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Soil microbial communities are intricately linked to ecosystem functioning because they
play important roles in carbon and nitrogen cycling. Still, we know little about how soil
microbial communities will be affected by disturbances expected with climate change. This
is a significant gap in understanding, as the stability of microbial communities, defined as
a community’s ability to resist and recover from disturbances, likely has consequences
for ecosystem function. Here, we propose a framework for predicting a community’s
response to climate change, based on specific functional traits present in the community,
the relative dominance of r- and K-strategists, and the soil environment. We hypothesize
that the relative abundance of r- and K-strategists will inform about a community’s
resistance and resilience to climate change associated disturbances. We also propose
that other factors specific to soils, such as moisture content and the presence of plants,
may enhance a community’s resilience. For example, recent evidence suggests microbial
grazers, resource availability, and plant roots each impact on microbial community stability.
We explore these hypotheses by offering three vignettes of published data that we
re-analyzed. Our results show that community measures of the relative abundance of
r- and K-strategists, as well as environmental properties like resource availability and
the abundance and diversity of higher trophic levels, can contribute to explaining the
response of microbial community composition to climate change-related disturbances.
However, further investigation and experimental validation is necessary to directly test
these hypotheses across a wide range of soil ecosystems.
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INTRODUCTION
Soil microbial communities are intricately linked to ecosys-

tem functioning because they play important roles in carbon
(C) and nitrogen (N) cycling, and feed back to plant communi-
ties as mutualists and pathogens (Van der Heijden et al., 2008).
Although much research has been done to study the impacts
of a range of disturbances on soil microbial communities and
their functioning (Griffiths and Philippot, 2013), many uncer-
tainties remain about the controls on soil microbial community
stability (Box 1), and the consequences of disturbance-induced
changes in microbial communities for their capacity to withstand
further disturbances. This may be in part because most stud-
ies measured the stability of bulk microbial properties, such as
biomass and respiration, rather than of community structure (the
number of different taxa and their relative abundances; Box 1).
However, changes in the abundances or relative contributions
of community members may have implications for the stabil-
ity of a microbial community, and these kinds of membership
changes may not be apparent when measuring bulk microbial
properties. In addition, soils are unique and highly heterogeneous
environments, and controls on microbial community stability in
soil might differ from other systems. We argue that knowledge

on what controls soil microbial community stability is pivotal
for predicting the impacts of climate change on soil microbial
communities and the processes that they drive.

Here, drawing from findings from both terrestrial and aquatic
systems, we formulate hypotheses on the controls of resistance
and resilience of microbial communities in soil, focusing on
disturbances associated with climate change (Box 1). Climate
change is expected to result in increased frequency of drought
and heavy rainfall, increases in temperature, and increased litter
inputs and plant root exudates through elevated concentrations
of atmospheric CO2, which all have significant impacts on soil
microbial community structure and functioning (Bardgett et al.,
2013). Here, we focus on pulse disturbances associated with cli-
mate change, such as drought, increased rainfall, and increased
litter inputs, because the clear start and end point of these dis-
turbances allows for assessing both resistance and resilience of
microbial community composition (Box 1). We use three case
studies in which we re-analyze published data on the impact of
these disturbances on microbial communities to further develop
our proposed hypotheses. Finally, we synthesize our findings, and
recommend ways of testing our hypotheses about controls of soil
microbial community stability.
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Box 1 | Glossary

Microbial community composition: the assortment of microbial
taxa that comprises a community (Hunter, 1990).
Microbial community structure: the membership and (relative)
abundances of microbial taxa in a community (Anderson et al.,
2011).
Trait: phenotypic characteristic or attribute of an individual
microbe that is affected by genotype and the environment
(Campbell and Reece, 2006).
Functional trait: trait with a direct functional role that defines a
microbe in terms of its ecological role, i.e., its interaction with
other microbes and its environment (Lavorel and Garnier, 2002;
Wallenstein and Hall, 2012).
Disturbance: causal event that alters a community directly or
indirectly, typically through its effect on the community’s envi-
ronment (Rykiel, 1985; Glasby and Underwood, 1996).
Pulse disturbance: relatively discrete (with a clear start and end
point), short-term events with a clear start and end point (Lake,
2000).
Press disturbance: long term event or continuous change (Lake,
2000).
Climate change: statistically significant variation in the mean
state of the climate or its variability, caused either by nat-
ural internal processes or external forcing, or by persistent
anthropogenic-induced changes in the composition of the
atmosphere or land use (IPCC, 2007). Here, we focus on
disturbances associated with climate change that are rele-
vant to soil communities and processes, namely elevated
atmospheric CO2 and its indirect effects (increased soil C
inputs through roots, root exudates, and increased litter fall),
extreme weather events (drought and heavy rainfall), and
warming.
Global change: changes in the global environment that may
alter the capacity of the Earth to sustain life (Schlesinger,
2006), including both land-use and climate change. Here,
we focus on global change disturbances such as land use
change and N deposition rather than on climate change
disturbances.
Stability : the tendency of a community to return to a mean condi-
tion after a disturbance (Pimm, 1984); includes the components
of resistance and resilience (see also Worm and Duffy, 2003;
Shade et al., 2012a).
Resistance: the ability of a community property or process to
remain unchanged in the face of a specific disturbance (Pimm,
1984; Allison and Martiny, 2008).
Resilience: the ability of a community property or process to
recover after a specific disturbance, often reported as a rate of
return (Allison and Martiny, 2008).
Adaptation: the process through which a microbe increases its
fitness in a particular environment (Wallenstein and Hall, 2012),
i.e., optimization of traits that increase fitness.
Evolutionary adaptation: changes in the relative abundance of
gene frequencies in a gene pool to optimize traits that increase
fitness as a result of changes in environmental conditions
(Campbell and Reece, 2006; Orsini et al., 2013).

MICROBIAL COMMUNITY STRUCTURE, SPECIFIC TRAITS
PRESENT IN A COMMUNITY, AND THE R-K SPECTRUM
Much work has been done on the relationship between the diver-
sity and structure of microbial communities and their response
to disturbance, often with contrasting results. Most evidence

for relationships between microbial communities and stability
(resistance or resilience under disturbance) comes from aquatic
microcosm studies (e.g., Wertz et al., 2007; Wittebolle et al.,
2009; Eisenhauer et al., 2012). The majority of these studies have
focused on the stability of processes or bulk microbial proper-
ties (e.g., biomass or functioning) under disturbance, rather than
the stability of community structure itself. Disturbance influences
microbial community structure if species differ in their trade-off
between growth rate and disturbance tolerance (Engelmoer and
Rozen, 2009). Therefore, specific functional traits (Box 1) may be
more informative of community stability in disturbed ecosystems
than community composition and structure (Lennon et al., 2012;
Wallenstein and Hall, 2012; Mouillot et al., 2013). For example,
the ability to resist dehydration via synthesis of the sugar tre-
halose to maintain cell membrane integrity (e.g., McIntyre et al.,
2007; Zhang and Van, 2012) may be an important soil micro-
bial trait to consider for drought resistance, whereas the ability
to use specific C or N forms that are released when a drought
ends might inform about resilience (Borken and Matzner, 2009)
(Table 1). In contrast, more general stress-response pathways,
such as the sporulation pathway of Bacillus subtilis (e.g., Higgins
and Dworkin, 2012) may be universally useful for maintaining
stability in the face of a variety of disturbances.

