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After the era of plentiful antibiotics we are alarmed by the increasing number of antibiotic
resistant strains. The genetic flexibility and adaptability of Escherichia coli to constantly
changing environments allows to acquire a great number of antimicrobial resistance
mechanisms. Commensal strains of E. coli as versatile residents of the lower intestine are
also repeatedly challenged by antimicrobial pressures during the lifetime of their host. As a
consequence, commensal strains acquire the respective resistance genes, and/or develop
resistant mutants in order to survive and maintain microbial homeostasis in the lower
intestinal tract. Thus, commensal E. coli strains are regarded as indicators of antimicrobial
load on their hosts. This chapter provides a short historic background of the appearance
and presumed origin and transfer of antimicrobial resistance genes in commensal intestinal
E. coli of animals with comparative information on their pathogenic counterparts. The
dynamics, development, and ways of evolution of resistance in the E. coli populations
differ according to hosts, resistance mechanisms, and antimicrobial classes used. The
most frequent tools of E. coli against a variety of antimicrobials are the efflux pumps and
mobile resistance mechanisms carried by plasmids and/or other transferable elements.
The emergence of hybrid plasmids (both resistance and virulence) among E. coli is of
further concern. Co-existence and co-transfer of these “bad genes” in this huge and most
versatile in vivo compartment may represent an increased public health risk in the future.
Significance of multidrug resistant (MDR) commensal E. coli seem to be highest in the food
animal industry, acting as reservoir for intra- and interspecific exchange and a source for
spread of MDR determinants through contaminated food to humans. Thus, public health
potential of MDR commensal E. coli of food animals can be a concern and needs monitoring
and more molecular analysis in the future.
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INTRODUCTION
THE ANIMAL AND HUMAN FACE OF ANTIMICROBIAL USE: OVERLAPS
AND DIFFERENCES
Over the past half century, the use of antimicrobials to treat
infections in human and animals has generated an enormous
antimicrobial pressure not only on targeted pathogens but also
on commensal bacteria. As a response to therapeutic antimicro-
bial pressure, the intestinal flora may undergo dramatic changes,
including reductions in the orders of Bifidobacteriales, Clostridi-
ales, Campylobacterales, but an exponential and sudden increase
of Enterobacteriales (Escherichia) and Lactobacillales (Enterococ-
cus) as described very recently in case of streptomycin and/or
tetracycline therapy of laying hens (Videnska et al., 2013). The
accumulating effect of traditional antimicrobials was completed
by the continuous discovery and introduction of new thera-
peutical drugs, which drives bacteria to be trained to constant
changes by selecting appropriate antimicrobial resistance pheno-
and genotypes. Once armed with the required set of antimicro-
bial resistance genes, bacterial strains may have the advantage to
survive and spread both in animal and human populations, since
with few exceptions the same antimicrobial classes are used to treat

infections in animals and humans (Guardabassi and Courvalin,
2006).

Although antimicrobial classes are common in veterinary and
human medicine, their importance may vary according to the
species and application. Majority of the antibacterial compounds
are generally used to treat a wide range of animals and infections,
but there are drugs with applications restricted to certain groups
of species (e.g., difloxacin to avian infections).

On the other hand, some antimicrobial classes such as
cephalosporins (first to fourth generation) are represented by a
large number of compounds for treating serious infections in
humans, while only few of them has veterinary application (World
Organisation for Animal Health [OIE], 2007; World Health Orga-
nization [WHO], 2007). In addition, based on their importance
in medication, availability of alternatives, selection of cross-
resistance, and frequency of use, antimicrobials are ranked into
critically-, or highly important drugs. Obviously, these categories
do not necessarily overlap.

There are further remarkable differences in the use of antibac-
terial agents in humans and animals, especially in food animals.
In humans drugs are generally administered directly to sick
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individuals, in contrast to food animals, where usually (groups
of animals) are affected at the same time. Moreover, in animal
husbandry drugs are used not only for therapeutic purposes, but
also for prophylaxis and – earlier – as growth promoters, in sub-
therapeutical concentrations. The latter group was represented
among others by members from glycolipids (bambermycin), gly-
copeptides (avoparcin), polypeptides (bacitracin), quinoxalines
(olaquindox), and tetracyclines. Although the use of growth pro-
moters has been banned in the European Union from 2006,
some of them are still used in other regions (penicillins, tetra-
cyclines – USA; chloramphenicol, fosfomycin – Asia; Guardabassi
and Courvalin, 2006).

Beside the large overlaps in the use of antimicrobials in animals
and humans, the above listed differences may result increasing
incidence and changing patterns of antimicrobial resistance not
only among pathogenic Escherichia coli from animals and humans,
but even among their commensal counterparts derived from a
human and from a wide range of animal species.

For this review commensal E. coli are defined as bacteria isolated
from healthy animals without known virulence (toxic, adhesive,
invasive) attributes playing a role in a specific disease caused by
E. coli. The dynamics, development, and ways of evolution of
resistance traits in E. coli populations may differ according to the
hosts, and antimicrobials used (Szmolka et al., 2012). This review
intends to discuss the current knowledge on antimicrobial resis-
tance in commensal strains of E. coli, with special regard to those
from food animals.

However, the known complexity, together with the changing
mechanisms of resistance in E. coli, and the reduced informa-
tion regarding possible virulence and fitness genes of commensal
strains, do not allow a strict separation of this group from the
clinical/pathogenic E. coli. Therefore we will focus mainly to the
“innate” and acquired resistance mechanisms frequently charac-
terizing E. coli strains from healthy animals with considerations of
their multidrug resistance (MDR). Furthermore, special emphasis
will be addressed to novel resistance mechanisms recently affect-
ing also the commensal strains of E. coli, and to the combination
and/or co-transfer of resistance and virulence traits, which raises
particular concern in the therapy of infectious diseases.

MULTIDRUG RESISTANCE IN COMMENSAL E. coli
Due to the introduction of antimicrobials as growth promot-
ers and/or as therapeutic agents combating bacterial infections,
targeted pathogenic E. coli strains and their commensal coun-
terparts – habitating the intestine – are similarly exposed to the
effect of various antimicrobial compounds, thereby being forced to
develop different strategies to survive and grow in the newly estab-
lished toxic environment. The most efficient and sophisticated
defense mechanism is the acquisition of MDR, characterized by
the complex interaction of different mechanisms (e.g., drug efflux,
enzymatic inactivation, target protection) conferring simultane-
ous resistance to a wide range of older and/or new antimicrobial
compounds or drug classes.

