

ramR mutations affecting fluoroquinolone susceptibility in epidemic multidrug-resistant *Salmonella enterica* serovar Kentucky ST198

Sylvie Baucheron^{1,2}, Simon Le Hello³, Benoît Doublet^{1,2}, Etienne Giraud^{1,2}, François-Xavier Weill³ and Axel Cloeckaert^{1,2}*

¹ INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France

² Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France

³ Institut Pasteur, Unité des Bactéries Pathogénes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, Paris, France

Edited by:

Michel S. Zygmunt, Institut National de la Recherche Agronomique, France

Reviewed by:

Kunihiko Nishino, Osaka University, Japan Seamus Fanning, University College Dublin, Ireland

*Correspondence:

Axel Cloeckaert, Unité Infectiologie et Santé Publique site 213, Institut National de la Recherche Agronomique, 37380 Nouzilly, France e-mail: axel.cloeckaert@tours.inra.fr

INTRODUCTION

Fluoroquinolones, together with extended-spectrum cephalosporins, are the treatment of choice for nontyphoid salmonellosis, as stable resistance to the most common members of different families of antimicrobial agents (ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline) has developed during the 1990s with the epidemic Salmonella enterica serovar Typhimurium phage type DT104 (Cloeckaert and Schwarz, 2001). Emerging resistance to fluoroquinolones in Salmonella spp. has been reported for both human and animal cases and is thus threatening to become a serious public health problem (Cloeckaert and Chaslus-Dancla, 2001; Piddock, 2002; Velge et al., 2005; Giraud et al., 2006). Of particular concern is the international spread of ciprofloxacin-resistant serovar Kentucky ST198 (Le Hello et al., 2011). This clone is not only highly resistant to ciprofloxacin but also multidrug-resistant (MDR) due to the presence of the Salmonella genomic island 1 (SGI1) carrying a multiple antibiotic resistance gene cluster, mostly variant SGI1-K carrying another resistance gene cluster (Doublet et al., 2008; Le Hello et al., 2011). SGI1 was initially identified in MDR serovar Typhimurium DT104 (Boyd et al., 2001), but nor the MDR serovar Typhimurium DT104 clone neither other MDR S. enterica serovars carrying SGI1 or variants of it, have to our knowledge been reported to display this high-level ciprofloxacin resistance.

In *Salmonella* spp., quinolone/fluoroquinolone resistance is mostly attributed to point mutations in the quinolone resistance-determining regions (QRDRs) of the target genes *gyrA*, *gyrB*, *parC*, and *parE*. For the *gyrA* gene, coding for the A subunit of

A screening for non-target mutations affecting fluoroquinolone susceptibility was conducted in epidemic multidrug-resistant *Salmonella enterica* serovar Kentucky ST198. Among a panel of representative isolates (n = 27), covering the epidemic, only three showed distinct mutations in *ramR* resulting in enhanced expression of genes encoding the AcrAB-ToIC efflux system and low increase in ciprofloxacin MIC. No mutations were detected in other regulatory regions of this efflux system. Ciprofloxacin resistance in serovar Kentucky ST198 is thus currently mainly due to multiple target gene mutations.

Keywords: Salmonella, ciprofloxacin resistance, efflux pump, regulation, ram

DNA gyrase, mutations resulting in amino acid changes at Ser83 (to Phe, Tyr, or Ala) or at Asp87 (to Gly, Asn, or Tyr) are the most frequently observed in nalidixic acid-resistant strains (Cloeckaert and Chaslus-Dancla, 2001; Piddock, 2002; Velge et al., 2005; Giraud et al., 2006). High-level fluoroquinolone resistance has been reported in several S. enterica serovars (Choleraesuis, Schwarzengrund, Typhimurium) and is essentially due to the combination of several target gene mutations of which the most frequent are double mutations resulting in modifications of both residues 83 and 87 of GyrA together with one mutation leading to the amino acid change Ser80Ile in the ParC subunit of topoisomerase IV (Baucheron et al., 2002, 2004; Chu et al., 2005). In addition two main other mechanisms have been reported consisting of active afflux mediated by the chromosomally-encoded AcrAB-TolC efflux system and target protection by Onr proteins which are mostly encoded by plasmids acquired by horizontal transfer (Giraud et al., 2006). However, according to the literature over 15 years, these mechanisms appear less frequently and thus from an epidemic point of view seem of lesser importance than multiple target gene mutations to reach high-level ciprofloxacin resistance and compromise treatment.