Dispersal mechanisms and connectivity are important for
the resilience of microbial communities because the success of
regional dispersal affects the maintenance of local diversity (e.g.,
Matthiessen et al., 2010; Lindstrom and Langenheder, 2012).
Connectedness of metapopulations has been shown to be an
important factor in the response of aquatic communities to dis-
turbance (e.g., Altermatt et al., 2011; Carrara et al., 2012), but
such evidence is lacking for soils. Dispersal mechanisms are likely
to play an even more important role for the recovery of micro-
bial communities in soil because of its heterogeneous nature
(Ritz et al., 2004), and low moisture content can hamper dis-
persal of soil microbes by spatially isolating metacommunities
(Treves et al., 2003). However, soil microbes can also disperse via
aboveground mechanisms. For example, fungi that rely on active
dispersal through airborne spores (e.g., Roper et al., 2010) may
have greater resilience than bacteria that lack more active disper-
sal mechanisms (Kasel et al., 2008; but see Barcenas-Moreno et al.,
2011). On the other hand, bacteria, archaea, and phytoplankton
cells are thought to passively disperse easily because of their large
populations and small body sizes (e.g., Baas-Becking, 1934; Finlay
and Clarke, 1999).

From the above, we infer that specific microbial traits are
pivotal for determining microbial community response to distur-
bance, and that the ability of a microbial community to resist or
recover from a specific disturbance may be informed by the dom-
inance, or community-weighted mean, of a specific functional
trait (e.g., Wallenstein and Hall, 2012) (Table 1). Recent advances
in sequence-based metagenomics allow for identification of func-
tional genes in a microbial community (Thomas et al., 2012).
However, although the presence and expression of specific func-
tional genes in soil microbial communities has been shown to
respond to global change and climate change disturbances (e.g.,
Baldrian et al., 2012; Yergeau et al., 2012; Yarwood et al., 2013),
the relative abundance of functional genes has never been used
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Table 1 | Examples of microbial traits and the genes involved that might play a role in the resistance and resilience of microbial communities

to climate change.

Trait Genes involved Process Climate change driver References

Desiccation and heat
resistance

otsBA, otsA Trehalose synthesis Capsule Drought, warming Canovas et al., 2001; McIntyre et al.,
2007; Miller and Ingram, 2008;
Mordhorst et al., 2009; Zhang and
Van, 2012

neuO O- acetylation

Sporulation >500 Multiple Wide range of disturbances Higgins and Dworkin, 2012

Use of specific N forms amoA Ammonia oxidation Increased nitrogen availability
through warming and
rewetting after drought,
changes in dominant N forms
through warming, changes in
soil moisture, and changes in
soil C availability through
elevated CO2

Lamb et al., 2011; Long et al., 2012;
Yergeau et al., 2012; Yarwood et al.,
2013

cnorB Nitric oxide reduction

nosZ Nitrous oxide reduction

narG Nitrate reduction

nirK, nirS Nitrite reduction

nifH Nitrogen fixation

Use of specific C forms chiA Chitin degradation Changes in soil C availability
through rewetting after
drought, and elevated CO2

Theuerl and Buscot, 2010; Theuerl
et al., 2010; Edwards et al., 2011;
Baldrian et al., 2012; Castro et al.,
2012; Nannipieri et al., 2012

mcrA Methanogenesis

pmoA Methane oxidation

gtlA Citrate synthesis

cbhI Cellulose degradation

lcc Lignin and phenol oxidation

βglu Glucose oxidation

to infer a community’s ability to withstand and recover from dis-
turbances. This approach still has many caveats; newly discovered
gene sequences often lack homology to known genes in current
databases and remain unknown until biochemical characteriza-
tion and annotation of their functional abilities, and microorgan-
isms may carry the genetic capacity to exhibit a certain functional
trait, but, ultimately, not express the gene or produce an active
gene product in nature. Thus, to capitalize on sequence-based
metagenomic tools for the understanding of functional traits, the
traits of interest and their genes and regulatory pathways must be
well-characterized.

In addition to specific traits, microorganisms can be character-
ized according to their life-history strategy: r-strategists (termed
ruderals in plant ecology, and copiotrophs in microbial ecol-
ogy) have high growth rates and low resource use efficiency,
and K-strategists (termed competitors in plant ecology, and olig-
otrophs in microbial ecology) have low growth rates and high
resource use efficiency (Klappenbach et al., 2000; Fierer et al.,
2007). This assumed fundamental trade-off between growth rate
and resource use efficiency (Hall et al., 2009) may underlie the
capacity of microbial communities to respond to disturbance
(Schimel et al., 2007; Wallenstein and Hall, 2012), as commu-
nity structure will change if the taxa present differ in this trade-off
(Engelmoer and Rozen, 2009). There is evidence from both plant
and soil communities that K-strategists are more resistant, but less
resilient, to climate change-related disturbances than r-strategists
(Grime, 2001; Haddad et al., 2008; Bapiri et al., 2010; De Vries
et al., 2012a; Lennon et al., 2012), and a trade-off between resis-
tance and resilience is widely documented (Pimm, 1984; Hedlund
et al., 2004; De Vries et al., 2012a). Different soils with different

microbial communities have been compared in their response
to disturbances (mostly in terms of bulk biomass and func-
tion), and changes in the abundances or relative contributions
of community members have been linked to the overarching sta-
bility of the microbial community structure itself (Griffiths and
Philippot, 2013). As some taxa may be more sensitive to certain
disturbances than other taxa, it is possible that their differential
responses impact not only the abundances of insensitive commu-
nity members (for instance, through changes in the strengths of
microbial interactions, such as the release of an insensitive taxon
from competition due to the decrease in abundance of a taxon
sensitive to disturbance), but also the overarching resistance and
resilience of the community. Here, we propose that community-
level measures that have a theoretical relationship with a specific
functional trait, or with the r-K-strategist spectrum, might pre-
dict the response of soil microbial community structure to pulse
disturbances associated with climate change.

HYPOTHESIS 1: THE RESISTANCE OF MICROBIAL COMMUNITY
STRUCTURE TO DISTURBANCE INCREASES WITH INCREASING
RELATIVE ABUNDANCE OF K STRATEGISTS (OR OLIGOTROPHS), BUT
THE RESILIENCE DECREASES.
Gram-positive bacteria often are slower growing than Gram-
negative bacteria (Prescott et al., 1996), and therefore the ratio
between Gram-positives and Gram-negatives of a soil microbial
community might be indicative of the prevalence of K-strategists
in that community. In addition, the ability of many Gram-positive
bacteria to sporulate allows them to withstand a variety of dis-
turbances, including drought (Drenovsky et al., 2010; Higgins
and Dworkin, 2012). Therefore, we propose that the resistance
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of microbial community structure will increase with increasing
Gram-positive/Gram-negative ratio, or increasing relative abun-
dance of Gram-positive bacteria.

Similarly, microbial communities that have a high proportion
of fungi compared to bacteria are associated with nutrient [N and
phosphorus (P)] poor conditions that require high resource use
efficiency, and fungi typically are considered to be slower grow-
ing than bacteria (Six et al., 2006). Therefore, we argue that the
fungal/bacterial ratio of a soil microbial community may also be
indicative of the prevalence of K-strategists in that community,
and, following this, the resistance of microbial community struc-
ture will increase with increasing fungi-to-bacteria (F/B) ratio,
or increasing relative abundance of fungi, whereas the resilience
will decrease. The carbon-to-nitrogen (C/N) ratio of microbial
communities may be also be linked to intrinsic growth rate; fungi
are slower-growing and have wider C/N ratios than bacteria (Van
Veen and Paul, 1979; Bloem et al., 1997; but see Cleveland and
Liptzin, 2007), thus, microbial communities that are dominated
by fungi rather than bacteria will have a wider C/N ratio.

