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Manganese (Mn) oxides are among the most reactive sorbents and oxidants within the
environment, where they play a central role in the cycling of nutrients, metals, and carbon.
Recent discoveries have identified superoxide (O−

2 ) both of biogenic and abiogenic origin
as an effective oxidant of Mn(II) leading to the formation of Mn oxides. Here we examined
the conditions under which abiotically produced superoxide led to oxidative precipitation
of Mn and the solid-phases produced. Oxidized Mn, as both aqueous Mn(III) and Mn(III/IV)
oxides, was only observed in the presence of active catalase, indicating that hydrogen
peroxide (H2O2), a product of the reaction of O−

2 with Mn(II), inhibits the oxidation process
presumably through the reduction of Mn(III). Citrate and pyrophosphate increased the yield
of oxidized Mn but decreased the amount of Mn oxide produced via formation of Mn(III)-
ligand complexes. While complexing ligands played a role in stabilizing Mn(III), they did
not eliminate the inhibition of net Mn(III) formation by H2O2. The Mn oxides precipitated
were highly disordered colloidal hexagonal birnessite, similar to those produced by biotically
generated superoxide.Yet, in contrast to the large particulate Mn oxides formed by biogenic
superoxide, abiotic Mn oxides did not ripen to larger, more crystalline phases.This suggests
that the deposition of crystalline Mn oxides within the environment requires a biological, or
at least organic, influence.This work provides the first direct evidence that, under conditions
relevant to natural waters, oxidation of Mn(II) by superoxide can occur and lead to formation
of Mn oxides. For organisms that oxidize Mn(II) by producing superoxide, these findings
may also point to other microbially mediated processes, in particular enzymatic hydrogen
peroxide degradation and/or production of organic ligand metabolites, that allow for Mn
oxide formation.

Keywords: manganese oxidation, manganese oxides, superoxide, reactive oxygen species, Mn(III) complexes,

organic ligands

INTRODUCTION
Manganese (Mn) oxides are among the most reactive sorbents
and oxidants within the environment, where they play a cen-
tral role in the cycling of nutrients, metals, and carbon (Jenne,
1968; Sunda and Kieber, 1994). Despite the overall thermo-
dynamic favorability of Mn(II) oxidation to Mn(IV) oxides by
molecular oxygen (O2), the first electron transfer step forming
Mn(III) poses an aboitic reactivity barrier to this reaction and
is subsequently the rate controlling step (Luther III, 2010). Con-
sequently, homogeneous oxidation of aqueous Mn(II) by O2 is
considered negligible in environments with a pH below 9 (Mor-
gan, 2005; Luther III, 2010). The adsorption of Mn(II) to mineral
surfaces (Junta and Hochella, 1994; Madden and Hochella Jr.,
2005) or complexation to high-affinity ligands (Duckworth and
Sposito, 2005), however, allows for the oxidation to Mn(III/IV)
oxides. Further, Mn(II)-oxidizing microorganisms belonging to
both the bacterial and fungal domains of life are widespread and
believed to be dominant drivers of Mn oxide formation within the
environment (Miyata et al., 2004; Tebo et al., 2005; Santelli et al.,
2010).

In contrast to the energetically prohibitive reaction between
Mn(II) and molecular oxygen, the oxidation of Mn(II) by the
reactive oxygen species (ROS) superoxide (O−

2 ) is thermodynam-
ically favorable over all relevant pH conditions (0–13; Luther III,
2010). Indeed, the ability of Mn(II) to scavenge superoxide has
been well documented (Archibald and Fridovich, 1982; Cabelli
and Bielski, 1982, 1984; Nico et al., 2002; Barnese et al., 2008) and
Mn(II) is touted as an important antioxidant in biological systems
(Daly et al., 2004). In seawater and simulated freshwater, nanomo-
lar levels of Mn(II) are able to scavenge superoxide, indicating a
fast reaction which, at the superoxide levels previously measured
in seawater (Rose et al., 2008; Hansard et al., 2010), should lead to
a rapid Mn(II/III) cycle (Hansard et al., 2011). While Mn oxides
could form as the result of such a cycle, Hansard et al. (2011)
did not attempt to observe their formation at the low levels of
Mn used in their experiments. However, in another study, forma-
tion of ROS, primarily superoxide, upon illumination of terrestrial
organic carbon was implicated in the oxidation of Mn(II) to Mn
oxide minerals (Nico et al., 2002). Thus, the reaction between
Mn(II) and superoxide is likely important to the rates of both
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oxidation of Mn(II) and reduction of superoxide to hydrogen
peroxide (H2O2) in aqueous environments (reaction 1).

Mn(II) + O−
2 + 2H+ → Mn(III) + H2O2 (1)