Recently, MDR became widely established especially in Gram-
negative bacteria such as E. coli, being a “versatile” species
encompassing different pathotypes, but also as a member of the
normal intestinal flora. Therefore commensal E. coli may play a

special role in the accumulation and interplay between resistance
traits.

In contrast to pathogenic strains, which are in the focus of the
therapy, commensal strains are generally marginalized in many
respects, due to their reduced clinical significance. Tackled as
potential reservoirs of resistance determinants, the prevalence
of antimicrobial resistance in commensal E. coli from food ani-
mals is monitored regularly (European Food Safety Authority and
European Centre for Disease Prevention and Control [EFSA and
ECDC], 2010). However, their genetic attributes, such as the
co-existence and spread of resistance genes, and their ability to
colonize the human intestine are not adequately considered.

COMPLEXITY AND TRANSFERABILITY OF ANTIMICROBIAL RESISTANCE
MECHANISM
In the constantly changing battle against antimicrobials,
pathogenic and commensal bacteria learned to develop or acquire
appropriate weapons, and consequently MDR proved to be a per-
fect tool in this continuous fight for survival. Similar to other
members of Enterobacteriaceae, E. coli can choose from sev-
eral mechanisms to fend off the simultaneous effect of various
antimicrobial agents.

Certain protein structures, which mediate the simultaneous
efflux of a wide range of antimicrobials from the cells, or cause
decreased membrane permeability are parts of ancient, mostly
chromosomally encoded mechanisms causing MDR in different
E. coli populations.

The co-existence of multiple individual resistance mechanisms
in different combinations (e.g., efflux and ribosomal target pro-
tection mediating resistance to the same drug class) promotes the
selection of MDR strains and confers elevated level of resistance at
the same time. The majority of resistance genes encoding a wide
variety of resistance mechanisms are carried by mobile genetic
elements such as plasmids, transposons, integrons (Iyer et al.,
2013) which favors the co-transfer of MDR phenotypes between
commensals and pathogens, animals and humans.

MULTIDRUG RESISTANCE IN ONE STEP: MAJOR “INNATE” EFFLUX
SYSTEMS FOR THE ACTIVE REMOVAL OF ANTIMICROBIALS IN E. coli
The energy-dependent extrusion of antimicrobials is an ancient
and widely used key mechanism thought to mediate“innate MDR”
in Gram-negative bacteria. This type of MDR represents a major
concern, because a single species of multidrug efflux pump can
confer simultaneous resistance to a wide range of antimicrobials.
Thus it is not surprising, that the structure, the mechanism as well
as the expression regulation of different efflux systems are exten-
sively studied recently in diverse bacteria of clinical and zoonotic
potential, including E. coli (Li and Nikaido, 2009; Nikaido, 2009).

Among the large structural and functional diversity of the
proton-dependent efflux machineries, – including members of
the major facilitator superfamily (MFS), the small MDR (SMR)
family, and the resistance-nodulation-division (RND) superfam-
ily – the archetypal AcrAB–TolC transporter (RND superfamily)
is of prime importance mediating MDR in E. coli (Li and Nikaido,
2009). This ability was clearly demonstrated by constructing
mutants of a laboratory E. coli strain with deletions of individ-
ual pump genes or gene groups according to the pump family. In
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contrast to other pump families, deletions of tolC or acrAB encod-
ing different transport proteins of the above three-component
machinery resulted the greatest increase in susceptibility for a
broad range of compounds tested, including diverse drug classes
of clinical importance, such as: penicillins, phenicols, macrolides,
quinolones, tetracyclines (Sulavik et al., 2001).

Although no similar studies have been performed to reveal the
contribution of MDR efflux in non-pathogenic strains, we think
that the above finding may reflect a similar scenario in commensal
E. coli from the “pre-antibiotic era.” It seems that the commensal
E. coli strains are not yet fully adapted to the high antimicrobial
pressure of the recent years.

The wide substrate range represents only a partial advantage
as the MDR efflux pumps generally confer low level (subclinical)
resistance. However, bacteria seem to overcome this “limitation”
by tricky combinations of defense systems. A good example to
this comes from the outer membrane channel protein TolC of
the AcrAB–TolC efflux apparatus, which can work together with
transporters from other efflux pump families. The functional
interplay of TolC with MdfA in E. coli as representant of the MFS
or with ErmE from the SMR family does not only extend the
substrate range, but also increase the transport efficiency, in the
final removal of drugs from the periplasm into the surrounding
medium (Lee et al., 2000). Moreover, efflux generally acts syn-
ergistically with other resistance mechanisms encoded either by
the chromosome or being acquired via different transferable ele-
ments, to provide MDR of clinical relevance in both pathogenic
and commensal strains of E. coli.

RESISTANCE GENE ASSOCIATIONS AND CORRESPONDING
MECHANISMS ACCOUNTING FOR MDR IN COMMENSAL
E. coli FROM ANIMALS
The first important step in predicting the food safety, animal- and
public health significance of antimicrobial resistance is to describe
associations between different resistance features being distributed
among commensal E. coli in food animal production. The complex
nature of these relations comes from the enormous diversity of
chromosomally encoded and/or acquired resistance mechanisms,
which were further expanded in the recent years by a number of
novel resistance mechanisms with special interest.

Our understanding on the zoonotic significance of MDR E. coli
circulating in the food chain could be enhanced by comparative
characterization of MDR commensal E. coli strains derived from
food animals. However, the comprehensive overview of the most
prevalent resistance traits in the light of their MDR nature, raises
two main difficulties: (i) the resistance phenotypes are usually
not confirmed by underlying genes/mechanisms, which prevent
to characterize resistance in its whole complexity, (ii) in general,
few data are provided on genetic associations accounting for MDR
pheno-/genotypes.

To overcome the above deficiencies we will focus on review-
ing the common resistance traits of commensal E. coli from food
animals as mirrored by recent findings relevant to the above con-
siderations. With this approach in mind, a comprehensive pheno-
and genotyping of resistance and virulence features was performed
recently on a selected E. coli strain collection of poultry, pig, and
bovine origin, representing diverse sample sources from healthy

and sick animals (Szmolka et al., 2012). It was found, that regard-
less of the host source, resistance genes were abundantly present
to confer simultaneous resistance to three or more antimicrobial
compounds/classes (Figure 1). Results indicated the persistence of
a common “multiresistance pattern,” represented by associations
between several important antimicrobial classes (and correspond-
ing genes) including aminoglycosides (aadA1-like and strA/B),
β-lactams (blaTEM), sulfonamides (linked mainly to class 1 inte-
grons – intI1), and tetracyclines [tet(A) and tet(B)] is especially
distributed and maintained in animal husbandry (Figure 1). Such
resistance patterns could be tackled as characterizing E. coli strains
from clinical settings as well (Szmolka et al., 2012).