Finally, the resilience of microbial community structure will
increase with increasing abundance of bacteria that can be
classified as copiotrophs, such as many members of the β-
proteobacteria and Bacteriodetes, and decreasing abundance of
oligotrophs, such as many members of the Acidobacteria (Fierer
et al., 2007). Notably, many oligotrophic microorganisms may be
r-strategists, while many copiotrophic microorganisms may also
be K-strategists, and so there is likely overlap between the two
types of classification. Although we propose here that the above
community attributes can be used to predict the resistance and
resilience of microbial community composition, we acknowledge
that within the categories and distinctions we propose, there will
of course be exceptions that do not respond as we suggest.

At first, it may seem circular that quickly-growing organisms
will be less resistant but more resilient to disturbances, and that
communities with frequent disturbance regimes may be domi-
nated by microorganisms exhibiting these strategies because of
selection. However, we believe that our hypothesis is not merely
self-affirming because microorganisms may respond to distur-
bances not only by growing and dying, but also, for example,
by temporarily changing their physiological state or metabolism
(e.g., entering dormancy), maintaining stochastic gene expres-
sion, exhibiting phenotypic plasticity, or being rescued by dis-
persal from nearby meta-communities (e.g., Shade et al., 2012a).
Therefore, given the array of complex responses that microorgan-
isms may have when challenged with a disturbance, growth is not
the only mechanism that could maintain community stability.

HIGHER TROPHIC LEVELS
Although there is some evidence from aquatic and terrestrial
studies that the presence of higher trophic levels can enhance
the recovery of microbial biomass and activity (Maraun et al.,
1998; Downing and Leibold, 2010), almost no attention has
been given to the role of higher trophic levels of the soil food
web in controlling resilience of microbial community structure.
Microbial grazers have the potential to affect resilience of micro-
bial community structure via two mechanisms. First, they can
aid the dispersal of microbes by carrying them in their guts or

on their surfaces. For example, bacterial-feeding nematodes dis-
perse bacteria by carrying them both their surfaces and in their
guts (Ingham, 1999), fungal spores are dispersed by the move-
ment of fungal grazers such as collembolans (Renker et al., 2005),
and bacterioplankton may “hitchhike” on zooplankton carapaces
to overcome otherwise impenetrable gradients in water columns
(Grossart et al., 2010). In addition, microbial grazers affect micro-
bial communities by preferentially feeding on specific taxa or
functional groups, thereby either reducing their abundance or
stimulating their turnover and activity (Chen and Ferris, 2000;
Cole et al., 2004; Fu et al., 2005; Postma-Blaauw et al., 2005). As an
example, heterotrophic nanoflagellates, prominent bacteriovores
in aquatic systems, often preferentially graze on medium-sized
bacterioplankton, leaving the small and large-bodied organisms
behind (Miki and Jacquet, 2008).

HYPOTHESIS 2: THE RESILIENCE OF MICROBIAL COMMUNITY
STRUCTURE INCREASES WITH GREATER DIVERSITY OF ORGANISMS
OF HIGHER TROPHIC LEVELS
Different microbial grazers have different feeding preferences,
and different soil faunal species often have different move-
ment patterns. Thus, we hypothesize that a greater diversity or
species richness of higher trophic levels in the soil food web
enhances resilience of soil microbial communities after distur-
bance, because they stimulate the growth and dispersal of a wider
range of soil microbes than faunal communities of lower diversity.

RESOURCE AVAILABILITY
As suggested by Wallenstein and Hall (2012) resource availability
might constrain the rate of soil microbial community adaptation
and recovery; in low resource environments, shifts in microbial
community structure will be slow, whereas in high resource envi-
ronments, communities will respond rapidly. Indeed, resource
availability has been linked to resilience of microbial and fau-
nal biomass several times (Orwin et al., 2006; De Vries et al.,
2012b). It was observed (but not quantified in regards to com-
munity composition) that the resilience of both microbial and
faunal communities seemed to be increased by the presence of
plants (De Vries et al., 2012b) presumably because plants offer
substantial belowground carbon inputs for microbial communi-
ties. Resource availability has the potential to both enhance and
retard microbial community resilience, depending on the remain-
ing microbial traits after a disturbance: low resource availability
may give slow-growing (oligotrophic) microbes a competitive
advantage, whereas high resource availability may favor fast-
growing (copiotrophic) microbes. Therefore, we propose that a
greater resource availability, diversity, and heterogeneity would
increase community resilience after a disturbance, and indeed,
several studies report a positive effect of plant species diversity
(with presumably a diversity of belowground root exudates and
litter inputs) on the stability of microbial biomass and micro-
bial processes (Milcu et al., 2010; Royer-Tardif et al., 2010).
Moreover, root exudates form a tight evolutionary link between
plants and microbial communities (Badri and Vivanco, 2009),
and recent evidence showed that different chemical composi-
tions of Arabidopsis root exudates select for different microbial
communities (Badri et al., 2013), thereby potentially affecting the
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response of those communities to climate change. Because plants
respond to climate change by modifying their C balance (Atkin
and Tjoelker, 2003; Chaves et al., 2003), temporal changes in
root exudation especially have great potential to affect microbial
community responses to climate change.

HYPOTHESIS 3: THE RESILIENCE OF MICROBIAL COMMUNITY
STRUCTURE INCREASES WITH GREATER RESOURCE AVAILABILITY.
BECAUSE OF THE BELOWGROUND C INPUTS BY PLANT, THE
PRESENCE OF A PLANT WILL INCREASE THE RESILIENCE OF THE
MICROBIAL COMMUNITY
Increased concentrations of labile carbon, nitrogen, and phos-
phorus as a result of greater resource availability might allow
microbial taxa to maximize their intrinsic growth rate and thus
increases the resilience of microbial community composition.
We also hypothesize that the presence of a plant enhances the
resilience of microbial community structure through its below-
ground carbon inputs.

MOISTURE AVAILABILITY
Moisture availability plays a crucial role for microbial activity and
survival, because microbes are in close contact with water and
have semi-permeable cell walls. In addition and as briefly men-
tioned earlier, low soil moisture content limits the dispersal of
microorganisms (Carson et al., 2010; Kravchenko et al., 2013).
However, moisture is also limiting for the movement of microbial
grazers such as nematodes (Young et al., 1998), which, as hypoth-
esized above, might promote growth and dispersal of microbes
and increase microbial community resilience.

HYPOTHESIS 4: MOISTURE AVAILABILITY INCREASES RESILIENCE OF
MICROBIAL COMMUNITY STRUCTURE
We hypothesize that relatively higher moisture availability
increases the recovery of microbial community structure after
drought, and also after other types of disturbance, such as changes
in N and C availability (as a result of increased atmospheric CO2

concentrations) or heat waves.

