated at one site each time
(Datsenko and Wanner, 2000). Recent research advances have
led to modification of many targeted locations in the chromo-
some simultaneously. Wang et al. (2009a) demonstrated multiplex
automated genome engineering (MAGE), a method based on
oligo-mediated allelic replacement, as an efficient tool to introduce
mutations to the microbial chromosome, generating rich genome
diversity with tuned properties. This technique was applied to
optimize multiple genetic components in the 1-deoxy-D-xylulose-
5-phosphate (DXP) biosynthesis pathway, and achieved a more
than fivefold increase in lycopene production within 3 days.
Furthermore, in order to improve the efficiency of MAGE, the
conjugative assembly of genome engineering (CAGE) method
was developed, which permits large-scale genome modification
by assembling modified genome parts. Combining these two
techniques, researchers successfully demonstrated the ability to
replace all the TAG stop codons with TAA in E. coli (Isaacs et al.,
2011). The engineered strain has a free TAG codon that could
be used in areas such as the incorporation of unnatural amino
acids.

Even with these powerful synthetic biology tools available,
functional construction of synthetic systems is still hindered
by the hidden and complex regulation in the host cell. This
fact requires that genetic components be well characterized and

mutually orthogonal. Researchers recently developed a system-
atic process for refactoring the nitrogen fixation gene cluster, in
which they changed the codons of essential coding sequences
and put them under the control of synthetic parts, separated
by synthetic spacer sequences (Temme et al., 2012). By removing
the native regulations, the underlying interactions are simplified,
which facilitates the engineering of the nitrogen fixation system
in a non-nitrogen-fixation host. All the above-mentioned syn-
thetic biology approaches provide systems biologists new tools
to understand gene functions and complex genetic regulatory
networks.

TRANSCRIPTOMICS
Involved in both transcription and translation, RNA molecules
serve as the link between genes and proteins. While systematic
analysis of transcript profiles reveals gene expression patterns,
synthetic regulation of these transcript levels can alter protein
concentrations. A systematic understanding of transcriptomics is
essential for designing synthetic regulatory systems.

The information obtained from genetics can be more precisely
understood if we take a step further to the transcriptional level.
By quantifying the expression level of related genes under differ-
ent conditions, an RNA microarray was developed to facilitate the
interpretation of the genome function and regulation patterns.
This method is high-throughput and inexpensive, but limitations
do exist, including the requirement of genome sequence infor-
mation and errors caused by cross-hybridization (Wang et al.,
2009b). Another technique, RNA-Seq, overcame these limitations
by enabling the direct sequencing of RNA transcripts. It allows
precise detection and quantification of transcripts to a single-
base resolution, and can be applied to species with unknown
genome sequences. More importantly, it provides a powerful
tool to understand the transcriptomic dynamics by monitor-
ing gene expression levels (Mortazavi et al., 2008; Wilhelm et al.,
2008). Although challenges regarding library construction and
bioinformatics data analysis remain, this method revolution-
izes the way scientists analyze transcriptome data (Wang et al.,
2009b).

For any synthetic system to function properly, it is key to reg-
ulate the expression of the genes involved. Gene expression can
be regulated at different stages, among which transcriptional reg-
ulation often plays the most important role (Lodish et al., 2000;
Romanel et al., 2012). Synthetic control of transcript levels can
be achieved by varying the transcription initiation rate, tran-
script stabilities, or transcription termination frequency. Control
of transcription initiation rates by constitutive or inducible pro-
moters with various strengths have been used for many years.
This approach still serves as the most effective and robust method
for static control of the transcript level. However, sometimes
it is advantageous to regulate a gene dynamically according to
the environments and the metabolic status of the cell (Holtz
and Keasling, 2010). This becomes particularly important when
improving the robustness of a synthetic biological system, where
many parameters could change as environmental conditions vary.
The knowledge of transcription-level regulation from systems
biology has inspired synthetic biologists to utilize natural elements
to build synthetic regulatory tools. A recent work demonstrated
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Table 1 | Systems biology and synthetic biology tools and applications.

Systems biology Synthetic biology

Tools Applications Tools Applications

Genomics DNA sequencing Gene identification,

annotation, protein

identification

Gibson, CPEC, etc. Restriction enzyme-free DNA

assembly

Golden Gate DNA assembly better for

library construction

Bioinformatics MAGE, CAGE Genome wide modification

Proteogenomics Gene cluster refactoring Orthogonal genetic

components

Transcriptomics RNA microarray, RNA-Seq Gene function interpretation,

transcriptomic dynamics

Synthetic promoters, ribozymes,

aptamers, sRNAs, etc.

