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Although humanT cell leukemia virus type 1 and 2 (HTLV-1 and HTLV-2) share similar genetic
organization, they have major differences in their pathogenesis and disease manifestation.
HTLV-1 is capable of transformingT lymphocytes in infected patients resulting in adultT cell
leukemia/lymphoma whereas HTLV-2 is not clearly associated with lymphoproliferative
diseases. Numerous studies have provided accumulating evidence on the involvement
of the viral transactivators Tax-1 versus Tax-2 in T cell transformation. Tax-1 is a potent tran-
scriptional activator of both viral and cellular genes. Tax-1 post-translational modifications
and specifically ubiquitylation and SUMOylation have been implicated in nuclear factor-
kappaB (NF-κB) activation and may contribute to its transformation capacity. AlthoughTax-2
has similar protein structure compared to Tax-1, the two proteins display differences both
in their protein–protein interaction and activation of signal transduction pathways. Recent
studies onTax-2 have suggested ubiquitylation and SUMOylation independent mechanisms
of NF-κB activation. In this present review, structural and functional differences betweenTax-
1 and Tax-2 will be summarized. Specifically, we will address their subcellular localization,
nuclear trafficking and their effect on cellular regulatory proteins. A special attention will
be given toTax-1/Tax-2 post-translational modification such as ubiquitylation, SUMOylation,
phosphorylation, acetylation, NF-κB activation, and protein–protein interactions involved in
oncogenecity both in vivo and in vitro.
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INTRODUCTION
Human T cell lymphotropic virus type 1 (HTLV-1) and type 2
(HTLV-2) are closely related human delta retroviruses. Although
currently there are four known types of HTLV retroviruses
(Mahieux and Gessain, 2005, 2009), HTLV-1 is the most
pathogenic of all and the first oncogenic retrovirus discovered in
humans. HTLV-1 infects 15–20 million individuals worldwide. It is
transmitted horizontally (sexual transmission), vertically (mother
to child), and by blood transfusion (Kaplan et al., 1996). HTLV-1
is the causative agent of adult T cell leukemia/lymphoma (ATL;
Poiesz et al., 1980a,b; Gallo, 1981; Hinuma, 1982; Hinuma et al.,
1982; Yoshida et al., 1982) and tropical spastic paraparesis/HTLV-
1-associated myelopathy (TSP/HAM), a distinct neurological
disorder with inflammatory symptoms and incomplete paralysis
of the limbs (Gessain et al., 1986). HTLV-1 infection is endemic
in Japan, Africa, South America, the Caribbean, Melanesia, and
certain areas in the Middle East and Eastern Europe (reviewed
in Gessain and Mahieux, 2000; Tarhini et al., 2009). The HTLV-1
transactivator protein, Tax-1, has been identified as a significantly
potent protein in HTLV-1 pathogenesis. It works as an activator
of a variety of transcription factors and has been shown to be
sufficient to immortalize T cells in vitro and in vivo thus playing
an important role in cellular transformation (Cereseto et al., 1996;
Yao and Wigdahl, 2000; Grassmann et al., 2005; Kashanchi and
Brady, 2005; Kfoury et al., 2005; Hasegawa et al., 2006; Mahieux
and Gessain, 2007; Matsuoka and Jeang, 2007; Yoshida et al.,
2008; Matsuoka and Green, 2009; Yamazaki et al., 2009). HTLV-2,

however, was first identified in a T cell line established from a
patient with hairy-cell leukemia (Kalyanaraman et al., 1982). In
contrast to HTLV-1, HTLV-2 infection has not been linked to
the development of lymphoproliferative disorders. However, as
in HTLV-1, HTLV-2 infection has been associated with sporadic
cases of myelopathy resembling TSP/HAM caused by HTLV-
1 (Roucoux and Murphy, 2004). HTLV-2 infection is mainly
concentrated in Central and West Africa (Goubau et al., 1990;
Gessain et al., 1993), native Amerindian populations in North,
Central, and South America (Hjelle et al., 1990; Lairmore et al.,
1990; Heneine et al., 1991; Levine et al., 1993), and among intra-
venous drug users in the United States and Europe (Gazzard
et al., 1984; Gallo et al., 1986; Khabbaz et al., 1991; Toro et al.,
2005).

Tax-1 AND Tax-2: THEY LOOK SIMILAR BUT ARE QUITE
DIFFERENT
SEQUENCE AND STRUCTURAL ORGANIZATION
Both Tax-1 and Tax-2 are required for HTLV-1 and HTLV-2 viral
replication and they play an important role in proviral transcrip-
tion (Landry et al., 2007; Yoshida et al., 2008). In addition, Tax-1
is a key player in immortalization and transformation of infected
T cells by enhancing the transcriptional expression of genes that
control T cell proliferation, affecting genes involved in mitotic
checkpoints and further inactivating tumor suppressor pathways
(Peloponese et al., 2007; Boxus et al., 2008; Journo et al., 2009;
Chlichlia and Khazaie, 2010).
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Tax-1 and Tax-2 share overall sequence homology (Figure 1A),
but have distinctive differences both at the structural and func-
tional levels (Higuchi and Fujii, 2009; Bertazzoni et al., 2011).
Tax-1 is a 353aa (amino acid) residue protein, which is highly con-
served in all HTLV-1 serotypes. Of the four serotypes of HTLV-2,
Tax-2 subtype A and B are the best characterized (Sheehy et al.,
2006) and Tax-2B is the subtype which is represented in Figure 1.
Tax-2B has 356 amino acid residues, whereas Tax-2A possesses a 25
amino acid truncation at the C-terminus. Tax-1 and Tax-2B share
85% amino acid sequence similarity and have several common
domains (Figure 1A).