METHODS
We analyzed three case studies to test the hypotheses about soil
microbial community resistance and resilience outlined above,
focusing on drought, rainfall, and increased litter inputs. In all
three case studies, we calculated Bray-Curtis similarities between
disturbed and control microbial communities as a measure of
both resistance and resilience of microbial community structure.
For resistance, this was the similarity between the disturbed treat-
ment and the control at the end of the disturbance; for resilience,
it was the similarity between the disturbed treatment and the
control after ending the disturbance. In both cases, a similar-
ity of 1 would mean maximum resistance (no effect of distur-
bance) or resilience (complete recovery). We used axis scores from
ordination plots as metrics of microbial community structure,
as well as F/B ratio and Gram-positive/Gram-negative ratio. We
fitted single-variable linear and non-linear models [including a
quadratic term of the significant explanatory variable(s)] (lm
function in R) to explain resistance and resilience from met-
rics of microbial community structure, as well as from higher

trophic level richness and numbers, soil C and N availability,
and soil moisture content. If the quadratic term was signifi-
cant, we performed an ANOVA to test whether the non-linear
model significantly improved model fit. Finally, we fitted the best
explaining additive model for microbial community resistance
and resilience using parameters that had shown to be significant
in the single-variable models. All analyses were performed in R
[version 2.15.2, (2012)].

CASE STUDY 1: RESPONSES OF GRASSLAND AND WHEAT
FIELD MICROBIAL COMMUNITIES TO MULTIPLE DROUGHT
EVENTS
The data from case study 1 were originally published in two
papers: De Vries et al. (2012a) and De Vries et al. (2012b). The
experiment investigated the responses of the entire soil food web
and of C and N cycling in grassland and wheat soil to drought.
The experiment included two phases: a field-based drought and
a glasshouse-based drought. During the glasshouse-based experi-
ment, the response of biomass of functional groups and processes
in both control and drought treatments was monitored directly
1, 3, 10, and 77 days after ending the drought. This, in combi-
nation with 32 experimental units (land use × field drought ×
glasshouse drought × 4 replicates) per sampling, and an extra set
of pots in which a wheat plant was grown to assess the impact of
plant presence on the recovery of the soil food web, resulted in a
total of 192 observations. Microbial communities were analyzed
using analysis of phospholipid-derived fatty acid profiles (PLFA).
In addition, soil concentrations of available C, N, and moisture
were measured, as well as leaching and gaseous losses of C and
N. For more details on methods and experimental set up see De
Vries et al. (2012a,b).

The original publications focused on the impact of drought on
biomass and activity of soil food webs, with only a minor role for
changes in community composition. The biomass and activity of
fungal-based soil food webs of grasslands were found to be more
resistant to drought, whereas biomass and activity bacterial-based
soil food webs were more resilient. In addition, the presence of a
plant increased the resilience of microbial biomass, and resilience
of microbial biomass was positively related to C availability.
Here, we re-analyzed microbial community data to test our four
hypotheses about resistance and resilience of microbial commu-
nity structure. We calculated F/B ratio (the ratio between the
fungal PLFA 18:2ω6 and the bacterial PLFAs i-15:0, a-15:0, 15:0,
i-16:0, 16:1ω7, 17:0, a-17:0, cyclo-17:0, 18:1ω7, and cyclo-19:0),
Gram-positive/Gram-negative ratio (the ratio between Gram-
positive PLFAs i-15:0 and i-17:0 and Gram-negative PLFAs a-
C15:0, 16:1ω7, cyclo-17:0, and cyclo-19:0) and PCA scores of
relative abundances of PLFAs [widely used in ecology for analyz-
ing PLFA profiles, e.g., in De Vries et al. (2012c)].

We found that both the resistance and the resilience of micro-
bial communities were explained by community structure. In line
with hypothesis 1, resistance decreased with greater PC1 scores,
along which Gram-negative abundance increased (Table A4),
and increased with greater Gram positive/Gram negative ratio
(quadratic relationship, Table 2). However, resistance decreased
with greater F/B ratio, which is in contrast with hypothesis 1,
and with earlier findings that resistance of biomass and activity
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to drought increased with greater relative abundance of fungi
(Bapiri et al., 2010; De Vries et al., 2012a). A possible expla-
nation for this is that there is only one PLFA that represents
fungi, whereas there are ten PLFAs for bacteria. Thus, changes
in microbial community structure therefore are dominated by
changes in the bacterial members, and the ratio between fun-
gal and bacterial PLFA might not be the most informative for
those changes. In addition, the bacterial community in a fungal-
dominated microbial community might undergo more dramatic
shifts in composition because of intense competition with fungi.

In contrast to hypothesis 1, resilience decreased with greater
PC1 scores, whereas it increased with greater C/N ratio of micro-
bial biomass and greater F/B ratio (included in best model,
Table 3) and Gram positive/Gram negative ratio (Table 3). The
positive relationship between resilience and F/B ratio as well as
Gram-positive/Gram-negative ratio might reflect the fact that the
initial changes in communities dominated by fungi and Gram-
positives were smaller and thus these remained more similar to
their undisturbed counterparts throughout. This is further sup-
ported by the lack of evidence for a trade-off between resistance
and resilience. In comparison, the resilience index proposed by
Orwin et al. (2010) calculates the resilience relative to the initial
change in a parameter, and thus a low resistance is more likely
followed by a high resilience. It goes beyond the scope of this
paper to compare the use of different resilience indices, but it is
noteworthy that different methods of calculating these indices can
give different results.

Our results partly support hypotheses 2, 3, and 4. As hypoth-
esized, resilience of microbial community structure increased
with greater microarthropod richness. However, it decreased
with greater protozoa numbers (Table 3). When only the last
sampling (77 days after ending the drought) was analyzed,
the positive relationship of resilience with greater microarthro-
pod richness was also significant (adjusted R-squared = 0.30,
P = 0.017), but resilience increased with protozoa numbers
(adjusted R-squared = 0.22, P = 0.037). Notably, the presence of
a plant strongly increased overall microbial community resilience,
although within land use and field drought treatments this effect
was not, or only marginally, significant (Figure 1). Within the
plant treatment, resilience increased with increasing soil dissolved
organic C availability (adjusted R-squared = 0.22, P = 0.038).
These results support our hypothesis that plant belowground C
inputs increase microbial community resilience. However, the
lack of explanatory power of overall resource availability for com-
munity resilience might indicate that other mechanisms are more
important, such as the greater abundance of higher trophic levels
in plant treatments (De Vries et al., 2012b), or plant impacts on
soil structure and aeration, which were not measured here.

CASE STUDY 2: RESPONSE OF MICROBIAL COMMUNITIES
FROM INTENSIVELY MANAGED AND EXTENSIVELY
MANAGED GRASSLAND TO DROUGHT
In the study published by Gordon et al. (2008) the impact
of a glasshouse-based drought was assessed on microbial

Table 2 | Case study 1: regression models explaining microbial community resistance to the glasshouse-based drought.

Model Intercept P Independent variables

included in model

Parameter value P Adj. R2

Single, linear 0.93 <0.0001 PC1 scores −0.008 <0.0001 0.79

Single, linear 1.01 <0.0001 F/B ratio −1.48 0.0005 0.56

Single, non-linear 0.75 <0.0001 Gram+/gram− ratio +3.7*10−3 <0.0001 0.88

(Gram+/gram− ratio)2 −1.8*10−5 <0.0001

Multiple, non-linear 0.83 <0.0001 PC1 −5.0*10−3 0.034 0.91

Gram+/gram− ratio +2.3*10−4 0.006

(Gram+/gram− ratio)2 −1.3*10−5 0.002

Table 3 | Case study 1: regression models explaining variation in microbial community resilience after the glasshouse-based drought.