Regulate transcript and

translation

RBS calculator Control translational level

Proteomics SRM Protein detection and

identification

Modular design of proteins Build artificial proteins or

regulate protein activitiesPost-translational modification

Computational protein design

Metabolomics GC–MS, LC–MS, NMR, etc. Identification of novel

metabolic pathways,

bottleneck steps

Key enzyme overexpression,

mutation, and deletion

Optimize metabolic pathways

Computational tools, FBA,

MFA, etc.

Global regulator engineering

Synthetic transporter Control metabolite secretion

the construction of a dynamic sensor-regulator system, in which
transcription initiation rate of several heterologous genes are
dynamically controlled by the cellular concentration of a key
metabolite (Zhang et al., 2012b). In detail, biosensors specific
to fatty acyl-CoAs, key intermediates in the biodiesel biosyn-
thetic pathway, were engineered to control both the biosynthesis
and the consumption of acyl-CoAs. Similar to natural regula-
tory systems, the synthetic control tool optimized gene expression
levels, preventing the production of unnecessary RNAs and pro-
teins and improving the efficiency of the biodiesel pathway. As
a result, biodiesel titers were increased by threefold, reaching
28% of the theoretical yield. Besides the regulation of tran-
scription initiation, mRNA stability can be regulated as well;
control of the mRNA degradation rate, folding rate, and ribozyme
activity by small molecules could allow for dynamic control
of transcript activities in response to metabolites (Beisel et al.,
2008; Carothers et al., 2011; Michener et al., 2012). For example,
Babiskin and Smolke (2011) constructed an RNA device based
on an RNase III enzyme, where they coupled RNA aptamers
to the Rnt1p hairpins. Binding to ligand induced a conforma-
tional change on the RNA, which inhibited the self-cleavage
activity and stabilized the transcript. Furthermore, transcrip-
tion termination has been regulated by small RNA molecules
that interact with mRNAs (Lucks et al., 2011). The naturally
occurring transcriptional control mechanism in the Staphylococcus
aureus plasmid pT181 uses an antisense RNA to induce a con-
formational change that exposes a transcription termination site.

By producing mutations in the attenuator sequence, researchers
were able to create variants that responded to unique antisense
RNA molecules. These orthogonal signals were used in tandem
to construct logic gates and an RNA-mediated transcriptional
cascade.

Once a gene has been transcribed, cellular protein levels can
be tuned at the translational level by engineering the ribosome
binding sites (RBSs). Salis et al. (2009) developed a mathe-
matical model, called the RBS calculator, to compute the RBS
strength. This model considers the energies involved in rRNA–
mRNA interaction, mRNA folding, tRNA binding, and the
energetic cost of sub-optimal spacing between the RBS and the
start codon (Salis, 2011). This computational tool was proved
effective in designing RBS sequences to control relative protein
levels.

The above-mentioned methods allow the synthetic regulation
of a single gene or of multiple genes at either the transcriptional
or the translational level. They are particularly powerful when
optimizing a specific metabolic pathway. However, to improve
the overall behavior of engineered microbes, such as tolerance
toward chemicals or stress conditions, it might be useful to regulate
gene expression at the whole genome-scale (Zhang et al., 2012a;
Woodruff et al., 2013). For example, Alper et al. (2006) employed
a global transcription machinery engineering (gTME) approach
to improve both ethanol tolerance and production of a yeast
strain. In this study, two proteins that regulate the global transcrip-
tome (SPT15, a TATA-binding protein, and TAF25, TATA-binding
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protein-associated factor) were subject to random mutagenesis via
error-prone PCR. These mutant libraries were introduced to yeast
and subject to screening for their abilities to grow in the presence of
ethanol. Strains selected from this approach confer both enhanced
ethanol tolerance and efficient glucose to ethanol conversion. This
study serves a good example for using synthetic biology tools to
modify microbes at the systems level.

PROTEOMICS
Proteins are ubiquitous in biological systems; their complex struc-
ture allows them to perform innumerable functions, such as
transport, catalysis, signaling, and regulation. Thus a systematic
understanding of proteomics, including protein structure, func-
tion, concentration, and interactions with other molecules must
precede the development of novel synthetic systems.