The N-terminal region of both Tax-1 and Tax-2 contain CREB
(cyclic AMP responsive element binding)-activating domain and

a zinc finger domain (Ross et al., 1997; Feuer and Green, 2005;
Figure 1B). The CREB domain is required for activation of the
viral promoter (Giebler et al., 1997; Boxus et al., 2008). Depend-
ing on the cell type, Tax-1 mutants deficient for CREB activation
are incompetent for transformation or induction of aneuploidy
(Akagi et al., 1997; de la Fuente et al., 2006; Geiger et al., 2008).
The zinc finger domain is required for association with a variety
of transcription factors including the p62 nucleoporin and muta-
tions in this motif abolishes Tax-1 interaction with p62 and nuclear
import (Tsuji et al., 2007). Within the first 60 amino acids of Tax-1,
there is a nuclear localization signal NLS (Gitlin et al., 1991; Smith
and Greene, 1992) whereas the first 42 amino acid sequence of Tax-
2 contain a nuclear localization determinant (Turci et al., 2006)

FIGURE 1 | (A) Amino acid sequence alignment of Tax-1 and Tax-2 (*) represent identical amino acids, (:) conserved amino acid substitutions, (.) semi-conserved
substitutions, differences are shaded. (B) Schematic representation of Tax-1 and Tax-2 structural and functional domains.
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required for its nuclear functionality (Figure 1B). Furthermore,
Tax-2 has an additional cytoplasmic localization domain about
10 amino acids long, situated at amino acid position 89–113 which
has been shown to be responsible for its divergent localization
compared to Tax-1 (Meertens et al., 2004).

The central region of Tax-1 includes two leucine zipper-
like regions (LZR), which are known to be essential for pro-
tein dimerization and DNA interaction (Jin and Jeang, 1997;
Basbous et al., 2003; Boxus et al., 2008). The first LZR is located at
amino acid position 116–145 and is responsible for non-canonical
nuclear factor-kappaB (NF-κB) activation and protein dimeriza-
tion whereas the second LZR is located at amino acid position
225–232 and is responsible for p100 processing and p52 nuclear
translocation involved in NF-κB2 activation (Xiao et al., 2001;
Higuchi et al., 2007; Shoji et al., 2009; Figure 1B). Importantly,
Tax-2 lacks these two LZR regions. Both Tax-1 and Tax-2 have
nuclear export signal (NES) located at amino acid position 189–
202 (Alefantis et al., 2003; Chevalier et al., 2005; Figure 1B).
Furthermore, Tax-1 and Tax-2 have at the C-terminal region
CREB/activating transcription factor (ATF)-activating domain,
essential for transactivation of the CREB/ATF and for NF-κB/Rel
signaling pathways (Ross et al., 1997; Figure 1B).

Tax-1 interacts in vitro with a number of proteins of the
CREB/ATF family of transcription factors: CREB, CREM (cyclic
AMP responsive element modulator), ATF1, ATF2, ATF3, ATF4
(also named CREB2), and XBP1 (X-box-binding protein 1; Zhao
and Giam, 1992; Franklin et al., 1993; Bantignies et al., 1996;
Reddy et al., 1997). These proteins share a common cluster of
basic residues allowing DNA binding, and a leucine zipper (b-
Zip) domain involved in homo and hetero-dimerization. Dimer
formation modulates their DNA-binding specificity and transcrip-
tional activity (Hai and Hartman, 2001). Tax-1, but not Tax-2,
possesses at its C-terminus a PDZ-binding motif (Figure 1B).
Indeed, PDZ domain-containing proteins play a key role in
recruiting and organizing the appropriate proteins to sites of
cellular signaling, as well as polar sites of cell–cell communi-
cation (Fanning and Anderson, 1999; Harris and Lim, 2001;
Sheng and Sala, 2001). The PDZ domain of Tax-1 has been
shown to interact with the human homolog of the Drosophila
melanogaster disc large tumor suppressor protein hDLG (homolog
of Drosophila disc large), which regulates cellular proliferation and
cell cycle phase transition (Rousset et al., 1998; Higuchi and Fujii,
2009). Tax-1 competes with the binding domain of hDLG and
APC (The adenomatous polyposis coli) tumor suppressor pro-
tein and rescues cells from cell cycle arrest induced by hDLG
(Suzuki et al., 1999; Hirata et al., 2004).

Tax-1 but not Tax-2 contain additionally at the C-terminus a
secretory signal which is involved in Tax-1 secretion and trans-
port from endoplasmic reticulum to Golgi and in movement from
Golgi to the plasma membrane (Alefantis et al., 2003, 2005). The
secretory sequence at the C-terminus requires interaction with
secretory carrier membrane proteins (SCAMP-1 and SNAP 23)
and the coat protein 2 (COPII; Jain et al., 2007). Recently, the
C-terminus of Tax-1 has received much attention due to the pres-
ence of domains that are unique for Tax-1 and may partially
explain the highest transformation capacity of Tax-1 in compar-
ison to Tax-2. Indeed, the C-terminal 53 amino acids of Tax-1

is responsible for increased transformation efficiency in rodent
fibroblasts (Majone et al., 1993).