Model Intercept P Independent variables

included in model

Parameter value P Adj. R2

Single, linear 0.93 <0.0001 Microarthropod
richness

+0.004 0.001 0.12

Single, linear 0.96 <0.0001 Protozoa numbers −7.0*10−8 <0.0001 0.33

Single, linear 0.95 <0.0001 PC1 −0.005 <0.0001 0.50

Single, linear 0.93 <0.0001 Microbial biomass C/N +0.006 0.009 0.07

Single, non-linear 0.91 <0.0001 Gram+/gram− ratio +4.1*10−4 0.006 0.16

(Gram+/gram− ratio)2 −6.2*10−6 0.05

Multiple, linear 0.91 <0.0001 Protozoa numbers −5.1*10−9 <0.0001 0.63

PC1 −4.1*10−3 <0.0001

Gram+/gram− ratio +3.2*10−4 0.001

F/B ratio 0.34 0.002
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communities from extensively managed, unfertilized, species rich
grassland, and from intensively managed, fertilized, and heavily
grazed grassland, alongside measurements of C and N leaching.
The response of microbial biomass C and N, and C and N leach-
ing, was measured 1, 3, 9, 16, 30, and 50 days after rewetting,
while microbial community structure (as PLFAs) was measured
only at day 30. With two land uses, a drought vs. a control,
and four replicates, this resulted in 16 observations for microbial
community structure.

In the original publication, the authors found that biomass N
of the (fungal-dominated) microbial community of extensively
managed grassland was less affected by drought than that of the
bacterial-dominated microbial community of intensively man-
aged grassland. Moreover, this was paralleled by smaller leaching
losses of C and N from the grassland soil. Changes in microbial
community composition were not analyzed quantitatively. Here,
we re-analyzed microbial community data to test our hypothe-
ses that microbial community resilience can be explained by

FIGURE 1 | Case study 1: the presence of a plant increased the

resilience of microbial community composition 77 days after ending

the glasshouse-based drought [F(1, 24) = 15.7, P = 0.0005]. Resilience
was greater in grassland than in wheat [F(1, 24) = 5.36, P = 0.029]; there
were no interaction effects between land use or previous drought. Pairwise
comparisons within land use and field drought treatments indicated that
only within the wheat field drought treatment the treatments with and
without plant were (marginally) significantly different (Tukey’s HSD
comparison, P = 0.059, indicated by an asterisk).

microbial community structure. As in case study 1, we used PCA
scores as microbial community metrics, alongside F/B ratio and
Gram-positive/Gram-negative ratio.

The results from this case study support hypothesis 1. We
found that resilience was negatively related to the F/B ratio and
the Gram-positive/Gram-negative ratio. In addition, resilience
increased with greater PC1 scores (Table 4), along which most
Gram-negative PLFAs increased and fungal PLFA decreased
(Table A5). This dataset did not allow for testing the other
hypotheses.

CASE STUDY 3: TROPICAL FOREST SOIL MICROBIAL
COMMUNITIES RESPONSES TO LITTER ADDITION, LITTER
REMOVAL, AND RAINFALL EXCLUSION IN A FIELD
EXPERIMENT
Nemergut et al. (2010) published a study assessing the impact
of organic matter content through on soil microbial commu-
nities in Costa Rican tropical forest soils. The design included
three experimental treatments (litter exclusion, litter addition,
and throughfall exclusion) and one control, each observed over
time in triplicate plots. The control plots were sampled at the
beginning of the experiment, in April 2007, and then subse-
quently in June and October 2008. The experimental plots were
sampled in June and October 2008, resulting in 27 total observa-
tions. Pyrosequencing of the 16S rRNA gene was used to measure
of bacterial and archaeal community structure, and a suite of
soil environmental parameters were also assessed, including: soil
water content, microbial biomass, CO2 efflux, dissolved oxygen,
and ammonium and nitrate concentrations. The sequencing data,
contextual data, and metadata were deposited in MG-RAST and
made publicly available. The Nemergut et al. (2010) dataset was
selected as a case study because parameters of interest to global
change disturbance were measured (microbial community struc-
ture, soil resources, and soil moisture), and because it provided
a sequence-based assessment of composition to complement the
PLFA-based assessments of Case Studies 1 and 2.

In the original work, the authors reported that certain phyla
of bacteria and archaea were more prevalent in some of the
experimental treatments than others, and, more specifically, that
oligotrophic taxa (e.g., Acidobacteria) were more prevalent in
plots that were compromised in organic matter availability. To
query the dataset specifically about community resistance and
resilience, we first calculated resistance as the Bray-Curtis simi-
larity (averaged across replicates) between the initial time point

Table 4 | Case study 2: regression models explaining variation in microbial community resilience at day 30 after ending the glasshouse-based

drought.

Model Intercept P Independent variables

included in model

Parameter value P Adj. R2

Single, linear 0.95 <0.0001 F/B ratio −3.76 0.0094 0.65

Single, linear 0.94 <0.0001 PC1 scores +0.003 0.013 0.62

Single, non-linear 1.04 <0.0001 Gram+/gram− ratio −0.137 0.021 0.77

(Gram+/gram− ratio)2 +0.0359 0.028

Single, linear 0.96 <0.001 Microbial biomass −1.7*10−5 0.024 0.53
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(pre-disturbance) control and the post-manipulation time point
for each experimental treatment (April control vs. June treat-
ment). Then, we calculated resilience as the Bray-Curtis similar-
ity between the final time point and the April pre-disturbance
control (April control vs. October treatment). We used uncon-
strained correspondence analysis to determine axis scores as a
metric of microbial community structure.

We found that microbial community structure (axis 1 CA
scores) explained variability in resistance across treatments (non-
linear model: resistance was explained by main and quadratic
term of axis 1 scores, adjusted R squared = 0.89, p < 0.0001 and
p = 0.004, respectively)—resistance increased with axis 1 scores.
The axis 1 gradient corresponded to transition from communi-
ties with a high representation of Proteobacteria-affiliated taxa
(many of which can be classified as copiotrophs) to communi-
ties with a high representation of Acidobacteria-affiliated taxa
(many of which can be classified as oligotrophs; Table A6 online
Suppl. Data). Thus, this result supports hypothesis 1 that resis-
tance increases with increasing abundance of oligotrophs. Axis
2 CA scores and microbial biomass did not provide explanatory
value for resistance. Of all the available environmental mea-
surements, only nitrate concentrations and moisture content
explained variability in resilience (Pearson’s correlation between
moisture and nitrate −0.123, P = 0.538); resilience increased
with nitrate availability, but decreased with moisture content
(Table 5). This suggests that nitrate availability and moisture are
important for resilience of microbial communities in tropical
soils, and supports hypothesis 3, but not hypothesis 4, which
pose that resilience increases with nutrient and water availability,
respectively. The dataset did not allow for testing the remaining
hypotheses.

Notably, there were only small changes in community compo-
sition within treatments over time, which prompted the authors
to combine the time points for their original analysis. This is, in
some ways, expected because spatial variability often exceeds tem-
poral variability in soil communities (Bardgett et al., 1997; Ettema
and Wardle, 2002). However, the resistance and resilience deter-
mined by these small changes were well-explained by community
structure, nitrate, and water content.