The production of superoxide, thought to be ubiquitous in natural
surface waters, has historically been attributed to photochemical
reactions, yet recent research has revealed that previously unrecog-
nized biological sources contribute, in some cases substantially, to
the dark production of ROS in both terrestrial and marine systems
(Kustka et al., 2005; Rose et al., 2008; Hansard et al., 2010; Saragosti
et al., 2010; Vermilyea et al., 2010; Rusak et al., 2011). In fact, enzy-
matic extracellular superoxide production by a marine bacterium
(Roseobacter sp. AzwK-3b) within the widespread and numer-
ically abundant Roseobacter clade (Buchan et al., 2005; Hansel
and Francis, 2006) has recently been found responsible for this
organism’s ability to oxidize Mn(II) (Learman et al., 2011a). This
biological superoxide-based Mn(II) oxidation pathway ultimately
results in the precipitation of Mn oxides by way of a Mn(III) inter-
mediate. Similarly, it was recently shown that Mn(II) oxidation
by a number of common ascomycete fungi was a consequence
of extracellular superoxide production during cell differentiation
and reproduction (Hansel et al., 2012; Tang et al., 2013). In com-
parison to bacteria, fungal extracellular superoxide production has
long been appreciated and shown to play important roles in fungal
physiology and species interactions (Aguirre et al., 2005). How-
ever, the widespread production of extracellular superoxide by
environmentally relevant heterotrophic bacteria has recently been
recognized (Diaz et al., 2013). Considering superoxide’s ubiquity
in the environment and recognized role in (a)biological Mn(II)
oxidation, reaction between superoxide and aqueous Mn(II) may
be an important pathway for Mn oxide formation within the
environment.

It is unclear, however, if the formation of Mn oxides can proceed
via a reaction solely between Mn(II) and superoxide or if other
conditions (and/or reactants) are required for nucleation and/or
precipitation to occur. For example, upon reaction of Mn(II) and
superoxide (reaction 1), Mn(III) could be reduced back to Mn(II)
by O−

2 (reaction 2; Hansard et al., 2011), back-react with H2O2,
re-forming Mn(II) but not superoxide (Archibald and Fridovich,
1982; reaction 3), be further oxidized (reaction 4) or dispropor-
tionate to Mn(II) and Mn(IV) (reaction 5). Mn(IV) is unstable
as an aqueous ion and thus rapid hydrolysis will result in sponta-
neous precipitation of Mn(IV) as a pure or mixed valence oxide
(reaction 6). Thus, only the latter two scenarios (reactions 4 and
5) of those considered would result in the formation of Mn oxide
solid-phase products (reaction 6).

Mn(III) + O−
2 → Mn(II) + O2 (2)

Mn(III) + ½ H2O2 → Mn(II) + ½ O2 + H+ (3)

Mn(III) + ¼ O2 + H+ → Mn(IV) + ½ H2O (4)

2Mn(III) → Mn(II) + Mn(IV) (5)

Mn(IV) + 2 H2O → MnO2(s) + 4 H+ (6)

Thus, despite observations of a link between Mn(II) and
superoxide in Mn(II) oxidation, the potential for this reaction

to directly generate solid-phase Mn(III/IV) oxides is not known.
Here we address this uncertainty by conducting experiments react-
ing Mn(II) with abiotically generated superoxide under various
conditions. We elucidate conditions necessary for the forma-
tion of Mn(III/IV) oxide minerals and also the compositional
and structural properties of the ensuing Mn oxides. This work
reveals a tightly coupled cycle between ROS and Mn that influ-
ences the stability of reactive intermediates and propensity for
Mn oxide formation. This information will assist in identify-
ing the geochemical environments that can support Mn oxide
formation and additional microbial and potentially enzymatic
processes that may be mediated by organisms oxidizing Mn(II) via
superoxide.

MATERIALS AND METHODS
MATERIALS
SOTS-1 [superoxide thermal source; di-(4-carboxybenzyl)
hyponitrite] technical grade (Cayman Chemical) was used as a
thermal source of superoxide (Ingold et al., 1997; Heller and
Croot, 2010). SOTS-1 stock solutions (10 mg/mL) were made
with N2-purged dimethyl sulfoxide (DMSO, Sigma). Solutions
of artificial seawater (ASW, 0.3 M NaCl, 0.05 M MgSO4, 0.01 M
CaCl2, and 0.01 M KCl; Tebo et al., 2007) contained 20 mM 4-(2-
hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES; EMD)
adjusted to pH 7.6. Specific enzymes used to scavenge super-
oxide and hydrogen peroxide were superoxide dismutase (SOD,
Sigma) and catalase (Sigma), respectively. In some conditions,
soluble sodium citrate (Alfa Aesar), sodium pyrophosphate (J.T.
Baker), humic acid (Sigma), bovine serum albumin (BSA, Sigma),
or casamino acids (Sigma) were added as a supplement to the
experiment.

Mn(II) OXIDATION EXPERIMENTS
Experiments contained 75% ASW and HEPES in deionized water
with 200 μM MnCl2, and 1 mM SOTS-1. Experiments were con-
ducted at room temperature and allowed to incubate for 18–24 h.
Hydrogen peroxide was scavenged from experiments with the
addition of 200 U of catalase to 1 mL of reaction solution at time 0,
3, and 6 h (the decomposition of catalase on a time scale of hours
in our systems necessitated making several additions). Some of the
experiments were supplemented with SOD (10 or 50 μM), sodium
pyrophosphate (0.5 mM), sodium citrate (0.5 and 5 mM) and/or
10 mg/L humic acid. To make the particles that were analyzed
spectroscopically, 1700 U of catalase were added approximately
every 3 h over a period of 27 h.