CELLULAR LOCALIZATION OF Tax-1 AND Tax-2
Early studies on Tax-1 and Tax-2 subcellular localization have
demonstrated that Tax-1 localizes in the nucleus and Tax-2 in
the cytoplasm of HTLV-infected cells (Semmes and Jeang, 1996;
Meertens et al., 2004). Both Tax-1 and Tax-2 contain a nuclear
localization signal at the N-terminus, however, Tax-2 contains an
additional cytoplasmic localization domain at position 89–113.
By using series of Tax-1/Tax-2 chimeras, Meertens et al. (2004)
have shown that this stretch of sequence indeed contributes to the
difference in Tax-2 cytoplasmic localization compared to Tax-1.

In various Tax-1/Tax-2 transfected cells lines, Tax-1 has a punc-
tate nuclear distribution and localizes in nuclear structures named
nuclear speckles or bodies (Semmes and Jeang, 1996; Bex et al.,
1997), whereas Tax-2 was predominantly present in the cytoplasm
(Meertens et al., 2004). In these nuclear bodies, Tax-1 colocalizes
with proteins of the splicing machinery such as splicing factors Sm
and SC-35, transcriptional components including the largest sub-
unit of RNA polymerase II and cyclin-dependent kinase CDK8 and
with important components of NF-κB such as the two subunits
p50 and RelA, as well as the regulatory subunit NEMO of IkappaB
kinase (IKK; Bex et al., 1997). Furthermore, recent findings indi-
cate that Tax-1 colocalizes within nuclear bodies with small ubiq-
uitin modifiers (SUMO-1, 2, and 3; Lamsoul et al., 2005; Nasr et al.,
2006) and with the SUMO E2 ligase Ubc-9 (Kfoury et al., 2011).

Although Tax-1 has been shown to be chiefly abundant in
the nucleus, many studies reported cytoplasmic expression of
Tax-1 in both Tax-1 transfected and HTLV-1-infected cell lines
(Burton et al., 2000; Cheng et al., 2001). In the cytoplasm, Tax-
1 targets IκBα and IκBβ for phosphorylation, ubiquitylation,
and proteasome-mediated degradation, promoting the nuclear
translocation of NF-κB/Rel proteins and the transcription induc-
tion of many cellular genes (Nicot et al., 1998). Within the
cytoplasm, Tax-1 localizes in organelles associated with secretory
pathways, structures associated to the centrosome or microtubule
organizing center (MTOC), and in the cell to cell contact regions
termed virological synapses (Igakura et al., 2003; Alefantis et al.,
2005; Kfoury et al., 2008; Nejmeddine et al., 2009). In contrast,
Tax-2 has been shown initially to be mostly cytoplasmic with no
clear evidence for localization in nuclear bodies (Meertens et al.,
2004). However, a recent study reported Tax-2 punctate distribu-
tion in nuclear bodies and colocalization with the Rel A subunit
of NF-κB (Turci et al., 2006, 2009).

Interestingly, the post-translational modifications of Tax-1
control its sub cellular localization and its ability to activate the
NF-κB pathway. More specifically, Tax-1 is subjected to multi-
ple post-translational modifications such as phosphorylation (Bex
et al., 1999), ubiquitylation, SUMOylation (Chiari et al., 2004;
Lamsoul et al., 2005; Nasr et al., 2006), and acetylation (Lodewick
et al., 2009). Ubiquitylated Tax-1 binds and recruits the IKK sub-
units at a centrosome-associated signalosome leading to the release
of active IKK (Nasr et al., 2006; Kfoury et al., 2008). Using live-
cell imaging, Kfoury et al. (2011) also showed that Tax-1 shuttles
between nuclear bodies and the centrosome, depending on its
ubiquitylation and SUMOylation status.
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Finally, Tax-1 interacts with histone methyltransferase
(HMTase) SMYD3 which affects its nucleo-cytoplasmic shuttling
and regulates NF-κB activation (Yamamoto et al., 2011). Inter-
action of Tax-1 with the four and a half LIM domain pro-
tein 3 (FHL3) also affects Tax-1 sub cellular localization and
transactivation capacity (Mccabe et al., 2013).

MODULATION OF CELLULAR PATHWAYS BY Tax-1 AND Tax-2
Tax-1 interacts with various components of the cell signaling
system which control cell transformation, proliferation, intracel-
lular protein distribution, cell migration, and virological synapses
(Azran et al., 2004; Jeang et al., 2004; Grassmann et al., 2005; Boxus
et al., 2008). More than 100 proteins have been reported to inter-
act with Tax-1 (Boxus et al., 2008). Tax-2, however, interacts with
a limited number of partners and most of them belong to the
NF-κB family of proteins. It is important to note that Tax-1 and
to a lesser extent Tax-2 interactome is undergoing a dramatic
expansion with additional interaction partners being discovered
continuously.