SUPPORT FOR THE HYPOTHESES – A FRAMEWORK FOR
PREDICTING MICROBIAL COMMUNITY RESISTANCE AND
RESILIENCE TO CLIMATE CHANGE
In all three case studies, the resistance and the resilience
of microbial communities could be explained by community

properties associated with the r-K spectrum. We found that the
measures that significantly explained resistance and resilience and
were indicative for shifts from r-strategists to K-strategists were
strongly interrelated (Tables A1–A3), confirming that these mea-
sures inform about broad shifts in community structure linked to
changes in the abundance of r- and K-strategists. Moreover, the
presence and abundance of higher tropic levels, resource avail-
ability, and moisture content were strong predictors for microbial
community resilience. Although the structure of the data we ana-
lyzed does not allow for drawing conclusions on the relative
importance of those controls, and the relationships we found
are not necessarily causal, these results are a first observation
and exploration of a framework for predicting the response of
soil microbial communities to climate change based on the ratio
between r- and K-strategists, and the environment (Figure 2, top
panel). We propose that, although the underlying specific func-
tional genes present in a microbial community determine its
response to climate change, simple measures that characterize
microbial communities along the r-K spectrum can inform its
ability to resist and recover from climate change related distur-
bances. Our framework also takes into account the effect of the
environment, and interrelationships between environment and r-
K dominance of microbial communities, in the three-dimensional
response plane.

Furthermore, we propose that the abundance of specific
functional genes such as those involved in desiccation resis-
tance will predict a community’s response to drought, but
genes involved in C and N cycling might link to the r-K
spectrum and thus be useful for predicting microbial com-
munity response to climate change (Table 1; Figure 2). For
example, the abundance of amoA genes is likely to be greater
in N-poor environments in which the dominant N form is
ammonia than in nutrient rich environments in which the
dominant form is nitrate (Schimel and Bennett, 2004), and
might thus be associated with microbial communities dom-
inated by oligotrophs. Ultimately, our framework allows for
plotting specific functional traits onto this plane for predict-
ing microbial community stability under a range of specific
disturbances.

FUTURE DIRECTIONS: THE ROLES OF MULTIPLE
DISTURBANCES AND ADAPTATION FOR SOIL MICROBIAL
COMMUNITY STABILITY
By selecting for specific traits among community members,
a disturbance may affect a community’s ability to respond

Table 5 | Case study 3: regression models explaining variation in microbial community resilience after litter addition, litter removal, and rainfall

exclusion.

Model Intercept P Independent variables

included in model

Parameter value P Adj. R2

Single, linear 0.22 <0.0001 Nitrate +0.006 0.026 0.34

Single, non-linear 0.44 <0.0001 Moisture −0.004 0.005 0.52

Multiple, linear 0.40 <0.0001 Nitrate +0.004 0.023 0.71

Moisture −0.035 0.005
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FIGURE 2 | Framework for predicting microbial community

response to climate change. The bottom part of the figure
illustrates the necessity of characterizing and annotating specific
functional genes (here conceptually represented by colored
sequences) that code for microbial traits of importance for
community responses for specific disturbances associated with
climate change. Once known and annotated, these genes can
inform about the relative abundance of a suite of genes that
may underlie a community’s response to climate change (arrow 1).
The middle part designates the relative abundance of functional
genes present in a community. This space is multidimensional and
here we chose to visualize C cycling genes, N cycling genes,
and drought resistance genes (see Table 1), but other known
and unknown genes such as those involved in sporulation or
specific dispersal mechanisms should be included. The functional

genes present in a community may, or may not, have a
relationship with the dominance of r- and K-strategists or with the
community’s environment (colored dots in middle and upper part).
The role of specific functional genes in a community’s response
and their links with the r-K spectrum are yet to be elucidated
(arrow 2). The upper part of the figure indicates a community’s
response to climate change, as determined by the relative
abundance of r- and K-strategists and the community’s environment
(in this case nutrient availability, but this can be replaced by
other environmental factors such as the abundance or richness of
higher trophic levels). A K-strategist dominated microbial community
in a nutrient-poor environment likely has high resistance, whereas
an r-dominated community in a nutrient-rich environment likely has
high resilience. The exact shape of the surface might vary
depending on specific circumstances.

to a subsequent disturbance or to a series of compounded
disturbances. For example, it has been shown that the order of
different types of disturbances influences the outcome of com-
munity structure, suggesting that selection for a specific trait

affects the ability to respond to a subsequent disturbance of a
different type (Fukami, 2001). Thus, we may expect that when
a microbial community is exposed to two subsequent distur-
bances of the same type, its composition will be more resistant
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to the second disturbance because of selection for the toler-
ant trait by the first disturbance. There is some support for
this hypothesis from soils. Precipitation regime affected the
response of soil bacterial community composition to subsequent
drought and rewetting events (Evans and Wallenstein, 2012),
and extremophiles are often tolerant to a wide range of distur-
bances (Mangold et al., 2013). In contrast, microbial commu-
nities exposed to severe drought appeared to be more resistant
to a subsequent heat wave, suggesting that the microbial traits
responsible for drought tolerance are related to those of heat-
tolerance (Berard et al., 2012). However, very little is known
about the interrelatedness between specific functional traits in
soil microbes, which makes it difficult to predict responses
to multiple disturbances. In contrast, the r-K spectrum might
inform about a microbial community’s ability to withstand dif-
ferent types of disturbance: r-strategists thrive in nutrient (N
and P) rich, disturbed environments compared to K-strategists,
but are less resistant to climate change than K-strategists
(Hedlund et al., 2004; De Vries et al., 2012a).

Adaptation also may be an important strategy for individ-
ual microbial taxa to cope with a changing climate (Box 1).
A microbe’s ability to adapt to disturbance is linked to its
generation time or turnover rate, and therefore r-strategists
may show quicker adaptation than K-strategists. Moreover,
warming can increase growth rates, but also horizontal gene
transfer between bacterial taxa (Pritchard, 2011). In addi-
tion, for example, it has been shown that E. coli can acquire
stress resistance to a range of disturbances after pretreat-
ment with a different disturbance after only 500 generation
times (Dragosits et al., 2013). This so called cross-stress pro-
tection has been shown for a range of species across king-
doms. Similar to microbial community resilience, rates of
adaptation and evolution are likely influenced by environ-
mental factors such as the abundance and richness of higher
trophic levels, moisture availability, and resource availability.
Although not within the scope of this paper, these find-
ings suggest that evolutionary changes might be of equal
importance to shifts in community structure for determining
the response of microbial communities to climate change
(Orsini et al., 2013).

CONCLUSION
Our aim in this paper was to hypothesize controls on
microbial community resistance and resilience to climate
change, and to explore our hypotheses by carefully re-analyzing
three vignettes of published data. Our results show that
both microbial community properties associated with the r-
K spectrum and environmental factors such as the abun-
dance and richness of higher trophic levels, plant presence,
and resource availability can explain the response of micro-
bial community structure to climate change-related distur-
bances. A clear limitation to our study is the relatively
narrow focus on three vignettes of case studies, and fur-
ther investigation and experimental validation is necessary to
directly test these hypotheses across a wide range of soil
ecosystems. Although querying publicly available data can be
used to formulate hypotheses on the potential controls of

microbial community resistance and resilience, disentangling
the interwoven controls on microbial community resistance
and resilience requires mechanistic experiments designed to test
specific questions about the hypothesized controls (Jansson and
Prosser, 2013).