QUANTIFICATION
Oxidized Mn was quantified by monitoring the spectroscopic
(Cary 60 UV–Vis spectrophotometer,Varian) absorption (620 nm)
of the samples with the addition of the colorimetric dye leucober-
belin blue (LBB, Sigma; Krumbein and Altmann, 1973), which
reacts with both Mn(III) and Mn(IV). Standard curves were pre-
pared using permanganate, KMnO4 (EMD). To convert moles of
KMnO4 to moles of Mn(IV) oxide or Mn(III), conversion factors
of 2.5 or 5, respectively, were used, since each mole of KMnO4 can
oxidize 2.5 or 5 times as much LBB as a mole of Mn(IV) oxide or
Mn(III) (Johnson and Chiswell, 1993).
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MINERAL ANALYSIS
Mn oxides were harvested by either filtration (0.2 μm) or cen-
trifugation (12,000 × g for 25 min). The collected Mn oxides were
washed with distilled water and frozen at −20◦C.

Transmission electron microscopy (TEM) was performed at
the University of Oklahoma Samuel Roberts Noble Electron
Microscopy Laboratory. Pelleted mineral samples were thawed,
resuspended in ultrapure (18.2 M�) water, and sonicated. The liq-
uid samples were loaded on lacey-carbon TEM grids (Ted Pella).
TEM imaging was performed on a JEOL 2010-F TEM at 200 kV.
Measurement and fast Fourier transform (FFT) analysis were per-
formed with Digital Micrograph (Gatan, Inc.) and the DiffTools
plugin (Mitchell, 2008).

Mn oxides were examined by X-ray absorption spectroscopy
(XAS), in particular X-ray absorption near edge spectroscopy
(XANES) for average oxidation state and extended X-ray absorp-
tion fine-structure (EXAFS) spectroscopy for structural informa-
tion. Mn K-edge XAS spectra were collected on beamline 11-2
at the Stanford Synchrotron Radiation Lightsource (SSRL) using a
Si(220) monochromator (� = 90◦). Calibrations were made using
a KMnO4 standard (6543.34 eV). Fluorescence data were collected
with a 30-element Ge solid-state detector array with soller slits
and Cr filters. Spectra were collected (three to four scans per sam-
ple) at room temperature from −200 to approximately +1000 eV
around the Mn K-edge (6539 keV). Data analysis of sample spec-
tra was performed using the SIXPACK software program (Webb,
2005). XAS scans were averaged, background-subtracted, nor-
malized, and deglitched if necessary. The absorption edge of the
Mn K-edge XANES spectra was used to estimate the proportions
of Mn(II), Mn(III), and Mn(IV) by conducting linear combina-
tion fitting (LCF) with the three model Mn compounds MnCl2,
MnOOH (feitknechtite), and δ-MnO2 (average oxidation state
∼3.9), respectively (Villalobos et al., 2003; Bargar et al.,2005; Webb
et al., 2005a). The normalized absorption spectra were analyzed
using a data range of 6560–6600 eV. Binding energies were fixed
and negative component contributions were prohibited for LCF.
The goodness of fit was established by minimization of the R-
factor parameter (Newville, 2001). Previous investigations have
defined the 1σ error estimates to be 1.7, 2.6, and 2.9% for Mn(II),
Mn(III), and Mn(IV), respectively (Bargar et al., 2005).

For EXAFS analysis, the χ(k) spectra were k3-weighted and
analyzed using a k range of 3–12 Å−1. LCF was performed
using model compounds as described previously (Bargar et al.,
2005) and include δ-MnO2, hexagonal Na-birnessite, triclinic
Ca-birnessite, groutite (α-MnOOH), feitknechtite (β-MnOOH),
manganite (γ-MnOOH), hausmannite (Mn3O4), synthetic todor-
okite [(Na,Ca,K)(Mg,Mn)Mn6O14.5H2O], pyrolusite (β-MnO2),
synthetic Mn2O3, aqueous Mn(III) pyrophosphate, aqueous
MnCl2, and aqueous MnSO4. For LCF, binding energies were
not allowed to float, a negative component contribution was
prohibited, and components were not summed to 1.0.

RESULTS AND DISCUSSION
Mn OXIDE PRECIPITATION
Mn oxide minerals were not observed upon reaction between abi-
otically generated superoxide and aqueous Mn(II) (Figure 1). In
ASW (75%) buffered to a pH of 7.6, 200 μM aqueous Mn(II) (as

FIGURE 1 | Reaction of SOTS (1 mM) produced superoxide with Mn(II)

(200 μM) in the absence or presence of catalase, boiled catalase, SOD

(10 μM), and Casamino acids. Casamino acids contain a mixture of single
amino acids and small peptides obtained from the hydrolysis of casein.
Measurements are presented as the sample mean ± SD for replicate
samples (n = 3). Asterisks indicate treatments that significantly (p < 0.05)
differ based on the Student’s t -test (unpaired, two-tailed) from the control
condition (no catalase).

MnCl2) was reacted at room temperature with 1 mM of the chem-
ical superoxide source (SOTS-1; Ingold et al., 1997; Heller and
Croot, 2010), which generates an initial superoxide flux of about
6 nM s−1 (Heller and Croot, 2010). Following several days of reac-
tion, visible Mn oxide precipitates or discoloration of the ASW
solution was not observed. Addition of the colorimetric dye LBB
(Krumbein and Altmann, 1973), which oxidizes and turns blue in
the presence of both Mn(III) and Mn(IV), showed no reaction,
confirming the absence of oxidized Mn within the reacted solu-
tion (Figure 1). Since LBB reacts with both Mn(III) and Mn(IV),
these results indicated that either (1) Mn(II) was not oxidized by
superoxide or that (2) the intermediate product Mn(III) was being
reduced back to Mn(II) (Archibald and Fridovich, 1982) before
Mn(IV) could form and spontaneously precipitate. Considering
the demonstrated ability of superoxide to oxidize Mn(II) at these
and lower superoxide fluxes and Mn(II) concentrations (Archibald
and Fridovich, 1982; Nico et al., 2002; Hansard et al., 2011; Lear-
man et al., 2011a), we hypothesized that the latter explanation was
responsible for the lack of Mn oxide formation.