In the case of ciprofloxacin resistance in serovar Kentucky ST198, three combinations of multiple target modifications, acquired in a possible sequential way, have been reported consisting of a first GyrA Ser83Phe modification, followed by three different situations of a second GyrA modification at position 87, i.e., Asp87Asn, Asp87Gly, or Asp87Tyr, and finally the ParC modification Ser80Ile (Le Hello et al., 2011). Qnr proteins have not been reported yet as additional mechanism for this epidemic

Strain	Country	Year of isolation	Antimicrobial resistance profile	SGI1	PFGE type	CIP MIC (µg/ml)	Substitutio the QRD		Mutation(s) in efflux pump regulatory	AcrA production ratio
							GyrA	ParC	regulatory regions	ratio
00 1059	Egypt	2000	AMX NAL	+ (SGI1-P1)	XKEN-1a	0.125	S83F	None		3
01 2100	Egypt	2001	AMX STR SPT GEN SUL TET NAL	+ (SGI1-K1)	XKEN-1a	0.125	S83F	None	-	2
02 2818	Egypt	2002	AMX STR SPT GEN SUL TET NAL	+	XKEN-1i	0.5	S83F	None	+ (ramR)	5
02 2691	Egypt	2002	AMX STR SPT GEN SUL TET NAL	+ (SGI1-K3)	XKEN-1a	0.125	S83F	None	-	1
02 8051	Egypt	2002	AMX STR SPT GEN SUL TET NAL	+	XKEN-1a	0.25	S83F	None	-	1
02 8141	Egypt	2002	AMX STR SPT GEN SUL TET NAL	+ (SGI1-K1)	XKEN-1m	0.5	S83F	None	+ (<i>ramR</i>)	5
02 9866	Egypt	2002	AMX STR SPT GEN SUL TET NAL CIP	+	XKEN-1a	8	S83F, D87N	S80I	_	2
03 9270	India	2003	NAL	-	XKEN-2d	0.125	S83F	None	_	1
04 2049	Egypt	2004	NAL CIP	+	XKEN-1b	8	S83F, D87G	S80I	-	2
04 4567	Egypt	2004	AMX STR SPT GEN SUL TET NAL CIP	+ (SGI1-K1)	XKEN-1g	4	S83F, D87G	S80I	_	2
04 6248	Egypt	2004	STR SPT GEN SUL TET NAL CIP	+	XKEN-1a	8	S83F, D87G	S80I	_	1
04 7734	Egypt	2004	AMX STR SPT GEN SUL TET NAL	+ (SGI1-K1)	XKEN-1h	0.5	S83F	None	_	1
04 8262	Egypt	2004	STR SPT GEN SUL NAL CIP	+ (SGI1-K5)	XKEN-1a	8	S83F, D87N	S80I	-	1
04 9384	Egypt	2004	AMX STR SPT GEN SUL TET NAL CIP	+	XKEN-1g	4	S83F, D87G	S80I	_	1
05 0490	Egypt	2005	STR SPT GEN SUL TET NAL CIP	+	XKEN-1a	4	S83F, D87G	S80I	_	2
05 0520	Egypt	2005	AMX NAL CIP	+ (SGI1-P2)	XKEN-1a	4	S83F, D87Y	S80I	-	1
05 1016	Kenya	2005	NAL CIP	+ (SGI1-Q2)	XKEN-1a	4	S83F, D87Y	S80I	_	1
05 1199	Egypt	2005	STR SPT GEN SUL NAL CIP	+ (SGI1-Q3)	XKEN-1a	4	S83F, D87G	S80I	_	1
05 2131	Egypt	2005	AMX NAL CIP	+ (SGI1-Q1)	XKEN-1a	4	S83F, D87N	S80I	-	3
05 2354	Kenya/ Tanzania	2005	AMX STR SPT GEN SUL TET NAL CIP	+	XKEN-1c	8	S83F, D87Y	S80I	_	3
05 3290	Egypt	2005	AMX STR SPT GEN SUL TET NAL CIP	+	XKEN-1c	4	S83F, D87G	S80I	-	1
05 3883	Kenya/ Tanzania	2005	AMX STR SPT GEN SUL TET NAL CIP	+	XKEN-1d	4	S83F, D87Y	S80I	_	2
05 4680	Sudan	2005	STR SPT GEN SUL TET NAL CIP	+ (SGI1-K4)	XKEN-1I	4	S83F, D87G	S80I	-	2
05 7714	Unknown	2005	AMX NAL CIP	+	XKEN-1b	4	S83F, D87N	S80I	-	2
05 8560	Tunisia	2005	AMX STR SPT GEN SUL TET NAL CIP	+	XKEN-1d	16	S83F, D87N	S80I	+ (<i>ramR</i>)	6
05 236	Egypt	2005	AMX NAL CIP	+	XKEN-1c	4	S83F, D87N	S80I	-	1
05 5111	Libya	2005	AMX SUL TET NAL CIP	+ (SGI1-K2)	XKEN-1a	4	S83F, D87N	S80I	_	1