Experimental protein studies rely heavily on proteomic tech-
nologies and instrumentation. Selected reaction monitoring
(SRM) is a powerful proteomic technique that can quantitatively
detect small numbers of a specific protein. However, SRM can only
be used to detect proteins for which assays have been developed.
Previously, assay development was an arduous process, limiting
the use of SRM (Doerr, 2010). Picotti et al. (2010) devised a high-
throughput method for developing SRM assays that allowed them
to analyze all the phosphatases and kinases in the proteome of E.
coli. By synthesizing and analyzing libraries of synthetic peptides,
432 SRM assays were generated in less than 6 h of instrumenta-
tion time with an 89% success rate. The ease with which these
assays can now be generated will enable a wide variety of new
applications, potentially including whole-proteome analysis. For
example, Singh et al. (2012) used SRM techniques to optimize flux
within the mevalonate pathway in E. coli. Malmstroem et al. (2009)
applied this technique to determine the average quantity of pro-
teins per cell for 51% of the open reading frames (ORFs), or 83% of
the proteome of Leptospira interrogans, a human pathogen. They
verified their measurements using cryo-electron tomography per-
formed on whole, individual cells, and concluded that the mass
spectrometric technique could be quickly and efficiently applied
to biological systems.

While systems biology provides information regarding the
structure and function of natural proteins, synthetic biology,
empowered with such knowledge, can lead to the design of proteins
that perform novel functions in synthetic systems. One approach
is to design proteins based on modularity (Nash, 2012). Proteins,
as well as DNA, RNA, and other small molecules, can often be
broken down into modules – discrete parts that perform a specific
function. Modules may bind to ligands, transmit information,
catalyze a reaction, or accomplish a myriad of other tasks. For
example, there are binding domains that mediate protein–peptide
interactions by recognizing certain peptide characteristics, such
as the SH3 domain that recognizes proline-rich sequences and
the PDZ domain that recognizes specific C-terminal sequences
(Teyra et al., 2012). Based on the SH3 and PDZ domain, Due-
ber et al. (2009) constructed synthetic protein scaffolds, which
recruit peptide-tagged enzymes for spatial organization of multi-
ple enzymes from a metabolic pathway, preventing the diffusion
of metabolic intermediates and improving overall pathway effi-
ciencies. Similar designs have also allowed for the control of signal

transduction pathways through synthetic protein–protein interac-
tions (Good et al., 2011). Furthermore, protein function can also
be regulated through post-translational modification. Wang et al.
(2010) demonstrated that global protein acetylation allowed for
quick responses to changes in environmental conditions, allow-
ing cells to modify their metabolism based on the availability of
various carbon sources. Researchers also characterized the role of
regulatory enzymes involved in the reversible acetylation process,
elucidating a potential global regulatory circuit. Such a system
could be engineered for fast regulation of metabolism at protein
levels. In addition, protein design using computational approaches
has presented more engineering opportunities, providing artifi-
cial proteins with novel activities and specific interactions with
nucleic acids, small ligands, and other proteins (Mandell and
Kortemme, 2009).

METABOLOMICS
Metabolomics focuses on the profile and dynamics of metabo-
lites, revealing the activity of cellular enzymatic reactions as well
as metabolic and catabolic pathways. Further, metabolic analyses
can be used as diagnostic tools in the study of microbial cell status
and environmental conditions. From the perspective of a syn-
thetic biologist, engineering microbial metabolomics has direct
links with applications: to degrade toxins (Dziga et al., 2012), her-
bicides (Sinha et al., 2010), and environmental pollutants (Chien
et al., 2010), and to produce chemicals (Curran and Alper, 2012),
pharmaceuticals (Paddon et al., 2013), and biofuels (Zhang et al.,
2011; Peralta-Yahya et al., 2012).

Metabolite identification and quantification methodologies
based on gas chromatography–mass spectrometry (GC–MS), liq-
uid chromatography–mass spectrometry (LC–MS), and nuclear
magnetic resonance (NMR) have been developed in recent decades
to study metabolite profiles and dynamics (Ludwig and Viant,
2010; Shuman et al., 2011; Bueschl et al., 2013). Additionally,
metabolic modeling tools, such as flux balance analysis (FBA;
Curran et al., 2012) and metabolic flux analysis (MFA; Tang et al.,
2009), were developed. While both FBA and MFA are based on sto-
ichiometric calculation of metabolic reaction rates under pseudo
steady state assumptions, MFA uses experimental data instead of
targeting biological fitness functions, as does FBA. Further, the
combination of metabolic analytical methodologies and model-
ing tools helps to characterize metabolic networks, to identify
novel metabolic pathways and bottleneck steps, and to study the
responses of metabolic flux toward genetic modifications or under
various environmental conditions.