The widespread dissemination of the same multiresistance
phenotypes mediating resistance to “older” antimicrobials was
also reported by consecutive European surveys, conducted for
monitoring of antimicrobial susceptibility in E. coli isolates
from healthy food animals (Bywater et al., 2004; European Food
Safety Authority and European Centre for Disease Prevention
and Control [EFSA and ECDC], 2010; de Jong et al., 2012).
Similar to this, the association between ampicillin–doxycicline–
tetracycline–sulfamethoxazole/trimethoprim resistance pheno-
types was reported to be predominant in poultry and swine
production in China (Jiang et al., 2011).

Quantitative differences can be detected according to the host
species and geographical regions as follows: the prevalence of resis-
tant E. coli strains in cattle was lower than in pig and poultry
(Guerra et al., 2003a; Kojima et al., 2009), and the lowest level of
resistance was registered in Northern European countries (Euro-
pean Food Safety Authority and European Centre for Disease
Prevention and Control [EFSA and ECDC], 2010). This may be
a consequence of diverse farming conditions (pig and poultry are
much more intensively housed and treated against infections) and
country-specific practices and regulations for the use of antimi-
crobials. In addition to this, the influence of animal age and the
purpose of production (e.g., dairy or beef) type may also be also
considered (Berge et al., 2010).

The molecular characterization of underlying resistance deter-
minants reveal that common co-resistant phenotypes of animal
E. coli are based on certain genes: ampicillin (blaTEM−1-like),
streptomycin/spectinomycin (aadA1-like and strA/B), tetracycline
[tet(A) and tet(B)], sulfamethoxazole (sul1), and trimethoprim
(dfrA1-like). Beside these major genes listed, several additional
genes encoding the same resistance phenotype were identified:
blaOXA−1-like (ampicillin), sul2 (sulfamethoxazole), dfrA14 and
dfrA17 (trimethoprim; Guerra et al., 2003a; Bonnet et al., 2009;
Szmolka et al., 2012). Of known, these genes are often related to
mobile genetic elements (discussed below), which imply the cir-
culation of certain conserved genetic vectors in food animal E. coli
populations.

In contrast to the above data on food animals, our knowledge
about antimicrobial resistance of commensal E. coli in compan-
ion animals and non-captive wild animals is much more limited.
Companion animals (especially dogs and cats) started receiving
increased attention only during the last 10 years. Although most
of these studies have been focusing mainly on Gram-positive
microbes (Guardabassi et al., 2004), some recent data are primar-
ily available on phenotypic resistance traits of commensal E. coli
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FIGURE 1 | Resistance gene associations identified in multidrug

resistant commensal and clinical E. coli strains from food animals,

grouped according to increasing numbers of co-existed resistance

phenotypes. Class 1 integrons (intI1) were detected in all groups of

MDR commensal and clinical strains while class 2 integrons (intI2) were
carried in groups with 5 and 9 co-resistant phenotypes of clinical, and
in the group with 6 co-resistant phenotypes of commensal E. coli
strains.

as well. An interesting case study on MDR commensal E. coli
from cohabitant pets, humans, and their household with the
same antimicrobial resistance patterns indicated direct contacts
and cross contamination between all cohabitant species including
humans (Martins et al., 2013).

Wildlife studies have also shown several examples of antimicro-
bial resistance of commensal E. coli. One of the first descriptions
of such strains in wild mammals were given by Costa et al. (2006)
reporting the presence of extended spectrum β-lactamases CTX-
M,TEM,and SHV classes (Jacoby and Munoz-Price,2005). Studies
focusing on wild boars reported class 1 and class 2 integrons
with their usual resistance gene cassettes in Poland (Mokracka
et al., 2012), or an additional range of extended-spectrum β-
lactamases (ESBL) and nalidixic acid and ciprofloxacin resistance
determinants in Portugal (Poeta et al., 2009). Similar findings were
reported on commensal E. coli from a wide range of wild mam-
mals in Czech Republic/Slovakia (Literak et al., 2010). Similarly,
an approximately 5% of different wild birds representing different
regions proved to be carrying MDR E. coli in Germany (Guen-
ther et al., 2010), with the most frequent phenotypic resistances
being ampicillin, tetracycline as supported by minimal inhibitory
concentration (MIC) values. A recent study focusing on Por-
tuguese buzzards showed that >50% of commensal E. coli of
these animals could be reservoirs of a wide range of antimicro-
bial resistance genes and of class 1 integrons. The tested E. coli
isolates showed high levels of resistance to streptomycin and tetra-
cycline, and the resistance genes detected were: blaTEM, tet(A)
and/or tet(B), aadA1, cmlA, aac(3)-II. sul1 and/or sul2 and/or
sul3. Besides, virulence-associated genes papC (P fimbriae) and
aer (aerobactin) were present in >10% of these fecal isolates

(Radhouani et al., 2012). A European study of Literak et al. (2012)
on wintering omnivorous rooks commonly (37%) found fecal
samples with ciprofloxacin resistant Enterobacteriaceae isolates
carrying plasmid-mediated quinolone resistance (PMQR; over-
whelmingly qnrS1) genes. Based on above observations, it seems
that commensal E. coli of wildlife can be interpreted as indicators
of contamination from the environment and represent less risk of
exposure for human health.

In retrospect, the emergence and spread of the above common
multiresistance pattern leads back into the 1970s (Tadesse et al.,
2012), and demonstrates a perfect correlation with the approval
and introduction of corresponding drugs in clinical use (Schwarz
et al., 2006). As a consequence of the long term and intensive
use of these broad spectrum antimicrobial agents alone or in
combinations (e.g., sulfamethoxazole/trimethoprim) and of the
introduction of newer compounds in human-, and veterinary
medicine, the prevalence of E. coli strains with high number of
clinically important co-resistant phenotypes in man and animals
shows an increasing trend over time (Tadesse et al., 2012).

ADDITONAL IMPORTANT RESISTANCE FEATURES OF ANIMAL E. coli
Beside the above described multiresistance pheno- and genotypes
identified among commensal E. coli strains from healthy food ani-
mals, some additional phenotypes with MDR potential should
also be considered. In comparison with the former group, these
are overall less prevalent and in some extent show host-related
distribution.