Indeed, when catalase, a protein that catalyzes the decomposi-
tion of H2O2 to H2O and O2 (reaction 7) was added to the reaction,
oxidized Mn was detected (Figure 1) and the ASW obtained a
brown hue hinting at the presence of Mn oxide minerals (verified
with LBB, see mineral discussion below and Figures 4 and 5).

H2O2
catalase−→ H2O + 1/2 O2 (7)

Mn oxide precipitation was negated when the catalase enzyme
was boiled prior to addition, thus removing its catalytic activ-
ity (Figure 1). These results indicate that the enzymatic ability
of the catalase to degrade H2O2 was requisite for Mn oxide for-
mation. Mn oxide formation was not observed upon addition
of other general (non-functional) proteins (e.g., BSA) or amino
acids (e.g., casamino acids; Figure 1), ruling out the possibility
of a non-specific protein or amino acid effect. Molecular oxygen
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is generated through the degradation of hydrogen peroxide by
catalase (reaction 7) and thus it may be suggested that increased
oxygen concentration could increase the propensity for Mn(II)
oxidation. Yet, when SOD, an enzyme that scavenges superoxide
and produces molecular oxygen and hydrogen peroxide (reaction
8), was added in the presence of catalase (a condition that would
result in the highest molecular oxygen concentrations tested here),
Mn oxide formation again was not observed (Figure 1).

2O−
2 + 2H+ → O2 + H2O2 (8)

Taken together, these results reveal that both the presence of
superoxide and removal of H2O2 are required for Mn oxide for-
mation. The product of Mn(II) reaction with superoxide, H2O2,
likely inhibits the formation of Mn oxides. This inhibition is likely
due to a back reaction between Mn(III) and H2O2 (reaction 3)
as observed previously (Archibald and Fridovich, 1982) but could
also be a result of thermodynamic inhibition by increased H2O2

levels. Either way, scavenging of H2O2 is a requisite step in the
formation of Mn oxides by superoxide reaction with Mn(II).

Measuring loss of Mn(III) under these conditions is compli-
cated by the need to complex Mn(III) to measure it spectropho-
tometrically (Webb et al., 2005b; Madison et al., 2011), yet these
complexes will impact the kinetics of superoxide reaction with
Mn(II) and the reaction progression to Mn oxides. Reactions
conducted in the presence of complexing ligands (see below), how-
ever, confirm that Mn(III) is formed upon reaction of Mn(II) and
superoxide as predicted and demonstrated previously (Archibald
and Fridovich, 1982; Learman et al., 2011a).

We can estimate the concentration of H2O2 maintained by the
catalase in our system with a simple steady-state calculation. A unit
of catalase is defined as the amount capable of degrading 1 μmole
of H2O2 per minute at pH 7 at 25◦C in the presence of 50μM H2O2

(Sigma-Aldrich). Since catalase has a very high half-saturation
constant (∼1 M; Ogura, 1955), we can assume that the rate of
H2O2 degradation is first order with respect to both catalase and
H2O2 concentration. From the definition of a unit, we calculate a
second-order rate constant of 2 × 10−5 U L−1 min−1, neglecting
the slight difference between our reaction temperature at 25◦C.
The concentration of catalase added to our systems at t = 0 was
2 × 105 U L−1, giving a pseudo-first order decay rate coefficient of
4 min−1. Equating the initial rate of H2O2 production (estimated
as equal to the rate of superoxide production from 1 mM SOTS at
room temperature; Heller and Croot, 2010) with its rate of decay,
we obtain

360 nM min−1 = 4 min −1 [H2O2]
Thus, the catalase in this system will keep H2O2 levels below
∼90 nM, which allows the precipitation of Mn oxides. In con-
trast, without catalase, H2O2 would be expected to build up to a
concentration exceeding several micromolar within 10 min.

Mn OXIDE FORMATION IN THE PRESENCE OF COMPLEXING LIGANDS
In light of the results described above, the stability and/or preserva-
tion of Mn(III) has a direct bearing on the formation of Mn oxide
minerals generated from reactions between aqueous Mn(II) and
superoxide. Thus, the presence of organic or inorganic ligands that

complex Mn(III) may result in enhanced stabilization of Mn(III)
to resist back reaction with H2O2 and allow for Mn oxide forma-
tion. Citrate and pyrophosphate have the demonstrated abilities
to complex and stabilize aqueous Mn(III) (Klewicki and Morgan,
1998; Webb et al., 2005b). Indeed, the addition of pyrophosphate
(0.5 mM) and citrate (0.5 and 5.0 mM) to the SOTS-Mn(II)-
catalase reaction significantly (p < 0.05) increased the LBB signal
(Figure 2A). Once again, Mn(III/IV) was not detected in the
absence of catalase. These results suggest that pyrophosphate and
citrate played a role in stabilizing Mn(III), but did not eliminate
the inhibition of net Mn(III) formation by high H2O2. Further,
addition of humic acids also increased the formation of oxidized
Mn relative to the control (catalase only; Figure 2A). All reactions
were conducted in the dark, eliminating light-induced electron
transfer reactions.