As a final consideration, it is possible that routine suc-
cessional trajectories of microbial communities (for example,
seasonal trajectories in temperate soils) may be altered per-
manently as a result of a disturbance. However, the nature of
these alterations will depend on the traits present in the com-
munity and on the type of disturbance. In temperate aquatic
systems, it has been suggested that annual seasonal succession
in bacterial community composition may serve as a baseline
from which a community’s response to a pulse disturbances
can be measured, while gradual shifts in this succession may be
used as an indicator of long-term adaptations to press distur-
bances such as global climate changes (Shade et al., 2012a,b).
Similarly, soil community successional trajectories may be quan-
tified and monitored to detect gradual shifts in composition
over the long term, such as in response to the press distur-
bance of increased temperature, and how these shifts affect
short-term responses to pulse disturbances, such as drought.
However, typical rates of community turnover in soil systems
are not well documented, especially at the same site on inter-
annual scales, and in the absence of any disturbance (Shade
et al., 2013). Knowledge of these baseline seasonal dynam-
ics for soils is crucial for providing context for community
responses to pulse disturbances, like drought and flooding.
Therefore, collecting time series of soil communities and quan-
tifying baseline fluctuations should be prioritized toward the goal
of further understanding microbial community stability given
ongoing and compounded global climate change disturbances.
Combined with long-term experiments that directly manipu-
late anticipated global change disturbances [e.g., free-air carbon
dioxide enrichment experiments (Ainsworth and Long, 2005)],
we think that these time series will provide essential insights
into the important microbial traits and environmental condi-
tions that may alter or maintain ecosystem services in the face of
global changes.

ACKNOWLEDGMENTS
We thank the Joint EU-US Workshop “Microbial Community
Dynamics: Cooperation and Competition” of the European-
United States Task Force on Biotechnology Research for
encouraging our collaboration. AS is a Gordon and Betty
Moore Foundation Fellow of the Life Sciences Research
Foundation. We thank Diana Nemergut for permission to re-
analyze the dataset for case study 3 from MG-RAST, and
we thank Helen Gordon for providing us with the dataset
for case study 2. We also thank two anonymous refer-
ees and the editor for their constructive comments on the
manuscript.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/Terrestrial_Microbiology/10.3389/
fmicb.2013.00265/abstract

Frontiers in Microbiology | Terrestrial Microbiology September 2013 | Volume 4 | Article 265 | 10

http://www.frontiersin.org/Terrestrial_Microbiology/10.3389/fmicb.2013.00265/abstract
http://www.frontiersin.org/Terrestrial_Microbiology/10.3389/fmicb.2013.00265/abstract
http://www.frontiersin.org/Terrestrial_Microbiology
http://www.frontiersin.org/Terrestrial_Microbiology
http://www.frontiersin.org/Terrestrial_Microbiology/archive


de Vries and Shade Controls on microbial community stability

REFERENCES
Ainsworth, E. A., and Long, S. P. (2005).

What have we learned from 15
years of free-air CO2 enrichment
(FACE)? A meta-analytic review of
the responses of photosynthesis,
canopy properties and plant pro-
duction to rising CO2. New Phytol.
165, 351–371. doi: 10.1111/j.1469-
8137.2004.01224.x

Allison, S. D., and Martiny, J. B. H.
(2008). Resistance, resilience, and
redundancy in microbial commu-
nities. Proc. Natl. Acad. Sci. U.S.A.
105, 11512–11519. doi: 10.1073/
pnas.0801925105

Altermatt, F., Bieger, A., Carrara,
F., Rinaldo, A., and Holyoak, M.
(2011). Effects of connectivity and
recurrent local disturbances on
community structure and pop-
ulation density in experimental
metacommunities. PLoS ONE
6:e19525. doi: 10.1371/journal.
pone.0019525

Anderson, M. J., Crist, T. O., Chase,
J. M., Vellend, M., Inouye, B. D.,
Freestone, A. L., et al. (2011).
Navigating the multiple meanings
of beta diversity: a roadmap for
the practicing ecologist. Ecol. Lett.
14, 19–28. doi: 10.1111/j.1461-0248.
2010.01552.x

Atkin, O. K., and Tjoelker, M. G.
(2003). Thermal acclimation and
the dynamic response of plant respi-
ration to temperature. Trends Plant
Sci. 8, 343–351. doi: 10.1016/S1360-
1385(03)00136-5

Baas-Becking, L. G. M. (1934).
Geobiologie of Inleiding tot de
Milieukunde. The Hague: Van
Stockum and Zon.

Badri, D. V., Chaparro, J. M., Zhang,
R. F., Shen, Q. R., and Vivanco,
J. M. (2013). Application of nat-
ural blends of phytochemicals
derived from the root exudates
of arabidopsis to the soil reveal
that phenolic-related compounds
predominantly modulate the soil
microbiome. J. Biol. Chem. 288,
4502–4512. doi: 10.1074/jbc.M112.
433300

Badri, D. V., and Vivanco, J. M.
(2009). Regulation and function of
root exudates. Plant Cell Environ.
32, 666–681. doi: 10.1111/j.1365-
3040.2009.01926.x

Baldrian, P., Kolarik, M., Stursova,
M., Kopecky, J., Valaskova, V.,
Vetrovsky, T., et al. (2012). Active
and total microbial communities
in forest soil are largely different
and highly stratified during decom-
position. ISME J. 6, 248–258. doi:
10.1038/ismej.2011.95

Bapiri, A., Bååth, E., and Rousk, J.
(2010). Drying-rewetting cycles

affect fungal and bacterial growth
differently in an arable soil.
Microb. Ecol. 60, 419–428. doi:
10.1007/s00248-010-9723-5

Barcenas-Moreno, G., Garcia-Orenes,
F., Mataix-Solera, J., Mataix-
Beneyto, J., and Baath, E. (2011).
Soil microbial recolonisation after
a fire in a Mediterranean forest.
Biol. Fertil. Soils 47, 261–272. doi:
10.1007/s00374-010-0532-2

Bardgett, R. D., Leemans, D. K.,
Cook, R., and Hobbs, P. J. (1997).
Seasonality of the soil biota of
grazed and ungrazed hill grass-
lands. Soil Biol. Biochem. 29,
1285–1294. doi: 10.1016/S0038-
0717(97)00019-9

Bardgett, R. D., Manning, P., Morriën,
E., and De Vries, F. T. (2013).
Hierarchical responses of plant–soil
interactions to climate change: con-
sequences for the global carbon
cycle. J. Ecol. 101, 334–343. doi:
10.1111/1365-2745.12043

Berard, A., Ben Sassi, M., Renault,
P., and Gros, R. (2012). Severe
drought-induced community toler-
ance to heat wave. An experimental
study on soil microbial processes.
J. Soils Sediments 12, 513–518. doi:
10.1007/s11368-012-0469-1

Bloem, J., De Ruiter, P. C., and
Bouwman, L. A. (1997). “Soil
food webs and nutrient cycling in
agroecosystems,” in Modern Soil
Microbiology, eds J. D. Van Elsas, J.
T. Trevors, and E. M. H. Wellington
(New York, NY: Marcel Dekker,
Inc.), 245–278.

Borken, W., and Matzner, E. (2009).
Reappraisal of drying and wetting
effects on C and N mineral-
ization and fluxes in soils.
Glob. Change Biol. 15, 808–824.
doi: 10.1111/j.1365-2486.2008.0
1681.x

Campbell, N. A., and Reece, J. B.
(2006). Biology. San Francisco, CA:
Pearson Education, Inc.

Canovas, D., Fletcher, S. A., Hayashi,
M., and Csonka, L. N. (2001).
Role of trehalose in growth at high
temperature of Salmonella enterica
serovar typhimurium. J. Bacteriol.
183, 3365–3371. doi: 10.1128/JB.
183.11.3365-3371.2001

Carrara, F., Altermatt, F., Rodriguez-
Iturbe, I., and Rinaldo, A. (2012).
Dendritic connectivity controls bio-
diversity patterns in experimental
metacommunities. Proc. Natl. Acad.
Sci. U.S.A. 109, 5761–5766. doi:
10.1073/pnas.1119651109

Carson, J. K., Gonzalez-Quinones, V.,
Murphy, D. V., Hinz, C., Shaw, J.
A., and Gleeson, D. B. (2010). Low
pore connectivity increases bacte-
rial diversity in soil. Appl. Environ.