The extended use of (fluoro)quinolones to treat poultry infec-
tions lead to the increase of quinolone resistance among E. coli
strains in poultry industry. Although quinolone resistance is in
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general not highly frequent in animal farming (Guerra et al.,
2003a; Kojima et al., 2009), but high level of nalidixic acid resis-
tance (67%) and moderate resistance (29%) to ciprofloxacin was
reported in broiler chickens (Kmet and Kmetová, 2010). Sig-
nificant differences in incidence of ciprofloxacin resistance was
observed in turkeys (breeding or meat flocks; Gosling et al., 2012).

The sequence analysis of the chromosomal gyrA and parC
mutations encoding DNA gyrase and topoisomerase IV identified
the classical genotype of Ser83→Leu and/or Asp87→Asn (gyrA)
and Ser80→Ile (parC) being the main mechanism responsible
for quinolone resistance in commensal and clinical E. coli. The
level of resistance show correlation with the number of mutations
produced (Guerra et al., 2003a; Kmet and Kmetová, 2010).

Overall, low to moderate incidence of chloramphenicol resis-
tance is registered in food animals of Europe (European Food
Safety Authority [EFSA], 2009), despite the fact that this drug
was not allowed for use in food animals after 1994. However,
its derivative florfenicol is licensed for treatment of respiratory
infections in cattle and pigs. The identification of resistance genes
behind certain phenotypes reveal that in food animal E. coli strains
resistance to chloramphenicol is mediated mostly by the genes
catA1, floR, and cmlA1 (Guerra et al., 2003a; Glenn et al., 2012;
Szmolka et al., 2012) responsible for the enzymatic inactivation
and the active extrusion of the drug, respectively. The catA1 gene is
often integrated within a resistance gene cluster, which ensure the
persistence of corresponding resistance even in the lack of drug
administration. This event may provide an explanation for the
nascent resistance to chloramphenicol and will be discussed below.

Finally, the elevated incidence of gentamicin resistance in
chicken and pig E. coli strains in eastern countries (Choi et al.,
2011) may justify to be mentioned as potentially important resis-
tance feature of E. coli from farm animals. Its significance is further
increased by the consideration, that the presence of this phenotype
was found to be associated with MDR in commensal and clinical
and isolates of E. coli (Szmolka et al., 2012).

In addition to gene aacC2 [aac(3)-II] which is though to be
a marker gene coding for gentamicin resistance phenotype (Ho
et al., 2010), several other types of aminoglycoside resistance genes,
such as aacC4 [aac(3)-IV ], aacC3 [aac(3)-III], and aadB [ant(2”)-
I]) were infrequently identified in resistant strains (Guerra et al.,
2003a; Choi et al., 2011). All of them mediate the enzymatic
inactivation of the drug.

The high prevalence of certain co-resistance phenotypes is the
best evidence to the co-selection and conservation of combined
resistance mechanisms in commensal E. coli, reflecting the effect
of irresponsible use of antimicrobials during the fight against
pathogenic counterparts. The complex nature of these interactions
is evident, since the interplay of different mechanisms, includ-
ing the efflux-, enzymatic inactivation of the drug and the target
protection are to be considered even in relation to individual phe-
notypes. Therefore, the molecular background of these resistances
is not intended to be discussed here, and there are a number of
comprehensive reviews to rely on (Sandvang and Aarestrup, 2000;
O’Brien, 2002; Aarestrup, 2006; Schwarz et al., 2006).

Additionally, in the corresponding chapter special attention will
be devoted to the newly discovered resistance mechanisms and
gene assemblies, being developed as an adequate response to the

introduction and extensive use of new drugs of critical importance
especially in human medicine.

ASSOCIATIONS BETWEEN ANTIMICROBIAL RESISTANCE AND
VIRULENCE DETERMINANTS OF E. coli IN ANIMALS
Other important, but less well-studied associations are the ones
of antimicrobial resistance and virulence in E. coli. This impor-
tant question has been mostly studied on human pathogenic
extraintestinal strains so far, and there are no direct evidences
for co-transfer of resistance and virulence traits among com-
mensal E. coli strains of humans. However, the co-selection of
antimicrobial resistance and virulence genes is frequently observed
among pathogenic E. coli strains, which can almost be regarded
as self explanatory phenomena (Da Silva and Mendonça, 2012).
A well-known example for this possible co-selection of CTX-
M-15 resistance and virulence are provided by the ST131 clone
of human ExPEC O25:H4-ST131 strains characterized mostly by
higher virulence in murine models (Clermont et al., 2008).

For animal pathogenic E. coli there are also findings on such
possible associations. A very recent example for this event, is pro-
vided by the fully sequenced large conjugative hybrid plasmid pTC
of porcine enterotoxigenic E. coli (ETEC), possessing sta and stb
genes for heat stable enterotoxins embedded in a toxin-specific
locus (TSL), and a Tn10 composite transposon carrying the tetra-
cycline resistance gene tet(B) (Fekete et al., 2012). Interestingly
this plasmid showed a high degree of similarity (98%) with the
NR1 (DQ364638.1) and pC15-1a (AY4580161.1), the latter already
mentioned above as a CTXM-15 carrying MDR plasmid associ-
ated with Canadian nosocomial extraintestinal E. coli infections
(Boyd et al., 2004).

One example that we could come up at present for an animal
commensal (intestinal) E. coli plasmid carrying both antimicro-
bial resistance and virulence determinants, has been described by
Nógrády et al. (2006). This was a conjugative large (∼120 kb) plas-
mid carrying a 1.6 kb class 1 integron (dfrA1-aadA1), and tet(A)
resistance genes together with the gene iss (for increased serum sur-
vival). Other examples for concomitant occurrence of resistance
and virulence genes has been described on avian ExPEC plasmids
(pAPEC-O103-ColBM) carrying a MDR-encoding island and a
ColV pathogenicity island (Johnson et al., 2010), and several other
RepFIB/FIIA type hybrid plasmids showed the ability to acquire
both virulence and MDR traits (Johnson and Nolan, 2009). Fur-
thermore, Bonnet et al. (2009) reported that the MDR plasmid
pAPEC-O2-R was characteristic to commensal E. coli strains from
broilers raised on a diet supplemented with antimicrobials sim-
ulating farm conditions, and provided indirect evidence about
simultaneous presence of resistance and virulence genes in these
strains. A further finding on this line was provided by Szmolka
et al. (2012) describing a strong correlation of gene tet(A) with
the virulence genes iroN and iss in both commensal and extrain-
testinal avian E. coli, with indications that they might be similarly
co-transferred on the same plasmids in both groups.