clone, and active efflux has been suspected in a previous study due to a moderate increase of production in some isolates of the AcrA protein belonging to the AcrAB-TolC efflux system (Weill et al., 2006).

In the present study we assessed the frequency of enhanced efflux by AcrAB-TolC in a subset of serovar Kentucky ST198 strains of the 2000-2005 period of the epidemic. In case of significant increased production of AcrAB-TolC we investigated more deeply the regulatory mechanisms behind this overproduction, in particular the involvement of the ram, sox, and mar regulatory loci (Abouzeed et al., 2008; Kehrenberg et al., 2009). Among these loci, the ramRA locus appears to be the most important in regulating AcrAB-TolC expression in Salmonella spp. (Abouzeed et al., 2008; Kehrenberg et al., 2009). ramR encodes a repressor protein (RamR) belonging to the TetR family of repressor proteins, and has been shown to be the local repressor protein of ramA transcription (Abouzeed et al., 2008; Baucheron et al., 2012); while ramA encodes a transcriptional activator protein (RamA) belonging to the AraC/XylS family of regulatory proteins (Nikaido et al., 2008). The latter is involved in upregulating expression

of the AcrAB-TolC system (Nikaido et al., 2008). Several mutations in *ramR* or its binding site upstream of *ramA*, affecting expression of this efflux system, have been detected in clinical isolates of serovar Typhimurium and of minor serovars Hadar, Infantis, Livingstone, or Schwarzengrund (Abouzeed et al., 2008; Kehrenberg et al., 2009; Hentschke et al., 2010; Akiyama and Khan, 2012).

MATERIALS AND METHODS

The 27 serovar Kentucky ST198 strains selected for this study are shown in **Table 1**. Bacterial isolates were selected for this study, based on their evolutionary history following the emergence of target gene mutations initially in *gyrA* at the commencement of the epidemic in 2000–2002, followed by isolates with additional mutations (in *gyrA* and *parC*) toward the end in 2002–2005 and which demonstrated a higher MIC toward ciprofloxacin. An additional criterion for selection consisted of the differences observed in ciprofloxacin MICs suggestive for another resistance mechanism than target gene mutation. MICs were determined as described previously (Baucheron et al., 2002, 2004). SGI1