In addition, complexation by citrate appeared to accelerate
the reaction of Mn(II) with superoxide. 10 μM of the superox-
ide scavenger SOD, sufficient to eliminate Mn oxidation in the
absence of ligands (Figure 1), decreased the amount of Mn(II)
oxidized in the presence of citrate and catalase by only ca. 40%
relative to that in the absence of SOD, while 50 μM decreased
Mn(II) oxidation by more than 90% (Figure 2B). No oxidation
was observed in the absence of SOTS (the superoxide source).
This indicates that superoxide was still the sole oxidant of Mn(II),
but that the reaction of Mn(II)-citrate with superoxide is faster
than the reaction of uncomplexed Mn(II), requiring more SOD to
outcompete Mn for the superoxide. This also indicates that oxi-
dation of Mn(II)-citrate complexes by molecular oxygen or direct
electron transfer as observed previously (Klewicki and Morgan,
1998) was not important on the time scale of our experiments.
Thus similar to conditions in the absence of citrate, both the
presence of superoxide and elimination of hydrogen peroxide
are required for net Mn(II) oxidation under these experimental
conditions.

Yet, although more oxidized Mn was observed in the presence
of organic ligands, a lower proportion was present as a solid-
phase, based both on the appearance of the solutions and on
absorbance measurements. The reacted solutions in the absence
of (in)organic ligands were darker (more brown) than equiva-
lent conditions in the presence of those same ligands (Figure 2C),
implying lower concentrations of Mn oxide colloids in the lat-
ter case (see discussion of solid-phases below). Under non-Mn
oxide forming conditions, that is, in the absence of catalase, back-
ground absorbance at 700 nm for SOTS reaction with Mn(II)
ranged from 0.001 to 0.004, including conditions containing cit-
rate, pyrophosphate, and humic acids (Figure 2C). In contrast,
the absorbance signal (caused mostly by light scattering) from
colloidal Mn oxides formed upon reaction of SOTS and Mn(II) in
the presence of catalase was 0.182 but was an order of magnitude
lower in the presence of citrate (0.018), pyrophosphate (0.012)
and humic acids (0.016), again indicating lower Mn oxide con-
tent. Furthermore, when solutions containing both catalase and
citrate were centrifuged to decrease the contribution of colloidal
Mn to the absorbance signal, a strong absorbance peak at 430 nm
indicative of a Mn(III)-citrate complex (Klewicki and Morgan,
1998) appeared (Figure 3A). As to be expected, this complex was
only observed in the presence of citrate.
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FIGURE 2 | (A) Abiotically produced superoxide (1 mM SOTS) reacted with
Mn(II) (200 μM) in the absence and presence of catalase (Cat) and
pyrophosphate (0.5 mM; PPi ), citrate (0.5 and 5 mM, Cit(L) and Cit(H),
respectively) or humic acids (10 mg/L). (B) Abiotically produced superoxide
reacted with Mn(II) in the presence of 5 mM citrate and catalase and/or SOD
(10 and 50 μM). Measurements are presented as the sample mean ± SD for
replicate samples (n = 3). Asterisks indicate treatments that significantly
(p < 0.05) differ based on the Student’s t -test (unpaired, two-tailed)
from the control condition (catalase only). Brackets for SDs below 3%
of the mean value are smaller than the width of the line. Intra-experiment

variability was low (as evidenced by the low SDs) but there
was slight inter-experiment variability due to minor deviations in
reaction time, temperature in the lab, and SOTS concentration. Individual
experiments are plotted separately for direct comparison to the
corresponding control condition for each experiment. (C) Pictures depict the
color of a subset of the reacted solutions following 24 h of reaction. The
numbers at the top of pictures indicate the visible light absorbance at
700 nm, which is indicative of the Mn oxide colloid contribution. Background
absorbance for SOTS reaction with 200 μM Mn(II) in the absence of
catalase is 0.001.

FIGURE 3 | (A) UV-visible absorbance scan (300–600 nm) for solutions
containing solely ASW + catalase (ASW), ASW + Mn(II) + catalase (Mn), and
ASW + Mn(II) + catalase + 5 mM citrate (Mn + cit). All Mn(II) concentrations
are 200 μM and all solutions contain SOTS. Vertical dotted line illustrates the
absorbance wavelength for Mn(III)-citrate complexes. Solutions were
centrifuged before scanning to remove the contribution of Mn oxide colloids

to the absorbance. (B) Oxidized Mn concentrations calculated from the LBB
measurement. If we assume oxidized Mn is solely Mn(III) (left-most bar), the
total oxidized Mn is higher than the initial Mn(II) present in the system. A
mixture of Mn(III) and Mn(IV) gives a total concentration of oxidized Mn in
between these extremes. The rightmost bar illustrates that a mixture of 33%
Mn(III) and 67% Mn(IV) corresponds to oxidation of all the initial Mn(II)).
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FIGURE 4 |Transmission electron microscopy (TEM) images (A,C)

illustrating small dispersed, colloidal Mn oxides formed via oxidation

of Mn(II) by abiotically (A) and biotically generated (C) superoxide and

24 and 4 h, respectively. TEM images of Mn oxides formed by biotic
superoxide after 96 h show mineral particle aggregates (E). Texture
underneath the particles is due to the lacey-carbon support film. Insets in
(A,C,E) are pictures of the reacted solution appearance. Biotic superoxide
Mn oxides were formed via reaction of superoxide-generating microbial