Regarding simultaneous occurrence and occasional co-transfer
of resistance and virulence determinants among intestinal (com-
mensal) and extraintestinal (pathogenic) isolates of human and
avian E. coli strains, we should keep in mind that a clear distinc-
tion between extraintestinal pathogens and harmless commensals
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is not always easy (Tóth et al., 2012; Leimbach et al., 2013). Both
groups are part of the normal intestinal flora and there is a broad
spectrum of fitness and virulence between harmless commensal,
and extraintestinal pathogenic strains of E. coli of man and of dif-
ferent avian species, which would probably be also true for some
other food animals as well.

MOBILE GENETIC ELEMENTS IN THE TRANSFER OF RESISTANCE IN
COMMENSAL E. coli
The observation that a high number of same or closely related
resistance genes are constantly circulating between bacteria of
different species or even genera lead to the recognition, that
the horizontal gene transfer represents the most effective tool in
the acquisition and widespread dissemination of multiresistance
pheno- and genotypes (Ochman et al., 2000). Clustering several
resistance genes on mobile genetic elements (e.g., plasmids, inte-
grons) ensure not only the co-transfer of these resistance traits,
but also contributes to the persistence of resistance in the lack of
antimicrobial pressure (Sandvang and Aarestrup, 2000).

In this genetic exchange both commensal and pathogenic bacte-
ria are equally involved, moreover the bacterial host species barrier
could also be crossed (Sørum and Sunde, 2001). Thus, the mul-
tifactorial nature of gene transfer creates particular problem and
controversies, when the origin and the direction of transmission
of specific resistance traits have to be established.

Integrons as important tools in the transfer of co-resistance
Integrons characteristically constitute small genetic systems pos-
sessing the ability to capture and co-express a set of resistance
determinants with different functions. Integrons are ranked in
four classes based on the homology of the integrase protein,
among them class 1 integrons being the most frequently iden-
tified ones among Enterobacteriaceae including both commensal
and pathogenic populations of E. coli. In the classical structure of
the class 1 integron, antibiotic resistance gene cassettes are inte-
grated sequentially in the variable region (VR), flanked by two
conserved segments, 5′CS and 3′CS. The 5′CS contains the inte-
grase gene (intI1), the promoter sequence, and an insertion site
(attI) for various resistance gene cassettes, while the characteris-
tic qacE�1 and sul1 genes are consequent in the 3′CS (Carattoli,
2001). Embedded gene cassettes lack their own promoter, there-
fore a common promoter is needed for their expression, which is
located downstream of the integrase gene. In this manner a num-
ber of resistance genes coding diverse mechanisms can be clustered
into the same expression unit, which provides a double benefit to
the bacterial host: achieving MDR and reducing its biological cost
at the same time (Guardabassi and Courvalin, 2006).

The mobilization of class 1 integrons is related to mobile
genetic elements. In this respect transposon Tn21 is known to
contribute to their mobility, moreover the physical association of
integrons with IncF1 plasmid was also demonstrated (Carattoli
et al., 2001). Associations of genes conferring resistance against
several important antimicrobial classes, such as aminoglycosides,
chloramphenicol, penicillins, trimethoprim, and sulfonamides are
frequently carried by integrons. Interestingly, different antimi-
crobial classes are only moderately represented by resistance
genes in different integron structures, suggesting that a restricted

number and type of gene cassettes can be integrated. According
to this, molecular characterization of E. coli strains reveal that
class 1 integrons are working mostly with the following sets
of genes: aadA-like, aacA-like and/or aadB (aminoglycoside),
catB-like (chloramphenicol), dfrA-like (trimethoprim), whereas
sul1 (sulfamethoxazole) is conserved in the structure of class 1
integron.

Although the number and the subtype of the integrated gene
cassettes may vary between animal species and sample sources
(Nógrády et al., 2006; Karczmarczyk et al., 2011), no remarkable
differences were detected, when the genetic diversity of integrons
derived from healthy and sick animals were compared with those
from humans (Cocchi et al., 2007). However, it was established,
that the prevalence of integrons in MDR E. coli strains derived
from animal fecal samples was higher than in human strains (Ho
et al., 2009). This was in harmony with the results of one of the
above studies from chicks (Nógrády et al., 2006), where the vari-
ability of class 1 integrons was higher among commensal strains
as compared to extraintestinal pathogens. Some of these inte-
grons were carried by conjugative plasmids, indicating the role
of commensal E. coli as a reservoir of multiple resistance deter-
minants. It is interesting to note, that class 1 integrons of 1.6 and
1.8 kb were detected in 22% of commensal E. coli isolates from
farmed catfish, containing resistance gene cassettes dfrA12-aadA2
and dfrA17-aadA5, respectively, beside the predominant tetracy-
cline resistance genes tet(B) (77%), and tet(A) (25%), respectively
(Nawaz et al., 2009).

On the other hand, such class 1 integrons of commensal
E. coli bacteria could also be derived from Salmonella, further
supporting the concept about E. coli bacteria as reservoirs of mul-
tiple resistance determinants (van Essen-Zandbergen et al., 2009).
Time-related analysis of the integron carriage showed no varia-
tions when considering the overall relative frequency of integron
prevalence in pig and in chicken strains from 1998/1999 and
2006, respectively (Marchant et al., 2013), although the molecular
screening of the reference ECOR collection (1973–1980) revealed
the presence of class 1 integrons in only four strains from the total
of 72 reference E. coli strains tested (Mazel et al., 2000).

Plasmids as the most effective vectors in transferring
multiresistance
Plasmids are self-replicating extra-chromosomal elements pro-
moting the simultaneous inter- and intra-specific mobilization of
genetic determinants, thereby being the most efficient tools in the
acquisition and dissemination of antimicrobial resistance between
bacteria of Enterobacteriaceae. Plasmids are able to accumulate
a great variety of transposable elements, including transposons
and insertion sequences that mobilize the antimicrobial resistance
genes for transfer to the new host bacteria.

There are two ways in which bacteria can operate with their
plasmid-borne array of resistance genes: (i) by distributing indi-
vidual genes to several different plasmids and/or (ii) by clustering
multiple genes into the same transfer unit, called MDR plasmid.
Such MDR plasmids are often a result of interplasmidic recombi-
nation, integration of transposons, and/or insertion of resistance
gene cassettes (Schwarz et al., 2006). The selective advantage pro-
vided by the physical association of multiple resistance genes when
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antimicrobials are administered in combinations, may explain the
worldwide increasing trend of MDR in E. coli strains from animals
and humans.