Primer used and target region	Primer	Nucleotide position relative to the LT2 strain genome*	Oligonucleotide sequences(s) (5′ to 3′)	Size (bp)	Annealing temp (°)C	References
DETECTION OF MUTATI	ONS					
ramR-ramA	ram5	638085	TCGGTAAAAGGCAGTTCCAG	958	60	This study
	ramA6	639042	GTCGATAACCTGAGCGGAAA			
acrR-acrA	acrR1	533463	CAGTGGTTCCGTTTTTAGTG	992	58	Olliver et al., 2005
	acrR2	534454	ACAGAATAGCGACACAGAAA			
marC-marO-marR-marA	marR1	1597459	CAGTGTTGCGTCTGGACATC	787	60	This study
	marR2	1598245	GCTAACGGGAGCAGTACGAC			
soxS-soxR	sox1	4503970	CTACAGGCGGTGACGGTAAT	915	60	This study
	sox2	4504884	CGGCGCTTTAGTTTTAGGTG			
acrS-acrE	acrS1	3560054	TTGGCATTAATTGCCTCACA	1094	62	This study
	acrS2	3561128	ATGATGAATGAGGGCAGGAG			
qRT-PCR						
gmk	gmk-f	3933294	TTGGCAGGGAGGCGTTT	62	60	Baucheron et al., 2012
	gmk-r	3933355	GCGCGAAGTGCCGTAGTAAT			
gyrB	gyrB-f	4040275	TCTCCTCACAGACCAAAGATAAGCT	81	60	Baucheron et al., 2012
	gyrB-r	4040195	CGCTCAGCAGTTCGTTCATC			
rrs	rrs-f	NA**	CCAGCAGCCGCGGTAAT	57	60	Baucheron et al., 2012
	rrs-r	NA**	TTTACGCCCAGTAATTCCGATT			
ramA	ramA-f	639180	GCGTGAACGGAAGCTAAAAC	167	60	Baucheron et al., 2012
	ramA-r	639346	GGCCATGCTTTTCTTTACGA			
acrA	acrA-f	533120	GAAACCGCACGTATCAACCT	220	60	Baucheron et al., 2012
	acrA-r	532901	CCTGTTTCAGCGAACCATTT			
tolC	tolC-f	3349107	GCCCGTGCGCAATATGAT	67	60	Baucheron et al., 2012
	tolC-r	3349173	CCGCGTTATCCAGGTTGTTG			

Table 2 | Primers used for PCRs.

*GenBank NC_003197.1.

**NA: Not Applicable due to the number of copies of this gene in Salmonella.

detection and characterization were performed as described previously (Boyd et al., 2001; Doublet et al., 2008). Efflux pump production was assessed by Dot blot using an anti-AcrA polyclonal antibody as described previously (Abouzeed et al., 2008). Occurrence of mutations affecting *acrAB* and *tolC* expression was determined by PCR and sequencing the regulatory regions *ramR-ramA*, *acrR-acrA*, *marC-marO-marR-marA*, *soxS-soxR*, and *acrS-acrE* using primers listed in **Table 2**. Transcription levels of *ramA*, *acrA*, and *tolC* were determined by qRT-PCR as described previously (Giraud et al., 2013).

RESULTS AND DISCUSSION

As shown in the **Table 1** most of the strains selected carried SGI1 or variants of it and were thus MDR. They were all from human cases in France who acquired their infection during travel to Africa or India. As assessed by Dot blot, most of the strains (n = 24) did not show significant increased production of AcrA relative to susceptible serovar Kentucky reference strain 98K (AcrA production ratios from 1 to 2; **Table 1**). Relative to strain 98K, three strains showed a 3-fold increased AcrA production, and more suggestive for increased active efflux three strains a 5- to 6-fold increased production of AcrA (**Table 1**). Among these regulatory regions, mutations were detected only in the *ramR* open reading frame and in only three strains of this