PI3K AND AKT PATHWAY
Phospho-inositol triphosphate kinase (PI3K) and its downstream
kinase AKT/PKB (protein kinase B) are activated in T cells by many
cytokines including interleukin 2 (IL-2), and provide cell sur-
vival and growth signals (Cantley, 2002). PI3K activation results
in phosphorylation of AKT at Ser473 which in turn activates a
broad range of regulatory proteins and transcription factors such
as AP1 (Zhang et al., 2007). In both HTLV-1 transformed and
ATL cells, the transcription factor AP1 and hence the PI3K/AKT
pathway are constitutively active (Fukuda et al., 2005; Peloponese
and Jeang, 2006). The PI3K inhibitor (LY294002) or the AKT
inhibitor II were shown to induce cell cycle arrest at G1 phase in
HTLV-1 transformed cells through p27/Kip1 accumulation, and
thus subsequently induce caspase-9-dependent apoptosis (Jeong
et al., 2008). Other studies have shown an important role for
PI3K/AKT pathway in regulating telomerase activity, and inhi-
bition of PI3K decreased telomerase activity by more than 50%
in HTLV-1-infected cells (Bellon and Nicot, 2008). Tax-1 has
been also shown to be involved in Forkhead Box O (FoxO)
down regulation, an AKT downstream effector and a tumor sup-
pressor, through the ubiquitin–proteasome pathway (Oteiza and
Mechti, 2011). Conversely, a recent study demonstrated that Tax-2
efficiently immortalized human primary CD4+ memory T cells
by constitutively activating various signaling pathways including
the PI3K/AKT pathway and further found that Tax-2 induced
autophagy by interacting with the autophagy complex that con-
tains Beclin1 and PI3K class III to form autophagosomes (Ren
et al., 2012).

MAPK SIGNALING PATHWAY
Mitogen-activated protein kinases (MAPKs) are serine/threonine-
specific protein kinases that respond to external mitogen stimuli
such as growth factors, cytokines or physical stress. MAPK sig-
naling involves a sequential phosphorylation cascade of MAP
kinase kinase kinase (MAP3K). There are at least five distinct
MAPK subgroups: the extracellular signal-regulated kinases pro-
tein homologs 1 and 2 (ERK1/2), the big MAPK-1 (BMK-1) also

referred to as ERK5, the stress-activated protein kinases-1 (SAPK-
1) better known as the c-Jun N-terminal kinase homologs 1, 2,
and 3 (JNK1/2/3), the (SAPK-2) homologs (p38α/β/d) and finally
ERK6 also known as p38γ (Pimienta and Pascual, 2007). Tax-
1 binds the MAP3K MEKK1 to stimulate IKK-β kinase activity
and NF-κB activation (Yin et al., 1998). TGF-β-activating kinase 1
(TAK1) is the other MAP3K which interacts with Tax-1 and phos-
phorylates IKK-β and MKK6 (MAP2K6) serine/threonine kinase,
thereby activating NF-κB and JNK (Adhikari et al., 2007). Tax-2
interaction with the MAPK signaling pathway leading to its con-
stitutive activation have also been recently reported (Ren et al.,
2012).

TGFβ SIGNALING PATHWAY
Transforming growth factor β (TGFβ) inhibits T cell growth
in mid-G1 but can also promote tumorigenesis (Pennison and
Pasche, 2007). TGFβ binds to a heterodimeric complex com-
posed of type I (TβRI) and type II (TβRII) serine/threonine
kinase receptors and activates downstream targets such as Smad
proteins. These include receptor-activated R-Smad (Smad1–2–
3–5–8) and the common mediator Co-Smad (Smad4). Smad4
containing complexes then translocate to the nucleus and acti-
vate transcription of genes under the control of a Smad-binding
element (Waterston and Davies, 1993).

Adult T cell leukemia/lymphoma cells produce high levels of
TGFβ in the sera of HTLV-1-infected patients due to constitutive
activation of AP-1 in the PI3K/AKT pathway (Kim et al., 1990).
Tax-1 binds the N-terminus of Smad2, Smad3, and Smad4 pro-
teins, which inhibits their association with Smad-binding elements
and competes with Smads for recruitment of CBP/P300. This inhi-
bition will also result in promoting resistance of HTLV-1-infected
cells to TGFβ (Mori et al., 2001; Arnulf et al., 2002; Lee et al., 2002).
So far, interaction of Tax-2 with Smads has not been reported.

G PROTEINS AND CYTOSKELETAL ORGANIZATION
The guanine nucleotide-binding proteins GTPases (G proteins)
are molecular switches that cycle between active (GTP-bound)
and inactive (GDP-bound) states. Tax-1 forms complexes with
several members of the small GTPase Rho family G proteins such
as RhoA, Rac, Gap1m, and Cdc42 (Wu et al., 2004). Rho GTPases
are activated in response to external stimuli such as growth factors,
stress, or cytokines. Following activation, they regulate a variety of
cellular and biochemical functions such as cytoskeleton organiza-
tion, regulation of gene expression, and enzymatic activities (Jaffe
and Hall, 2005).

Tax-1 binds to proteins involved in cytoskeleton structure
and dynamics such as α-internexin, cytokeratin, actin, gelsolin,
annexin, and γ-tubulin (Trihn et al., 1997; Reddy et al., 1998; Wu
et al., 2004; Kfoury et al., 2008) and through these interactions it
might connect Rho GTPases to their targets and affects cytoskeletal
organization. Tax-1 binds the Gβ subunit of the G protein-coupled
receptor (GPCR) affecting the SDF-1-dependent activation of
CXCR4 GPCR chemokine receptor resulting in MAPK pathway
over-activation and increased cell chemotaxis (Ohshima, 2007).
Additionally, Tax-1 expression at the microtubule assembly center
and the Golgi in the cell to cell contact region has been shown
to contribute to the intracellular signal which synergizes with
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ICAM-1 (intracellular adhesion molecule) to induce T cell micro-
tubule polarization at the virological synapse (Nejmeddine et al.,
2005, 2009). Tax-2, however, has not yet been reported to asso-
ciate with proteins involved in cytoskeletal rearrangement. It is
of importance to mention again that Tax-2 lacks a PDZ domain
(Figure 1). This PDZ domain might contribute to Tax-1 binding to
proteins involved in microtubule and cytoskeleton organization,
which in turn may play an important role in pathogenicity and
transformation capacity (Endo et al., 2002; Ishioka et al., 2006).