cell-free filtrate with Mn(II) as described in detail previously (images modified
from Learman et al., 2011b). High resolution TEM (B,D,F) demonstrating poor
crystallinity of the superoxide-produced Mn oxides with a lack of discernable
lattice fringes in abiotic generated Mn oxides (B) and small (∼5 nm)
crystalline domains in biotic Mn oxides (D). HR-TEM images of Mn oxides
formed by biotic superoxide after 96 h, however, show defined crystalline
domains (F). Insets in (B,D) illustrate the difference in crystallinity
(scale bar = 2 nm).
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FIGURE 5 | (A) Mn K-edge XANES spectra of the Mn oxides produced from
biotically produced Mn oxides after 4 h (after Learman et al., 2011b) and
abiotically produced Mn oxides. The dotted lines represent the standards for
Mn(IV) (δ-MnO2), Mn(III) (feitknechtite, β-MnOOH), and Mn(II) (MnCl2; as
described in Bargar et al., 2005). The solid gray line is the linear combination
fit (LCF) using the three Mn standards to represent the three oxidation states.

(B) k3-weighted Mn EXAFS spectra (solid line) and linear-combination fit
(dotted line) for the biotically and abiotically produced Mn oxides. The gray
shaded area highlights the “indicator region” emphasizing the spectral
differences that can be used to distinguish hexagonal (as δ-MnO2) from
both triclinic birnessite (labeled triclinic) and todorokite (as described in
Webb et al., 2005a).

However, all oxidized Mn could not have been present as
Mn(III) as in that case the oxidized Mn measured by LBB would
exceed (∼260 μM) the total Mn added (200 μM) to the reac-
tion containing 5 mM citrate (Figure 3B). We can calculate the
maximum possible amount of Mn(III) that could have formed
by assuming that all of the Mn(II) oxidized either to Mn(III) or
to Mn(IV); in this case, final concentrations of 65 μM (33%) of
Mn(III) and 135 μM (67%) Mn(IV) would be more consistent
with the measured LBB signal in the presence of 5 μM citrate
(Figure 2). Together, this evidence suggests that in the presence
of citrate, both Mn(III)-citrate complexes and Mn oxide colloids
are present. This is consistent with the results of Klewicki and
Morgan (1998), who found that Mn(III)-citrate complexes could
disproportionate to form Mn oxide precipitates.

Citrate has redox active properties and can induce Mn oxide
reductive dissolution (Wang and Stone, 2006). This reaction can
lead to redox cycling of Mn at the Mn oxide surface produc-
ing Mn(II) and ultimately Mn(III)-citrate. Thus, following the
initiation of Mn oxide precipitation, reactions between citrate
and the Mn oxide surface may also contribute to the preferential
accumulation of Mn(III)-citrate complexes over Mn oxide par-
ticles observed here (Figures 2 and 3). This contribution would
increase as the concentration of citrate increases (Wang and Stone,
2006). However, this mechanism cannot be the sole source of
Mn(III)-citrate in our systems, since it would not explain our
observations that much more Mn is oxidized in the presence of
citrate than in its absence, and that the effectiveness of SOD in
quenching Mn oxide formation is decreased in the presence of
citrate. In addition, higher concentrations of oxidized Mn yet
lower Mn oxide precipitation were also observed in the presence of

pyrophosphate (Figure 2) which does not have these redox-active
properties, further supporting a role for Mn(III) complexa-
tion in the net accumulation of oxidized Mn in the presence
of ROS.

CHARACTERISTICS OF SUPEROXIDE-GENERATED Mn OXIDES
In the presence of catalase, reactions between Mn(II) and super-
oxide led to a discoloration of the ASW from clear to light brown
(Figure 2C), indicative of Mn oxide formation as quantified by
LBB (see Figure 1). These Mn oxides were harvested (24 h of
reaction) by centrifugation (see Materials and Methods) resulting
in a thin brown film on the centrifuge tube wall. TEM revealed
that the brown film was composed of small, dispersed colloidal
Mn oxides averaging 100–125 nm in diameter with no evidence
of aggregation (Figure 4A). The interiors of the oxide grains
appeared highly disordered and discernable lattice fringes were not
observed via high resolution TEM (HR-TEM) imaging, indicating
that the oxides were very poorly crystalline, if not “amorphous”
(Figure 4B). The lack of lattice fringes suggested the particles
were strained, perhaps attributable in part to a poorly ordered dis-
tribution of interlayer cations. These poorly crystalline colloidal
Mn oxides were stable under these conditions, and ripening or
aggregation-based growth was not observed following several days
at room temperature (see below).

The Mn oxides were composed of a poorly ordered, poorly
crystalline phyllomanganate with hexagonal symmetry and low
Mn(III) content, similar to δ-MnO2 (Figure 5). The energy posi-
tion of the XANES absorbance maximum for the abiotic Mn
oxide centers around 6562 eV. This position is consistent with
the absorbance maximum of δ-MnO2, which has an average

www.frontiersin.org September 2013 | Volume 4 | Article 262 | 7

http://www.frontiersin.org/
http://www.frontiersin.org/Microbiological_Chemistry/archive