study (Table 3). The mutations were distinct frame shift mutations and consisted of a GATC duplication for strain 02-2818, a G insertion for strain 05-8560, and a 91 bp deletion for strain 02-8141 (Figure 1). The role of these mutations in upregulating acrAB and tolC expression, and consecutive enhanced effluxmediated resistance, was further assessed by: (i) complementing with the wild-type ramR gene (using plasmid pRamR Abouzeed et al., 2008); (ii) determining the MICs of ciprofloxacin and unrelated antibiotic florfenicol shown to be substrate of AcrAB-TolC (Baucheron et al., 2002); and (iii) measuring expression of ramA, acrA, and tolC by qRT-PCR (Giraud et al., 2013). The results shown in Table 3 are in agreement with data published previously for other S. enterica serovars (Abouzeed et al., 2008; Kehrenberg et al., 2009), i.e. ramR mutations observed account for a 2- to 4fold increased resistance level by active efflux through enhanced expression of AcrAB-TolC. As also observed in previous studies, the effect of such mutations on ramA transcription level was significantly higher than on acrA or tolC transcription levels. It is somehow expected considering the direct local repressor activity of RamR on ramA transcription and the distant RamA transcriptional activator activity on *acrAB* and *tolC* (Abouzeed et al., 2008; Baucheron et al., 2012; Giraud et al., 2013).

Non-target mutations as assessed in this study confirm they are infrequent in *Salmonella* spp. but seem nevertheless

s.
tion
muta
mRI
g ra
arryin
IS C
strair
38
ST198
ςkγ
entu
ar K
serov
enterica se
ente
nella
non
Salı
the
of
stics
teri
arac
ပ်
Table 3

Strain	Source	Geographic origin	Source Geographic Antimicrobial resistance profile ^a origin	PFGE type SGI1 (varia	SGI1 (variant) ^b	MICantibi	MIC of indicated antibiotic (µg/ml)	ated J/ml)	Substitution(s) in the QRDR of:		Mutation in <i>ramR</i>	Trans lev	Transcription levels of:	5
						NAL	CIP	FFC°	GyrA	ParC	-	ramA å	acrA tolC	olC
MDR STRAINS														
05-8560	Human Tunisia	Tunisia	AMX STR SPT GEN SUL TET NAL CIP XKEN-1d	XKEN-1d	+ (Ks)	>1024 16	16	16	S83F, D87Y	S80I	S801 1 bp insertion	24.6	7.2 2	2.6
05-8560(pRamR)						>1024	4	4				2.4	1.7	1.7
02-8141	Human	Egypt	AMX STR SPT GEN SUL TET NAL	XKEN-1m	+ (K1)	512	0.50	16	S83F	1	91 bp insertion	106.1	10.4	7.8
02-8141(pRamR)						512	0.125	œ				1.6	1.1	1.2
02-2818	Human	Egypt	AMX STR SPT GEN SUL TET NAL	XKEN-1i	+ (Ks)	512	0.50	16	S83F	I	4 bp duplication	29.1	5.3	4.7
02-2818(pRamR)						256	0.25	4				1.9	0.9	1.6
02-9866 02-9866(pRamR)	Human Egypt	Egypt	AMX STR SPT GEN SUL TET NAL CIP XKEN-1a	XKEN-1a	+ (Ks)	>1024 >1024	00 4	44	S83F, D87N S80I		I	2.9 1.8	1.2	1.6 2.4
REFERENCE STRAIN	AIN													
98K	Chicken USA	NSA	Susceptible	XKEN-4	I	-	0.004	2	1	I	I	1.0	1.0	1.0
98K(pRamR)						-	0.004	2				2.1	1.3	1.5
^a AMX, amoxycillin; STR, : ^b Ks: subgroup of SGI1-K. ^c FFC, florfenicol.	STR, strep GI1-K.	otomycin; SPT, sp	^a AMX, amoxycillin; STR, streptomycin; SPT, spectinomycin; GEN, gentamicin; SUL, sulfonamides; TET, tetracycline; NAL, nalidixic acid; CIP, ciprofloxacin. ^b Ks: subgroup of SG11-K. ° FFC, florfenicol.	amides; TET,	tetracycline; N	'AL, nalid	ixic acid;	CIP, cipro	floxacin.					