ACTIVATION OF CREB SIGNALING
As mentioned previously, both Tax-1 and Tax-2, respectively, act
as transcriptional activators of the HTLV long terminal repeat
(LTR). Tax-1 and Tax-2 modulate CREB and ATF function (Jeang
et al., 1988; Adya and Giam, 1995; Bodor et al., 1995; Brauweiler
et al., 1995; Yin et al., 1995b; Bantignies et al., 1996; Tie et al., 1996;
Yin and Gaynor, 1996; Bex et al., 1998). Tax-1/Tax-2 activation of
the CREB/ATF pathway is critical for efficient viral gene expres-
sion and replication (Zhao and Giam, 1992; Wagner and Green,
1993; Adya et al., 1994; Anderson and Dynan, 1994; Yin et al.,
1995a; Bantignies et al., 1996). A number of mutants in both Tax-
1 and Tax-2 have been described that selectively abrogate the ability
of Tax to activate transcription through the CREB/ATF signaling
pathway (Smith and Greene, 1990; Semmes and Jeang, 1992; Ross
et al., 1997). Tax-1 activates a variety of cellular genes through its
interactions with CREB/ATF proteins, for example those encoding
IL-17 or c-fos (Alexandre and Verrier, 1991; Dodon et al., 2004).
On the other hand, Tax-1 also represses expression of genes like
cyclin A, p53, and c-myb by targeting CREB/ATF factors (Nicot
et al., 2000; Kibler and Jeang, 2001). Furthermore, Tax-1 has been
shown to repress Smad-dependent TGFβ signaling through inter-
action with CBP/p300 (Mori et al., 2001). Tax-1 has also been
shown to abrogate p53-induced cell cycle arrest and apoptosis
through its CREB/ATF functional domain (Mulloy et al., 1998).
Some bioinformatic analysis of wild type and CREB-deficient
Tax-1 protein revealed several cellular genes controlled by CRE
elements activated by Tax-1 (de la Fuente et al., 2006) such as Sgt1
(suppressor of G2 allele of SKP1) and p97 (Vcp; valosin con-
taining protein) which have functions in spindle formation and
disassembly, respectively.

Both Tax-1 and Tax-2 interact with a series of CREB/ATF fac-
tors and modulate expression of viral and cellular genes through
CRE elements. However, the specific binding of each CREB/ATF
member still needs to be studied, although some in vitro anal-
ysis suggest Tax-1 interaction with a number of proteins of the
CREB/ATF family of transcription factors: CREB, CREM, ATF1,
ATF2, ATF3, ATF4 (also named CREB2), and XBP1 (Zhao and
Giam, 1992; Franklin et al., 1993; Bantignies et al., 1996; Reddy
et al., 1997).

REPRESSION OF P53 SIGNALING
P53 is a DNA-binding transcription factor, which plays an impor-
tant role as a tumor suppressor and is primarily involved in cell
cycle regulation, apoptosis, and DNA repair (Vousden and Lu,
2002; Zenz et al., 2008). The P53 gene is very often mutated in
human tumors and hematologic malignancies (Xu-Monette et al.,
2012). Several in vitro studies in different cell types have shown

that Tax-1 represses p53 activity through different mechanisms
including NF-κB activation and/or the CREB pathway (Ariumi
et al., 2000; Pise-Masison et al., 2000; Jeong et al., 2004, 2005).
Recently, Wip-1 phosphatase protein was shown to interact with
Tax-1 and inhibits p53 (Zane et al., 2012). In this study authors
have used Tax transgenic mice and found significant differences
in Tax-1-driven inactivation of p53 versus p53 inactivation due to
genetic mutations. Several studies explored Tax-2 contribution to
p53 inactivation. In HTLV-2 subtype A- and B-infected cells, both
Tax-2B and to a lesser extent Tax-2A were shown to inhibit p53 in
T cells (Mahieux et al., 2000b).

In ATL-derived cell lines, P53 has been shown to be very often
inactive and sometimes mutated despite its high expression levels
and this activation has been shown to be dependent on Tax-1-
induced NF-κB activation through phosphorylation of p53 Ser-15
and Ser-392 (Pise-Masison et al., 2000). Studies by Ariumi et al.
(2000) have shown that the phosphorylation of p53 on Ser-15
is not a major cause of the Tax-mediated inactivation of p53.
However, Tax with a mutation in the coactivator CBP-binding
site (K88A), which activates NF-κB but not the CREB pathway,
could not repress the p53 transactivation function. A study dedi-
cated to Tax-2 inhibition of p53 was performed by (Mahieux et al.,
2000a) where abundant levels of p53 protein were detected in both
HTLV-2A and -2B virus-infected cell lines and p53 was shown to
be inactive. Furthermore, they showed that although Tax-2A and
Tax-2B inactivate p53, the Tax-2A protein appeared to inhibit p53
function less efficiently than either Tax-1 or Tax-2B. Jurkat cells
that constitutively express Tax-1 and Tax-2 showed reduced cel-
lular replication, and Tax-1 inhibition of cellular replication was
higher in comparison to Tax-2 (Sieburg et al., 2004).