Plasmids mediating MDR are characterized as usually large
(>50 kb), self-conjugative vehicles, with low copy number, and
encode resistance to all key antimicrobial classes, including amino-
glycosides, β-lactams, phenicols, quinolones, tetracyclines, and
sulfonamides (Carattoli, 2013). Due to their extreme flexibility in
the acquisition and transmission of the vast majority of resistance
genes, plasmids may function as one kind of warning systems
in the estimation of the current status of resistance determinants.
The introduction and extended use of “new generation”antimicro-
bials in human and veterinary medicine to treat serious infections,
resulted in the development and successful spread of “new gener-
ation plasmids,” serving as reservoirs among others of resistance
genes such as CTX-M type ESBL, PMQR and carbapenemases. As
an example, currently (date: 04/10/2013) some carbapenemase
resistance plasmids of enterobacteria seem to generate serious
epidemic concerns, especially for nursing homes and hospitals
in the USA (www.promedmail.org). To our knowledge, to date
there are no reports on the presence of carbapenemase producing
commensal E. coli in food animals.

The widespread use of critically important antimicrobial agents
including cephalosporins (third and fourth generation) and (flu-
oro)quinolones has triggered a rising incidence of these novel
plasmid-mediated mechanisms in clinical isolates of enterobacte-
rial species (Livermore, 2012). Surveillance reports on monitoring
resistance phenotype in commensal E. coli from food animals
indicated that resistance to newer compounds (cefotaxime and
cefepime) was rarely or not detected in the European Union (Euro-
pean Food Safety Authority and European Centre for Disease
Prevention and Control [EFSA and ECDC], 2010).

The extensive molecular characterization of resistance plas-
mids in E. coli strains of clinical interest allowed an insight to
the underlying plasmid-mediated, usually MDR mechanisms, and
the question can be raised, to what extent commensal strains of
E. coli could be involved in the spread of such plasmids? Unfortu-
nately, in case of commensal E. coli the significance of such MDR
plasmids is merely estimated so far based on the identified resis-
tance associations which are known to be carried by plasmids, and
there is a need for more in depth molecular analysis.

The following sub-chapters intend to provide a brief summary
of the current knowledge on the incidence of these critically impor-
tant and novel resistance mechanisms and their plasmids in E. coli
from healthy food animals, with special regard to those carrying
specific gene associations.

Extended-spectrum β-lactamase plasmids in commensal E. coli
from food animals. The veterinary use of extended-spectrum
β-lactams (third and fourth generation cephalosporins) over the
last two decades, resulted in the emergence of plasmids carrying
ESBLs (inactivators of the drug by hydrolysis) in E. coli strains of
animal origin (Aarestrup, 2006). However, ESBL producing bacte-
ria are reported overwhelmingly from human clinical cases (Jacoby
and Munoz-Price, 2005). Li et al. (2007) provided a chronologi-
cal report on ESBL-producing commensal E. coli of food animals
between 1992 and 2005. Data suggested a worldwide distribution

of several CTX-M type ESBL (blaCTX−M) variants (CTX-M-1,
CTX-M-2, CTX-M-3, CTX-M-9, CTX-M-13, CTX-M-14, CTX-
M-18, and CTX-M-24) in commensal E. coli strains among others
from poultry, swine, and cattle.

Recently, several new CTX-M variants have been detected on
conjugative plasmids, with blaCTX−M−14 and blaCTX−M−15 most
frequently represented among E. coli strains from healthy pigs
and poultry. Transfer experiments and plasmid replicon typing
revealed significant diversity among CTX-M conjugative plas-
mids, with IncFII and IncI1 replicons predominantly detected.
Among these, plasmids carrying blaCTX−M−14 seemed to be epi-
demic among healthy farm animals, contributing essentially to the
dissemination and transfer of β-lactam resistance in China (Zheng
et al., 2012).

Some of the CTX-M plasmids are often regarded as large MDR
plasmids, encoding co-resistance and may provide broad conju-
gational host range. As an example, the fully sequenced plasmid
pC15-1a of E. coli associated with the internationally acknowl-
edged outbreak lineage ST131, encoding additional resistance to
non-β-lactam antibiotics, including aminoglycosides, tetracycline,
chloramphenicol, nalidixic acid, and sulfamethoxazole. The MDR
region of this plasmid shows high similarity to the resistance
region of the blaCTX−M−15 plasmid (pUUH239.2) of a recently
described hospital outbreak strain of Klebsiella pneumoniae in
Sweden (Sandegren et al., 2012). Three CTX-M-1 type IncN plas-
mids with co-resistance phenotypes to phenicols, spectinomycin,
sulfamethoxazole, and tetracycline have been isolated from a pig
farm in Denmark, which seemed to be capable to circulate between
animals and humans (Moodley and Guardabassi, 2009). On the
other hand, the comparative subtyping of CTX-M-1 plasmids with
IncI1 replicons from avian and human E. coli, revealed no plas-
mids shared between E. coli of animal and human origin (Accogli
et al., 2013), suggesting that elucidation of plasmid exchange and
host specificity may need further investigations.

Moreover, animal derived CTX-M genes are also found to
co-exist with other β-lactamases, including CMY-type AmpC β-
lactamases (cephamycinases), which associations are particularly
concerned, having even more serious animal and human health
implications. The co-existence of blaCMY−2 with blaCTX−M−1, or
blaCTX−M−2 and blaCTX−M−55 was reported in healthy chickens
of the same farms, and occasionally in the same E. coli strains
in Japan, although their presence on the same plasmids was not
elucidated (Kameyama et al., 2013).

However, the CMY plasmids appear to always mediate mul-
tiple resistance associated with transposons and/or integrons (Li
et al., 2007). Hiki et al. (2013) found that the conjugative trans-
fer of CMY-2 MDR plasmids is associated to the IncA/C replicon
type. Sequence analysis of multiresistant IncA/C plasmids from
commensal and pathogenic E. coli derived from different animal
sources reveal a remarkably stable and conserved plasmid back-
bone, which allow the acquisition of multiple resistance genes
(Fernández-Alarcón et al., 2011). This broad host range nature
of IncA/C plasmids may be an explanation to the worldwide
distribution of blaCMY−2 genes as well.

In addition to above discussed associations, the co-carriage
of blaCTX−M−14 with blaCTX−M−15, blaOXA−1, and blaTEM−1

(ampicillin) floR (phenicol), tet(A) (tetracycline), and qnrS1
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(fluoroquinolone) was found in E. coli isolates from pig (Huang
et al., 2012). Although it was isolated from sick animals, the con-
tamination of the healthy population of animals with this highly
MDR plasmid may be expected.