“fmicb-04-00262” — 2013/8/31 — 15:06 — page 8 — #8

Learman et al. Superoxide-mediated Mn oxide formation

oxidation state of 3.9–4.0, suggesting that the oxides are dom-
inated by Mn(IV). LCF of the XANES spectra using δ-MnO2,
feitknechtite (β-MnOOH), and MnCl2 indicated approximate rel-
ative percentages of Mn(IV), Mn(III), and Mn(II) as 82, 5, and
13%, respectively (Figure 5; R-factor = 0.07) – yet, due to the dif-
ficulty in assigning a specific binding energy to Mn(III), the values
obtained should be taken as approximate values. The Mn K-edge
EXAFS spectrum of the abiotic Mn oxides could be fully recon-
structed with solely δ-MnO2 by LCF (Figure 5; R-factor = 0.05).
Indeed, visual examination of the Mn K-edge spectral fingerprints
for model compounds of the three most common biogenic oxides
(Figure 5) illustrate differences in the features at 6.8, 8.0 (the
“indicator” region), and 9.3 Å−1, which are diagnostic of phyl-
lomanganates (McKeown and Post, 2001). In particular, while
hexagonal birnessite (as δ-MnO2 in Figure 5) has a distinct sharp
peak at ∼8 Å−1, a decrease in the amplitude of this oscillation and
a broadening of the feature at ∼9 Å−1 is consistent with an increase
in the triclinic birnessite and/or todorokite content (McKeown and
Post, 2001; Gaillot et al., 2003; Manceau et al., 2004; Webb et al.,
2005a). Here, the EXAFS spectrum for the abiotic Mn oxide has a
shoulder at 6.8 Å−1, one sharp peak at 8.0 Å−1, and a sharp peak
at 9.3 Å−1, all characteristic of hexagonal birnessite (Gaillot et al.,
2003; Manceau et al., 2004).

Interestingly, the abiotic Mn oxides observed here are struc-
turally similar to those produced biotically by a large taxonomi-
cally diverse group of organisms (fungi and bacteria) that likely
employ different enzymatic and oxidation pathways (Jurgensen
et al., 2004; Bargar et al., 2005; Webb et al., 2005a; Grangeon et al.,
2010). In fact, the Mn oxides formed here in a purely abiotic
superoxide system were similar to those previously characterized
upon reaction of Mn(II) with superoxide-generating microbial
exudate (cell-free filtrate). The biotic oxides were formed by
reacting Mn(II) for 4 h with the superoxide-generating cell-free
filtrate produced by Roseobacter AzwK-3b grown in an organic
carbon replete medium (K media, pH 7.6; Learman et al., 2011b).
Similar to the abiotic oxides, the Mn K-edge EXAFS spectra of
the biogenic Mn oxides were fully reconstructed with solely δ-
MnO2 (Figure 5; Learman et al., 2011b). In comparison to the
abiotic Mn oxides, however, the oxides formed by superoxide
generated microbial filtrate contained a higher relative propor-
tion of Mn(III), with approximate values being 8% Mn(II), 21%
Mn(III), and 71% Mn(IV) (Learman et al., 2011b). In addi-
tion, the biotically generated superoxide had discrete crystalline
domains – albeit small with lattice fringes continuous only over
regions less than 5 nm (Figure 4D; Learman et al., 2011b). The
coherent scattering domains of the biogenic oxides are rotated
in a nearly continuous distribution of orientations indicating a
high degree of disorder (Figure 4D), only slightly more ordered
than the abiotic analogs. These crystallinity differences can-
not be attributed simply to aging since the biogenic Mn oxides
were in fact younger (4 h) than the abiotically generated Mn
oxides (24 h).

Despite the similarity of initial Mn oxides, the geochemical con-
ditions within which the Mn(II) and superoxide react influences
ripening and aggregation of the oxides to more crystalline, ordered
phases. After several days of reaction between Mn(II) and abiot-
ically generated superoxide, the cloudy brown color indicative of

the colloidal Mn oxides remained unchanged and visible Mn oxide
particles and/or aggregates were not observed. In contrast, when
Mn(II) reacted with biogenic superoxide within cell-free micro-
bial filtrate, the brown hue disappeared after 96 h and Mn oxide
minerals were clearly visible by eye, with particle size continu-
ing to grow over time (Figure 4; Learman et al., 2011b). Indeed,
well-defined lattice fringes were apparent in nearly every region
of the grain, although micron-sized grains were aggregates of
crystallites ranging from five to tens of nanometers in diame-
ter. In light of the similar initial Mn oxide products, the ability
of the superoxide generated Mn oxide colloids to undergo aggre-
gated crystal growth apparently requires another reactant that is
present within the microbial exudate and may include individual
or complex proteins, organic metabolites, or extracellular organic
polymers. This organic-mediated aggregation could lead to the
large morphological diversity of structurally similar Mn oxides
formed under various biological conditions (e.g., fungi, bacteria,
cell-free filtrates; Emerson et al., 1989; van Waasbergen et al., 1996;
Villalobos et al., 2003; Tebo et al., 2004; Toner et al., 2005; Miyata
et al., 2006a; Learman et al., 2011b; Santelli et al., 2011; Tang et al.,
2013). Further, the mineral associated organics may lead to the
observed higher proportion of Mn(III) within the biogenic oxides
compared to the abiotically generated oxides.