ACTIVATION OF THE NF-κB PATHWAY
Generalities on NF-κB
Nuclear factor-kappaB is a family of transcription factors that play
a crucial role in proliferation, apoptosis, oncogenesis, and immune
response. To date, five members of NF-κB have been described:
p65 (RelA), c-Rel, RelB, p50/p105, and p52/p100. The precursor
proteins p105 and p100 are processed proteolytically to the mature
p50 and p52 forms, respectively (Ghosh and Hayden, 2008). All
five members share a common Rel homology domain, which is
a conserved domain of 300 amino acids that contains a DNA-
binding domain, a dimerization domain, a region of interaction
with inhibitory proteins IκB, and a NLS (Baeuerle and Henkel,
1994; Baldwin, 1996). These proteins are capable of homo- or het-
erodimerization using all possible combinations, except for RelB
which dimerizes only with p50 or p52 (Ryseck et al., 1992).

In resting cells, NF-κB dimers are trapped in the cytoplasm by
inhibitory proteins called IκBs such as p105, p100, IκBα, IκBβ, and
IκBγ which mask the nuclear localization signal of NF-κB factors
through physical interaction (Siebenlist et al., 1994; Perkins, 2007).
NF-κB activation involves phosphorylation of IκB inhibitors by
the IKK, which triggers their ubiquitylation and subsequent pro-
teasomal degradation, resulting in nuclear translocation of NF-κB
dimers (Karin and Ben-Neriah, 2000; Perkins, 2007).

Nuclear factor-kappaB is activated by a wide variety of sig-
nals through two distinct pathways: the canonical and the
non-canonical pathways. The canonical pathway is activated by
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pathogens, cytokines, and antigen receptors and involves the
degradation of one of the three canonical IκB molecules: IκB-α,
IκB-β, and IκB-ε and the nuclear translocation of the heterodimers
that essentially contain RelA (Silverman and Maniatis, 2001). In
response to activating signal, the IκB proteins are phosphorylated
by the IKK complex, which is a high molecular weight complex
composed of one regulatory subunit IKK-γ (NEMO) in addi-
tion to two catalytic subunits IKK-α and IKK-β (Israel, 2010).
Upon activation, the IKK complex is able to induce the phospho-
rylation of the IκB proteins leading to their ubiquitylation and
degradation by the proteosome. The non-canonical NF-κB path-
way on the other hand primarily involves IKK-α activation upon
phosphorylation by NF-κB-inducing kinase (NIK). IKK-α then
phosphorylates the C-terminal region of p100 leading to subse-
quent processing of the p100/RelB complex into p52/RelB and its
translocation into the nucleus (Dejardin, 2006). It is important
to note that p52/RelB and p50/RelA dimers target distinct NF-κB
enhancers thereby activating different subset of genes.

Tax-1 activation of the NF-κB pathway
Tax-1 activates both the canonical and the non-canonical pathways
resulting in constitutive activation of NF-κB in HTLV-1-infected
cells (Xiao et al., 2001; Higuchi et al., 2007). In the canonical path-
way, Tax-1 associates with the IKK-γ/NEMO subunit (Harhaj
and Sun, 1999; Jin et al., 1999; Kfoury et al., 2005) and activates
upstream kinases such as MAPK/ERK kinase kinase 1 (MEKK1),
and TAK1 through TAK1-binding protein 2 (TAB2; Yin et al., 1998;
Wu and Sun, 2007; Figure 2A). Tax-1 therefore, connects activated
kinases to the IKK complex and forces the phosphorylation of IKK-
α and IKK-β leading to IKK activation, which results in phospho-
rylation, ubiquitylation, and proteasome-mediated degradation of
IκBα and IκBβ (Harhaj and Sun, 1999; Jin et al., 1999). In addition,
Tax-1 binds directly to the IKK-α and IKK-β subunits and acti-
vates their kinase activity independently of the upstream kinases
(Chu et al., 1998; Figure 2A). In fact, silencing of MEKK1 and
TAK1 does not impair Tax-1-induced NF-κB activation (Gohda
et al., 2007). Within the canonical pathway, Tax-1 can as well bind
directly to IκBs and mediate their degradation independently of
IKK phosphorylation (Hirai et al., 1994; Suzuki et al., 1995). At
the proteosomal level, Tax-1 interacts with the two subunits of the
20S proteasome (HsN3 and HC9), favors anchorage of p105 and
accelerates its proteolysis (Rousset et al., 1996; Figure 2A). Tax-
1 therefore, leads to IκB degradation at multiple levels, thereby
allowing nuclear translocation of NF-κB independently of external
stimuli. In the non-canonical pathway, Tax-1 interacts with IKK-γ
(NEMO) and p100, induces p100 processing and nuclear translo-
cation of the p52/RelB dimer (Figure 2A). It therefore appears
that IKK-γ is an important Tax-1-binding partner for activation
of both pathways (Xiao et al., 2001; Higuchi et al., 2007).

Tax-2 activation of the NF-κB pathway
Many studies have shown the ability of Tax-2 to activate the canon-
ical NF-κB pathway to a level comparable to Tax-1 (Higuchi et al.,
2007). The major difference between Tax-1 and Tax-2 lies in the
inability of Tax-2 to process p100 (Higuchi et al., 2007; Figure 2B).
The LZR at amino acid 225–232 of Tax-1, which is missing in Tax-
2, is responsible for p100 processing and p52 nuclear translocation

FIGURE 2 | Illustration of canonical and non-canonical NF-κB pathway

activation by HTLV-1Tax-1 (A) andTax-2 (B). Canonical NF-κB pathway
involves a cascade of phosphorylation events by kinases such as TAK1 and
the IKK complex (α,β,γ) which results in the proteasomal degradation of the
cytoplasmic inhibitor (IκB) and the translocation of the NF-κB dimers to the
nucleus and transcriptional activation. The non-canonical pathway involves
the NF-κB-inducing kinase (NIK) and IKK-α subunit (α) and results in the
proteasomal degradation of p100 and the nuclear translocation of NF-κB
dimers p52/RelB and activation of gene expression.