Guided by knowledge from systems biology, synthetic biol-
ogy aims to engineer microbial metabolomics, directing the flow
of metabolites to desirable pathways. This includes construct-
ing novel biosynthetic pathways for the production of useful
molecules and engineering biodegradation routes for environ-
mental applications (Huang et al., 2006). The above-mentioned
metabolite analysis methodologies provide diagnostic tools for
synthetic pathways, improving their productivity. Various mod-
eling techniques consider metabolic network interactions and
predict the optimal genetic modifications for targeted chemical
production (Segre et al., 2002; Burgard et al., 2003; Ranganathan
et al., 2010; Yang et al., 2011). For example, Ranganathan et al.
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(2010) developed an OptForce procedure to identify the poten-
tial targets to improve fatty acid production. This method used
the flux measurements in a wild type strain, and simulated the
optimal flux changes that should be made in the engineered strain
for optimal production. The flux changes are then used to iden-
tify promising genetic interventions. The consistency between the
computational results and the experimental measurements sug-
gested that cell metabolism could be directed through programing
design (Ranganathan et al., 2012). Another method developed by
Flowers et al. (2013) can systematically identify, instead of one
enzyme at each time, multiple target enzymes, whose expression
levels could be simultaneously manipulated to obtain the desired
phenotype. This method improved the computation efficiency
dramatically.

The metabolic profile and regulatory networks obtained from
systems biology studies also inspired scientists to develop syn-
thetic control tools at the global level. In a recent study, a global

transcription factor that controls multiple genes involved in fatty
acid biosynthesis, degradation, and membrane transport was
engineered (Zhang et al., 2012a). Overexpression of this single
regulatory protein caused global-scale metabolic changes and was
able to increase fatty acid production by fivefold, more signifi-
cant than the overexpression of many single enzymes in the fatty
acid pathway (Zhang et al., 2012a). In addition, the transport
of metabolites across the cell membrane can be controlled by
pumps identified by systems biology or engineered through syn-
thetic biology methodologies (Dunlop et al., 2011). These pumps
are very useful to secrete the product, but not the intermediates,
out of the engineered host cell, lowering the stress from chemical
accumulation while simplifying downstream processes.

CONCLUSION AND OUTLOOKS
The inherent complexity of genetics presents researchers in sys-
tems and synthetic biology with the formidable task of respectively

FIGURE 1 |This figure illustrates recent interactions between systems

and synthetic biology. In most cases, methodologies developed in systems
biology have led to advances in synthetic biology. However, this trend may be

changing, as research in synthetic biology has already begun to provide
insight to systems biology, and there might be more research at the
intersection of the two fields in the near future.
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understanding and manipulating natural genetic systems and their
complex control elements. The current available tools and their
applications in systems and synthetic biology are summarized in
Table 1. In the coming years, advancements in genomics will lead
to a further decrease in the cost of DNA synthesis, accelerat-
ing research. Transcriptomics will experience the development
of a wide range of synthetic tools, including control through
the modular use of synthetic promoters and RNA elements, e.g.,
untranslated region (UTRs), RBSs, antisense RNA, and ribozymes.
Proteomics will provide a wealth of data in the form of proteome
mapping, and metabolomics will incorporate these advances to
achieve high yields of desired products.

Figure 1 illustrates the current interactions between sys-
tems and synthetic biology; synthetic biology is drawing more
tools and knowledge from systems biology than it is recipro-
cating, but this trend is likely to change, and there might be
more research at the intersection of the two fields in the near
future. Deeper understanding of systems biology will provide
more synthetic biology parts, such as biosensors that can be
used for dynamic regulation of synthetic pathways (Zhang and

Keasling, 2011). Systems biology knowledge will also make syn-
thetic biology tools more reliable, enabling the precise control of
transcription and translation regardless of the under-controlled
gene (Mutalik et al., 2013). More powerful systems biology-
based computational tools will simplify both the design and
the optimization of synthetic metabolic pathways, improving
titers and productivities (Colletti et al., 2011). Similarly, sim-
plified genetic systems created in synthetic biology will provide
systems biology with insight into the fundamentals of native
gene regulation. Powerful synthetic quantification tools will allow
the simultaneous collection of omic data at global scales in liv-
ing cells. Overall, direct communication between systems and
synthetic biologists regarding tools and knowledge will has-
ten progress in genomics, transcriptomics, proteomics, and
metabolomics.
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