CONCLUSION
This work provides the first direct evidence that, under conditions
relevant to natural waters, oxidation of Mn(II) by superoxide can
occur and lead to formation of Mn oxides. These results are con-
sistent with previous observations of Mn oxide formation during
photo-oxidation of humic substances (Nico et al., 2002), where we
suspect the humic material also served to stabilize Mn(III) to allow
for oxide precipitation. Our data also indicate that H2O2 inhibits
Mn oxidation, possibly because the intermediate Mn oxidation
product, Mn(III), rapidly oxidizes H2O2, regenerating Mn(II)
(e.g., reaction 3). Finally, we have demonstrated here that the pres-
ence of (in)organic ligands can increase the yield of oxidized Mn
but decreases net oxide formation, likely by stabilizing Mn(III).
Recent studies have highlighted the ubiquity and abundance of
Mn(III)-ligand complexes in aqueous and sedimentary environ-
ments (Trouwborst et al., 2006; Madison et al., 2011). The reaction
of Mn(II) with superoxide is one possible source of these com-
plexes and their formation and stability will ultimately impact the
precipitation of Mn.

Could reaction between superoxide and Mn(II) represent a
source of Mn oxide minerals in environmental systems? Our
results indicate that one question to consider is whether H2O2

levels remain sufficiently low for oxide formation in the presence
of superoxide. The highest production rates of both superoxide
and H2O2 are expected in sunlit-irradiated surface waters rich in
natural organic matter. Even in such waters, H2O2 concentrations
generally remain smaller than 1 μM (Scully et al., 1995; Richard
et al., 2007), close to the conditions created in our experimental
systems by adding catalase. Thus, while both Mn(II) concentra-
tions and superoxide fluxes created by ultraviolet (UV)-oxidation
of natural organic matter are lower than those in our experi-
mental systems, it seems plausible that Mn oxide formation by
superoxide could occur in sunlit natural waters. However, since
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photoreduction of Mn oxides is also known to occur (Sunda and
Huntsman, 1994), the net effect of light is not necessarily Mn
oxidation.

In the absence of UV light such as in deep waters and soils,
both superoxide production and H2O2 production and decay will
be controlled by biological activity (Rose et al., 2008; Hansard et al.,
2010; Vermilyea et al., 2010) and reactions with metals, such as Fe
(Rose and Waite, 2002; Burns et al., 2010). Our results indicate
that as long as these processes result in both superoxide produc-
tion and net H2O2 decay, Mn oxides could precipitate. Indeed,
pure isolates of common marine bacteria (Learman et al., 2011a)
and both marine and soil fungi (Hansel et al., 2012; Tang et al.,
2013) have been found which meet these minimum requirements
and are capable of oxidative precipitation of Mn via the forma-
tion of extracellular superoxide. The results provided here may
point to other microbially mediated processes occurring, how-
ever, to allow for Mn oxide formation, in particular enzymatic
hydrogen peroxide degradation and/or production of organic
metabolites and/or polymers that can function as Mn complexing
ligands.

In addition to the factors discussed above, the importance of
superoxide-based Mn oxide formation in environmental systems
will depend on the rate constant of the initial reaction (reaction
1) and on the concentration of superoxide present. Hansard et al.
(2011) have shown that under seawater conditions, the reaction is
sufficiently fast, and superoxide sufficiently abundant, to oxidize
Mn(II) on a time scale on the order of hours. The same study
found a similarly fast reaction rate for simulated freshwater con-
ditions, but a time scale for Mn(II) oxidation for these conditions
could not be calculated since superoxide concentrations in fresh-
waters are unknown. Superoxide has also not yet been quantified
in soils and sedimentary environments, but could be formed both
by biological activity and by redox reactions such as the oxidation
of Fe(II) (Rose and Waite, 2002; Burns et al., 2010).

Another factor affecting the importance of superoxide to Mn
oxide formation is the extent to which the Mn(III) produced by
reaction 1 is re-reduced instead of being further oxidized. Hansard
et al. (2011) observed evidence for a Mn(II/III) cycle in their sea-
water experiments, possibly because of reduction of Mn(III) by
superoxide. Some organic compounds may also be able to react
with the oxidized Mn intermediates, regenerating Mn(II) and thus

preventing Mn oxide formation. Even if no Mn oxide accumu-
lates, the rapid formation and turnover of reactive intermediate
Mn species may have vast implications for the redox cycling of
other (in)organic compounds, somewhat analogous to the recently
revealed “cryptic” sulfur cycle (Canfield et al., 2010). Further, this
rapidly spinning Mn cycle could have a substantial influence on
the concentrations of superoxide and hydrogen peroxide in surface
waters.

A final finding of this study was that the ensuing poorly ordered,
nanocrystalline birnessite products formed upon superoxide-
mediated Mn(II) oxidation are similar to Mn oxides formed by
various organisms, including bacteria and fungi, that employ dif-
ferent mechanisms of Mn(II) oxidation (Villalobos et al., 2003;
Tebo et al., 2004, 2005; Bargar et al., 2005; Webb et al., 2005a,b;
Miyata et al., 2006a,b; Santelli et al., 2011). Further, the similar-
ity in Mn oxide structure here implies that Mn oxide products
may not carry an obvious signature of the process responsible
for superoxide generation (e.g., UV-versus microbially generated
superoxide). Nevertheless, it is important to note that despite the
fact that the abiotic Mn oxides did not aggregate to larger par-
ticulate Mn oxides over time (i.e., the oxides remained colloidal),
Mn oxides formed by biotically generated superoxide within live
cell incubations and a cell-free filtrate rapidly formed particulate
(visible) Mn oxides. Thus, despite the non-specificity of the initial
Mn oxide products to reaction mechanism, observations of par-
ticulate Mn oxide minerals and deposits within the environment
may point to a biological (or at least organic) influence.
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