(Shoji et al., 2009). To date, there is no evidence of the ability of
Tax-2 to activate the non-canonical NF-κB pathway. In fact, the
transforming activity of Tax-1 in CTLL-2 (cytotoxic T-lymphocyte
cell lines) cells constitutively expressing the IL-2 receptor is much
higher than Tax-2 and this activity has been shown to be partly
mediated through the non-canonical NF-κB pathway (Tsubata
et al., 2005; Kondo et al., 2006; Higuchi et al., 2007; Shoji et al.,
2009). Within the same line, a constitutively active NIK, restores
the transforming activity of Tax-2 to a level equivalent to Tax-1
(Higuchi et al., 2007). This inability of Tax-2 to activate the non-
canonical NF-κB pathway might partially explain its inability to
transform T cells and induce ATL development.
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Tax-1 AND Tax-2 POST-TRANSLATIONAL MODIFICATIONS
Post-translational modifications of Tax-1 and Tax-2 proteins
have been shown to play a critical role in their cellular
localization, transactivation, and protein–protein interactions.
Furthermore, Tax-1 and Tax-2 pleotropic effects and their struc-
tural organization make these proteins a target of many other
potential post-translational events which still need to be dis-
covered.

PHOSPHORYLATION
To date, six Tax-1 residues were identified as phosphorylation tar-
gets: Thr-48, Thr-184, Thr-215, Ser-300, Ser-301, and Ser-336 (Bex
et al., 1999; Durkin et al., 2006; Figure 3). Adjacent serine residues
at positions 300 and 301 in the carboxy-terminus of Tax represent
the major sites for phosphorylation. Indeed, phosphorylation of at
least one of these serine residues is required for Tax localization in
nuclear bodies and for Tax-mediated activation of gene expression
via both the ATF/CREB and NF-κB pathways (Bex et al., 1999).
Furthermore, Ser-300 and Ser-301 are required for further post-
translational modifications such as ubiquitylation, SUMOylation,
and acetylation (Lodewick et al., 2009). On the other hand, the ser-
ine/threonine kinase CK2 phosphorylates Tax-1 at three residues:
Ser-336, Ser-344, and Thr-351 within its C-terminus, which indi-
rectly affects NF-κB activation (Higuchi et al., 2007; Bidoia et al.,
2010). Some indirect evidence of the involvement of Ser-160 phos-
phorylation in stabilizing Tax-1 has been recently reported (Jeong
et al., 2009). Although Tax-1 and Tax-2 share 85% homology in
their amino acid sequences, and all the phosphorylated residues
are conserved except for Ser-336, the phosphorylation status of
Tax-2 is still not well determined. In vitro studies showed that CK2
does not phosphorylate Tax-2 as for Tax-1 (Bidoia et al., 2010). A
detailed mutational analysis of Tax-2 residues may help in iden-
tifying Tax-2 phosphorylated residues and their impact on Tax-2
function.

ACETYLATION
Tax-1 has been shown to be acetylated at Lys-346 (Lodewick et al.,
2009). Acetylated forms of Tax-1 were detected in both Tax-1
transfected 293 T cells and T lymphocytes (Lodewick et al., 2009).
In the same study it has been suggested that phosphorylation of
Ser-300/Ser-301 is essential for its nuclear translocation and hence
is a prerequisite for Tax-1 acetylation through interaction with
p300 (Figure 3). Tax-1 acetylation in turn participates in NF-κB
activation (Lodewick et al., 2009). Although there is not much
studies yet on Tax-2 acetylation, Lodewick et al. (2009) reported
that Tax-2 may also be acetylated.

UBIQUITYLATION AND SUMOylation
Ubiquitylation and SUMOylation have been shown to play an
important role in the cellular localization, function, and protein–
protein interactions of both Tax-1 and Tax-2 (Chiari et al., 2004;
Peloponese et al., 2004; Harhaj et al., 2007; Turci et al., 2009;
Avesani et al., 2010). Tax-1 has ten lysines (Figure 3). Five of these
residues located within Tax-1 C-terminal region were found to be
the major targets ubiquitylation [Lys-189 (K4), Lys-197 (K5), Lys-
263 (K6), Lys-280 (K7), and Lys-284 (K8)], whereas SUMOylation
takes place on Lys-280 (K7) and Lys284 (K8) (Lamsoul et al., 2005;
Nasr et al., 2006).