mostly restricted to the *ram* regulatory region. Most mutations in the *ramR-ramA* region reported to date, as also shown in this study, are distinct and found in single isolates. To our knowledge only independent isolates of the epidemic ciprofloxacin-resistant serovar Typhimurium DT204 clone from the 1990s have been shown to carry the same mutation in *ramR* consisting of an insertion by an IS1 element (Abouzeed et al., 2008). We may nevertheless expect that the further global spread of ciprofloxacin-resistant serovar Kentucky ST198 and its resistance evolution will possibly, like in the

REFERENCES

- Abouzeed, Y. M., Baucheron, S., and Cloeckaert, A. (2008). ramR mutations involved in effluxmediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrob. Agents Chemother. 52, 2428–2434. doi: 10.1128/AAC.00084-08
- Akiyama, T., and Khan, A. A. (2012). Molecular characterization of strains of fluoroquinoloneresistant Salmonella enterica serovar Schwarzengrund carrying multidrug resistance isolated from imported foods. J. Antimicrob. Chemother. 67, 101–110. doi: 10.1093/jac/dkr414
- Baucheron, S., Chaslus-Dancla, E., and Cloeckaert, A. (2004). Role of TolC and parC mutation fluoroquinolone in high-level resistance in Salmonella enterica serotype Typhimurium DT204. I. Antimicrob. Chemother. 53. 657-659. doi: 10.1093/ jac/dkh122
- Baucheron, S., Coste, F., Canepa, S., Maurel, M. C., Giraud, E., Culard, F., et al. (2012). Binding of the RamR repressor to wild-type and mutated promoters of the ramA gene involved in effluxmediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrob. Agents

Chemother. 56, 942–948. doi: 10.1128/AAC.05444-11

- Baucheron, S., Imberechts, H., Chaslus-Dancla, E., and Cloeckaert, A. (2002). The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in *Salmonella enterica* serovar Typhimurium phage type DT204. *Microb. Drug Resist.* 8, 281–289. doi: 10.1089/10766290260469543
- Boyd, D. A., Peters, G. A., Cloeckaert, A., Boumedine, K. S., Chaslus-Dancla, E., Imberechts, H., et al. (2001).Complete nucleotide sequence of а 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J. Bacteriol. 183, 5725-5732. doi: 10.1128/JB.183.19.5725-5732.2001
- Chu, C., Su, L. H., Chu, C. H., Baucheron, S., Cloeckaert, A., and Chiu, C. H. (2005). Resistance to fluoroquinolones linked to gyrA and parC mutations and overexpression of acrAB efflux pump in Salmonella enterica serotype Choleraesuis. Microb. Drug Resist. 11, 248–253. doi: 10.1089/mdr.2005.11.248
- Cloeckaert, A., and Chaslus-Dancla, E. (2001). Mechanisms of quinolone resistance in

case of serovar Typhimurium DT204, result in successful *ramR*-mutation-carrying subclones.

ACKNOWLEDGMENTS

We are grateful to Isabelle Monchaux and Laetitia Fabre for excellent technical assistance. We would like to thank all corresponding laboratories of the French National Reference Center for *E. coli*, *Shigella*, and *Salmonella*. The French National Reference Center for *E. coli*, *Shigella*, and *Salmonella* is funded by the Institut Pasteur and the Institut de Veille Sanitaire.