Plasmid-mediated quinolone resistance crossing animal/human
barriers. It has been established that the introduction and
worldwide use of fluoroquinolones in the treatment of enterobac-
terial infections has lead to the occurrence of (fluoro)quinolone
resistance, both in the human- and veterinary medicine, showing
increasing level and frequency also in E. coli strains from food
animals (Webber and Piddock, 2001). The prime mechanisms of
resistance to quinolones (mutational modification of DNA gyrase
and topoisomerase IV, decreased outer membrane permeability
and overexpression of innate efflux pumps) are chromosomally
encoded, and thus are not regarded as being transferable.

In the last two decades, however, the plasmid-mediated resis-
tances to (fluoro)quinolones (PMQR) are raising concerns as
transferable mechanisms in human and in veterinary enterobac-
terial isolates (Poirel et al., 2012). Plasmid-mediated resistance
to quinolones is partially due to the presence of the transfer-
able Qnr proteins encoded by several variants of corresponding
genes qnrA, qnrB, qnrS, qnrC, and/or qnrD. Above proteins pro-
tect the DNA gyrase and topoisomerase IV enzymes from the
inhibitory activity of quinolones, conferring low-level resistance
per se but facilitate the selection of highly resistant bacterial strains
(Martínez-Martínez et al., 2008).

Among them the qnrS1 gene variant seems to be the most
frequently reported and worldwide diffused in both animal and
human sources (Strahilevitz et al., 2009), and an increasing num-
ber of information has been recently accumulated on plasmids of
E. coli strains carrying the qnrS1 gene (Yue et al., 2008; Cerquetti
et al., 2009; Huang et al., 2009; Ma et al., 2009; Xia et al., 2010;
Szmolka et al., 2011), especially in poultry and pigs in Europe
and in China. Besides, qnrB positive isolates of commensal E. coli
have been reported from turkey samples in Europe (Veldman et al.,
2011). Plasmids mediating qnr-type resistance often harbor other
resistance genes conferring resistance to β-lactams, aminoglyco-
sides, chloramphenicol, and tetracycline (Poirel et al., 2012).

In the transmission of the qnrS1 determinant the IncN plasmids
are frequently involved as described for human clinical isolates
of Salmonella enterica (Hopkins et al., 2007; García-Fernández
et al., 2009) and more recently for E. coli (Karah et al., 2010).
The first evidence for the detection of qnrS1 on IncN plasmids
in E. coli strains of animal origin has been described for a MDR
commensal porcine E. coli by Szmolka et al. (2011). Interestingly,
qnrS1 gene was identified in association with a Tn3-like transpo-
son, similarly to that of Salmonella Infantis isolated from chicken
(Kehrenberg et al., 2006). These observations, together with those
of Guerra et al. (2003b) are further indicating that the transferabil-
ity of resistance determinants from commensal E. coli of animals to
humans could happen in different ways and none of these should
be ignored.

As a further novel example of PMQR, the modified aminogly-
coside acetyltransferase AAC(6′)-Ib-cr enzyme, capable for the
enzymatic inactivation of ciprofloxacin, should be mentioned.
This type of PMQR has been reported for commensal E. coli of

poultry and swine origin in Tunisia and in China, respectively (Liu
et al., 2011; Soufi et al., 2011), but also for Salmonella paratyphi
B of chicken origin in China (Du et al., 2012), further supporting
the evidences for inter-specific exchange of resistance determi-
nants between commensal E. coli and zoonotic bacteria known to
colonize humans.

Further interesting examples of PMQR are the plasmid-
mediated quinolone efflux pump QepA and the MDR efflux pump
OqxAB. Both have been detected in commensal E. coli. The qepA
gene seem to be quite prevalent in swine in China, and shows
a strong linkage with the high level aminoglycoside resistance
determinant rmtB (Liu et al., 2008). Furthermore in Nigeria a com-
mensal E. coli strain of chicken origin, simultaneously possessing
qepA and qnrB genes have been detected (Fortini et al., 2011).
The MDR efflux pump OqxAB has been detected in E. coli from
swine manure in Denmark (Hansen et al., 2005), encoded on a
conjugative plasmid pOLA52 (Norman et al., 2008) that conferred
resistance to a veterinary growth promoter olaquindox, and later
such OqxAB positive strains have been identified in commensal
E. coli from chicken and swine from China (Liu et al., 2008; Zhao
et al., 2010).

All these data are indicating that PMQR genes are globally
prevalent in the commensal E. coli strains, especially of poultry
and pigs and they seem to be trafficking between Salmonella and
E. coli thereby having an access to the human intestinal flora and
gaining a possible worldwide clinical significance in man.

CONCLUDING REMARKS AND FUTURE PROSPECTS
ADVANTAGES AND DISADVANTAGES OF GENETIC FLEXIBILITY OF
COMMENSAL E. coli
The fact that E. coli is one of the genetically and metabolically
most flexible organisms of the normal intestinal flora is also evi-
denced in its responses to antimicrobial therapy. This remarkable
adaptability of commensal E. coli to toxic environments as resulted
by antimicrobial interventions can primarily be attributed to its
effective efflux systems. These systems are the first defense tools
of E. coli and thus they can be regarded as part of their innate
resistance mechanisms to antibiotics. As a result, these bacteria
adapt to the newly introduced antimicrobials (e.g., streptomycin
or tetracycline) within hours after treatment, and respond by an
increased population that may become dominant in the intestinal
flora for a few days and – depending of the antimicrobials used –
may remain in minority of the normal E. coli flora later on (Viden-
ska et al., 2013). In case of fluoroquinolone treatment, however, the
chromosomally encoded resistance appeared and remained char-
acteristic to the normal E. coli flora of chicks (Barrow et al., 1998).
Similar persistence of CTX-M producing E. coli was observed in
case of application of β-lactam antibiotics in pigs due to acquired
CTX-M genes (Cavaco et al., 2008). Thus, such commensal E. coli
becoming resistant, seem to help maintaining the physiological
balance of the normal intestinal flora in spite of application of
antimicrobials.

The genetic flexibility of E. coli not only ensures successful sur-
vival and growth under adverse environmental conditions, but also
makes these bacteria to be very effective recipients and even dis-
tributors of newly introduced foreign genes, such as antimicrobial
resistance determinants, and associated mobile genetic elements
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(plasmids, transposons, and integrons) through horizontal gene
transfer. Thereby commensal E. coli also have a great potential
as a reservoirs for antimicrobial resistance. The above versatility
and genetic flexibility are enabling of E. coli to develop resistances
against multiple antimicrobial classes.