Tax-1 is indeed differentially ubiquitylated by either K-48 ubiq-
uitin chains leading to Tax degradation by the proteasome or by
K-63 ubiquitin chains that mediates IKK recruitment to the cen-
trosome and IKK activation (Kfoury et al., 2008). On the other
hand, Tax-1 SUMOylation is required for nuclear body forma-
tion and recruitment of RelA and IKK-γ to Tax-1-related nuclear
bodies, where Tax-driven transcription is promoted (Lamsoul
et al., 2005; Nasr et al., 2006; Harhaj et al., 2007; Kfoury et al.,
2011). A RING (Really Interesting New Gene) finger domain con-
taining protein RNF4 has recently been shown to bind putative
Tax ubiquitin/SUMO modification sites K280/K284 and increase

FIGURE 3 | Schematic comparison ofTax-1 andTax-2 post-translational modifications. Sites of phosphorylation (P), and target lysines for ubiquitylation,
SUMOylation, or acetylation are indicated.
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Tax cytoplasmic enrichment and NF-κB activation (Fryrear et al.,
2012). A recent report added new insights to our understanding
of Tax-1 and Tax-2 ubiquitylation- and SUMOylation-dependent
NF-κB activation. Bonnet et al. (2012) used Tax-1 mutants (Tax-
P79AQ81A) defective for nuclear body formation. Ubiquitylation
levels of the mutant and the wild type protein were similar,
however, the endogenous SUMOylation levels were lower in the
mutant. Despite low SUMOylation levels in the mutants, NF-κB
activation was not affected enforcing the possibility that low levels
of SUMOylation may suffice for Tax-1-induced NF-κB activation.

The involvement of Tax-2 SUMOylation and ubiquitylation
in NF-κB activation remains controversial. Journo et al. (2013)
showed that in contrast to Tax-1, Tax-2 SUMOylation and ubiq-
uitylation are not essential to activate NF-κB. In their study,
Tax-2 conjugation to endogenous SUMO and ubiquitin was barely
detectable, however, Tax-2 was still acetylated. This low level of
conjugation to endogenous ubiquitin and SUMO did not prevent
Tax-2 activation of an NF-κB-dependent promoter or its interac-
tion with IKK-γ/NEMO. Furthermore, a lysine-less Tax-2 mutant,
which is defective for ubiquitylation and SUMOylation but not
acetylation, is still able to transactivate an NF-κB-dependent pro-
moter and bind and activate the IKK complex to induce RelA/p65
nuclear translocation. On the other hand, using transfection meth-
ods, Turci et al. (2012) have reported that Tax-1 and Tax-2 share
a common mechanism of NF-κB activation and that both depend
on their ubiquitylation and SUMOylation status. Thus, they show
that patterns and levels of ubiquitylation between Tax-1 and Tax-
2 are conserved, except for a reduced representation of the Tax-2
mono-ubiquitylated form compared to Tax-1.

INHIBITION OF APOPTOSIS AND INDUCTION OF DNA
DAMAGE BY Tax-1 AND Tax-2
Induction of programmed cell death by Tax-1 has been shown in
many studies using both in vitro Tax-1 inducible cell lines (Ray
and Gottlieb, 1993) and in vivo transgenic mice. Indeed, Tax-1
transgenic mice are characterized by enhanced apoptosis which
is associated with elevated levels of oncoproteins such as Myc,
Fos, Jun, and p53 expression (Hall et al., 1998). It is important
to mention that ATL malignant transformation involves complex
and multi-step mechanisms such as accumulation of DNA damage
and aneuploidy. Furthermore, Tax-1 expression sensitizes cells to
apoptotic cell death induced by DNA damaging agents (Kao et al.,
2000) and by tumor necrosis factor alpha (TNF-α; Saggioro et al.,

2001). Upon UV irradiation, Tax-1 localization was increased at
the cytoplasm and decreased in the nucleus and Tax-1 NES have
been shown to be required for its stress-induced nucleocytoplas-
mic translocation (Gatza and Marriott, 2006). Caspase activity
has been shown to be crucial for Tax-1-induced cell death and
apoptosis whereas B cell lymphoma 2 (Bcl-2) expression has been
shown to be associated with cell death prevention (Yamada et al.,
1994; Chen et al., 1997; Chlichlia et al., 1997, 2002; Rivera-Walsh
et al., 2001; Kasai and Jeang, 2004). Interestingly, Tax has been
shown by many studies to both induce apoptosis and represses
it. Many groups have shown the importance of Tax-1-mediated
NF-κB activation in induction of apoptosis (Wheeler et al., 1993;
Chen et al., 1997; Chlichlia et al., 1997; Los et al., 1998; Rivera-
Walsh et al., 2001). Tax mutants defective in NF-κB activation
have reduced apoptosis-inducing activities, and inhibition of Tax-
mediated NF-κB transactivation partially inhibited apoptotic cell
death (Los et al., 1998; Harrod et al., 2000; Rivera-Walsh et al.,
2001). Tax also represses the transcription of the proapoptotic bax
gene (Brauweiler et al., 1997). In addition, Tax inhibits the caspase
cascade in an NF-κB-dependent manner through the induction
of the caspase inhibitors X-IAP, cIAP-1, and c-IAP-2 (Kelly et al.,
1993).

Previous experiments performed on T cell lines derived from
HTLV-2-infected individuals and Tax-2 expressing various cell
lines have shown that Tax-2 is capable of inhibiting Fas-mediated
apoptosis through the expression of bcl-x(L) messenger and
protein (Zehender et al., 2001).

CONCLUDING REMARKS
To date, vast amount of knowledge has been produced regarding
the HTLV-1 Tax-1 oncoprotein. Many studies have provided some
insights on Tax-1 transcriptional regulation, subcellular localiza-
tion and post-translational modifications. However, less is known
about HTLV-2 Tax-2 although many aspects of its activity and
regulation is now being studied. That HTLV-2 is defective in pro-
moting certain steps of leukemogenesis, may indeed serve as a
useful comparative tool for understanding the pathogenicity of
HTLV-1.
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