Salmonella. *Vet. Res.* 32, 291–300. doi: 10.1051/vetres:2001105

- Cloeckaert, A., and Schwarz, S. (2001). Molecular characterization, spread and evolution of multidrug resistance in *Salmonella enterica* typhimurium DT104. *Vet. Res.* 32, 301–310. doi: 10.1051/vetres:2001126
- Doublet, B., Praud, K., Bertrand, S., Collard, J. M., Weill, F. X., and Cloeckaert, A. (2008). Novel insertion sequence- and transposon-mediated genetic rearrangements in genomic island SGI1 of Salmonella enterica serovar Kentucky. Antimicrob. Agents Chemother. 52, 3745–3754. doi: 10.1128/AAC.00525-08
- Giraud, E., Baucheron, S., and Cloeckaert, A. (2006). Resistance to fluoroquinolones in Salmonella: emerging mechanisms and resistance prevention strategies. *Microbes Infect.* 8, 1937–1944. doi: 10.1016/j.micinf.2005.12.025
- Giraud, E., Baucheron, S., Virlogeux-Payant, I., Nishino, K., and Cloeckaert, A. (2013). Effects of natural mutations in the ramRA locus on invasiveness epidemic fluoroquinoloneof Salmonella resistant enterica serovar Typhimurium isolates. J. Infect. Dis. 207, 794-802. doi: 10.1093/infdis/jis755

- Hentschke, M., Christner, M., Sobottka, I., Aepfelbacher, M., and Rohde, H. (2010). Combined *ramR* mutation and presence of a Tn1721-associated *tet*(A) variant in a clinical isolate of *Salmonella enterica* serovar Hadar resistant to tigecycline. *Antimicrob. Agents Chemother.* 54, 1319–1322. doi: 10.1128/AAC.00993-09
- Kehrenberg, C., Cloeckaert, A., Klein, G., and Schwarz, S. (2009). Decreased fluoroquinolone susceptibility in mutants of *Salmonella* serovars other than Typhimurium: detection of novel mutations involved in modulated expression of *ramA* and *soxS. J. Antimicrob. Chemother.* 64, 1175–1180. doi: 10.1093/jac/dkp347
- Le Hello, S., Hendriksen, R. S., Doublet, B., Fisher, I., Nielsen, E. M., Whichard, J. M., et al. (2011). International spread of an epidemic population of *Salmonella enterica* serotype Kentucky ST198 resistant to ciprofloxacin. *J. Infect. Dis.* 204, 675–684. doi: 10.1093/infdis/jir409
- Nikaido, E., Yamaguchi, A., and Nishino, K. (2008). AcrAB multidrug efflux pump regulation in Salmonella enterica serovar Typhimurium by RamA in response to environmental signals. J. Biol. Chem. 283, 24245–22453. doi: 10.1074/jbc.M804544200

- Olliver, A., Vallé, M., Chaslus-Dancla, E., and Cloeckaert, A. (2005). Overexpression of the multidrug efflux operon acrEF by insertional activation with IS1 or IS10 elements in *Salmonella enterica* serovar typhimurium DT204 acrB mutants selected with fluoroquinolones. *Antimicrob. Agents Chemother.* 49, 289–301. doi: 10.1128/AAC.49.1.289-301.2005
- Piddock, L. J. V. (2002). Fluoroquinolone resistance in Salmonella serovars isolated from humans and food animals. FEMS Microbiol. Rev. 26, 3–16.
- Velge, P., Cloeckaert, A., and Barrow, P. (2005). Emergence of Salmonella epidemics: the problems related to Salmonella enterica serotype Enteritidis and multiple antibiotic resistance in other major serotypes. Vet. Res. 36, 267–288. doi: 10.1051/vetres: 2005005
- Weill, F. X., Bertrand, S., Guesnier, F., Baucheron, S., Cloeckaert, A., and Grimont, P. A. (2006). Ciprofloxacin-resistant Salmonella Kentucky in travelers. *Emerg. Infect. Dis.* 12, 1611–1612. doi: 10.3201/eid1210. 060589

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 21 June 2013; accepted: 09 July 2013; published online: 31 July 2013.

Citation: Baucheron S, Le Hello S, Doublet B, Giraud E, Weill F-X and Cloeckaert A (2013) ramR mutations affecting fluoroquinolone susceptibility in epidemic multidrug-resistant Salmonella enterica serovar Kentucky ST198. Front. Microbiol. 4:213. doi: 10.3389/fmicb.2013.00213 This article was submitted to Frontiers in Antimicrobials, Resistance and Chemotherapy, a specialty of Frontiers in Microbiology.

Copyright © 2013 Baucheron, Le Hello, Doublet, Giraud, Weill and Cloeckaert. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.