In short, commensal E. coli flora can be regarded as a rich
source of emerging and spreading antimicrobial resistant strains
or resistance determinants (da Costa et al., 2013). On the other
hand the antimicrobial resistance of commensal E. coli flora
to antimicrobials can be an advantage by helping to keep the
microbiological–physiological balance of the large intestine during
and after antimicrobial treatments.

ORIGIN AND EMERGENCE OF ANTIMICROBIAL RESISTANCE
DETERMINANTS IN E. coli FROM ANIMALS
Regarding chromosomal- and mobile determinants of antimi-
crobial resistance, commensal E. coli strains do not seem to be
essentially different from pathogenic counterparts (Nógrády et al.,
2006; Szmolka et al., 2012). In fact the huge genetic versatility of
commensal E. coli populations ensures an elevated potential as a
reservoir for several classical and new or even unknown and/or
undetected resistance determinants (plasmids, transposons, inte-
grons) and other transposable genetic elements, such as the
recently discovered insertion sequence common region (ISCR)
elements, probably emerging as a response to new antimicrobials
(Call et al., 2010; Iyer et al., 2013). Such emergence may even be
more frequently observed in geographical areas and clinical prac-
tices where the use of antimicrobials is more intense and/or less
prudent. There are observations indicating that the presence of
some widely used antibiotics may drive the evolutionary mecha-
nisms of E. coli on a higher speed through SOS response, inducing
integrase transcription and increased recombination of resistance
gene cassettes (Baharoglu et al., 2010; Cambray et al., 2011).

In some cases, the origin of several resistance determinants
may be found in the aquatic environments as indicated by the
example of the qnr type PMQR genes (Poirel et al., 2012) and
in the soil, as exemplified for fluoroquinolone and several other
resistances in soil-dwelling bacteria (Dantas et al., 2008). In fact,
the environment in general could be regarded as a melting pot of
antimicrobial resistance (da Costa et al., 2013).

The extensive molecular characterization of resistance in E. coli
strains of clinical interest allowed better insight to some underly-
ing plasmid-mediated mechanisms as well. In contrast to clinical
strains, plasmids from commensal strains of E. coli from vari-
ous sources are much less investigated. Their presence is only
hypothetical in most of the studies, and is based on the identi-
fied co-resident pheno- and/or genotypes known to be associated
with plasmids and plasmid-associated mobile genetic elements
(Johnson and Nolan, 2009).

PUBLIC HEALTH CONSIDERATIONS
As indicated in Section “Multidrug Resistance in Commensal E.
coli”, the public health significance of antimicrobial resistances
of commensal E. coli can be much greater then it is generally
assumed today. Here we should take into account that a regu-
lar antimicrobial therapy of animals or man could quickly select
MDR populations of E. coli in different group of animals. These

nascent MDR strains will have a great chance to propagate in the
newly opened biological niche, resulted by the elimination of other
competing members of the intestinal flora.

The other important factor in predicting the public health sig-
nificance of antimicrobial resistance of commensal E. coli is, that
their resistance genes could be efficiently transferred in vivo to
pathogenic strains of E. coli or to Salmonella and vice versa as
indicated by molecular epidemiological data (Nógrády et al., 2006;
Szmolka et al., 2011). This can be explained by assuming that the
MDR population of E. coli is not only becoming dominant in the
intestine but – as a result of possible antimicrobial interference
and host response – will start disseminating its versatile mobile
genetic vectors, most often conjugative plasmids for antimicrobial
resistance, or for increase fitness or virulence (Bonnet et al., 2009).
On the other hand, this dominant commensal E. coli flora also
offers an exponentially increasing pool of diverse, and potentially
recipient bacteria for the horizontal transfer of mobile genetic ele-
ments, carrying antimicrobial resistance and/or virulence genes
(O’Brien, 2002; Summers, 2002). As exemplified by the Salmonella
Typhimurium model of Stecher et al. (2012), this horizontal gene
transfer to commensal E. coli can be enhanced by the pathogen
driven intestinal inflammatory response of the host organism,
greatly facilitating the conjugative transfer and reassortment of
plasmid encoded genes.

With the above options in mind, the question about human col-
onization potential of animal commensal E. coli cannot be avoided.
According to the review of Hammerum and Heuer (2009) there are
several examples of humans colonized by antimicrobial resistant
commensal E. coli from food animals, thereby presenting antimi-
crobial resistance burdens, possibly limiting therapeutic options.

There are, however, examples of genes confirming resistance
to aminoglycosides (aac(3)-I, ant(2′′)-Ia and aac(6′)-Ib), or to
chloramphenicol (catB) occurring almost exclusively in human E.
coli in contrast to animal isolates (Szmolka et al., 2012). Similarly,
Ewers et al. (2012) suggested that the animal ESBL producing E.
coli did not seem to be a major source for human ESBL strains.
Both examples indicate certain differences between MDR E. coli
of animal and human origin.

Farm workers in animal production areas represent a special
group in this respect. They are more prone to contamination by
MDR E. coli of animal origin and they become more frequently
carriers of MDR E. coli from animals (van den Bogaard et al., 2001),
while raw foods can also be a frequent source of human contam-
ination (Musgrove et al., 2006; Zhao et al., 2012; da Costa et al.,
2013). As a further example for public health significance of E. coli
resistance determinants of animal origin was provided by Moodley
and Guardabassi (2009) by detecting the same or very similar CTX-
M plasmids of IncN type across multiple E. coli lineages between
farm workers and pigs. It seems, that future studies should be
directed to quantify and characterize microbial risks derived from
commensal E. coli strains from food animals as potential contami-
nants to man and/or “active reservoirs” of specific resistance genes
or of MDR determinants transferable to human.

Consequently, due to the constantly changing nature of
resistance, monitoring of antimicrobial attributes (pheno- and
genotypes) of normal intestinal E. coli (and Enterococcus) from
food animals is a necessary and important measure to assess
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ongoing trends, and thereby keeping the national and community
services informed on actual developments on the area of antimi-
crobial resistances and their determinants. Such combined pheno-
and genotypic characterizations, together with appropriate gene
expression-, and metagenomic studies would better highlight the
importance of commensal E. coli of food animals, as a so far
less recognized and much less appreciated reservoir of multiple
antimicrobial resistance mechanisms.
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