Microbiol. 76, 3936–3942. doi: 10.
1128/AEM.03085-09

Castro, H. F., Classen, A. T., Austin, E.
E., Crawford, K. M., and Schadt,
C. W. (2012). Development and
validation of a citrate synthase
directed quantitative PCR marker
for soil bacterial communities.
Appl. Soil Ecol. 61, 69–75. doi:
10.1016/j.apsoil.2012.05.007

Chaves, M. M., Maroco, J. P., and
Pereira, J. S. (2003). Understanding
plant responses to drought -
from genes to the whole plant.
Funct. Plant Biol. 30, 239–264. doi:
10.1071/FP02076

Chen, J., and Ferris, H. (2000). Growth
and nitrogen mineralization of
selected fungi and fungal-feeding
nematodes on sand amended with
organic matter. Plant Soil 218,
91–101. doi: 10.1023/A:10149
14827776

Cleveland, C. C., and Liptzin, D.
(2007). C: N: P stoichiome-
try in soil: is there a “Redfield
ratio” for the microbial biomass?
Biogeochemistry 85, 235–252. doi:
10.1007/s10533-007-9132-0

Cole, L., Staddon, P. L., Sleep, D., and
Bardgett, R. D. (2004). Soil animals
influence microbial abundance, but
not plant-microbial competition for
soil organic nitrogen. Funct. Ecol.
18, 631–640. doi: 10.1111/j.0269-
8463.2004.00894.x

De Vries, F. T., Liiri, M., BjØrnlund,
L., Bowker, M., Christensen, S.,
Setälä, H., et al. (2012a). Land use
alters the resistance and resilience
of soil food webs to drought.
Nat. Clim. Change 2, 276–280. doi:
10.1038/nclimate1368

De Vries, F. T., Liiri, M., BjØrnlund,
L., Setälä, H., Christensen, S., and
Bardgett, R. D. (2012b). Legacy
effects of drought on plant growth
and the soil food web. Oecologia
170, 821–833. doi: 10.1007/s00442-
012-2331-y

De Vries, F. T., Manning, P., Tallowin,
J. R. B., Mortimer, S. R., Pilgrim, E.
S., Harrison, K. A., et al. (2012c).
Abiotic drivers and plant traits
explain landscape-scale patterns
in soil microbial communities.
Ecol. Lett. 15, 1230–1239. doi:
10.1111/j.1461-0248.2012.01844.x

Downing, A. L., and Leibold, M.
A. (2010). Species richness facil-
itates ecosystem resilience in
aquatic food webs. Freshw. Biol. 55,
2123–2137. doi: 10.1111/j.1365-
2427.2010.02472.x

Dragosits, M., Mozhayskiy, V.,
Quinones-Soto, S., Park, J.,
and Tagkopoulos, I. (2013).
Evolutionary potential, cross-stress
behavior and the genetic basis

of acquired stress resistance in
Escherichia coli. Mol. Syst. Biol. 9,
1–13. doi: 10.1038/msb.2012.76

Drenovsky, R. E., Steenwerth, K. L.,
Jackson, L. E., and Scow, K. M.
(2010). Land use and climatic
factors structure regional patterns
in soil microbial communities.
Glob. Ecol. Biogeogr. 19, 27–39. doi:
10.1111/j.1466-8238.2009.00486.x

Edwards, I. P., Zak, D. R., Kellner, H.,
Eisenlord, S. D., and Pregitzer, K.
S. (2011). Simulated atmospheric
N deposition alters fungal com-
munity composition and suppresses
ligninolytic gene expression in a
Northern Hardwood Forest. PLoS
ONE 6:e20421. doi: 10.1371/jour-
nal.pone.0020421

Eisenhauer, N., Scheu, S., and Jousset,
A. (2012). Bacterial diversity stabi-
lizes community productivity. PLoS
ONE 7:e34517. doi: 10.1371/jour-
nal.pone.0034517

Engelmoer, D. J. P., and Rozen,
D. E. (2009). Fitness trade-offs
modify community composition
under contrasting disturbance
regimes in Pseudomonas fluo-
rescens microcosms. Evolution 63,
3031–3037. doi: 10.1111/j.1558-
5646.2009.00758.x

Ettema, C. H., and Wardle, D. A.
(2002). Spatial soil ecology. Trends
Ecol. Evol. 17, 177–183. doi:
10.1016/S0169-5347(02)02496-5

Evans, S. E., and Wallenstein, M. D.
(2012). Soil microbial community
response to drying and rewetting
stress: does historical precipitation
regime matter? Biogeochemistry 109,
101–116. doi: 10.1007/s10533-011-
9638-3

Fierer, N., Bradford, M. A., and
Jackson, R. B. (2007). Toward an
ecological classification of soil
bacteria. Ecology 88, 1354–1364.
doi: 10.1890/05-1839

Finlay, B. J., and Clarke, K. J. (1999).
Ubiquitous dispersal of microbial
species. Nature 400, 828–828. doi:
10.1038/23616

Fu, S. L., Ferris, H., Brown, D., and
Plant, R. (2005). Does the posi-
tive feedback effect of nematodes
on the biomass and activity of their
bacteria prey vary with nematode
species and population size? Soil
Biol. Biochem. 37, 1979–1987. doi:
10.1016/j.soilbio.2005.01.018

Fukami, T. (2001). Sequence effects
of disturbance on community
structure. Oikos 92, 215–224. doi:
10.1034/j.1600-0706.2001.920203.x

Glasby, T. M., and Underwood, A.
J. (1996). Sampling to differenti-
ate between pulse and press pertur-
bations. Environ. Monit. Assess. 42,
241–252. doi: 10.1007/BF00414371

www.frontiersin.org September 2013 | Volume 4 | Article 265 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Terrestrial_Microbiology/archive


de Vries and Shade Controls on microbial community stability

Gordon, H., Haygarth, P. M., and
Bardgett, R. D. (2008). Drying
and rewetting effects on soil
microbial community composi-
tion and nutrient leaching. Soil
Biol. Biochem. 40, 302–311. doi:
10.1016/j.soilbio.2007.08.008

Griffiths, B. S., and Philippot, L.
(2013). Insights into the resistance
and resilience of the soil microbial
community. FEMS Microbiol. Rev.
37, 112–129. doi: 10.1111/j.1574-
6976.2012.00343.x

Grime, J. P. (2001). Plant Strategies,
Vegetation Processes, and Ecosystem
Properties. Chichester: John Wiley
and Sons Ltd.

Grossart, H.-P., Dziallas, C., Leunert,
F., and Tang, K. W. (2010). Bacteria
dispersal by hitchhiking on zoo-
plankton. Proc. Natl. Acad. Sci.
U.S.A. 107, 11959–11964. doi:
10.1073/pnas.1000668107

Haddad, N. M., Holyoak, M., Mata,
T. M., Davies, K. F., Melbourne,
B. A., and Preston, K. (2008).
Species’ traits predict the effects of
disturbance and productivity on
diversity. Ecol. Lett. 11, 348–356.
doi: 10.1111/j.1461-0248.2007.
01149.x

Hall, E. K., Dzialowski, A. R., Stoxen,
S. M., and Cotner, J. B. (2009).
The effect of temperature on
the coupling between phospho-
rus and growth in lacustrine
bacterioplankton communities.
Limnol. Oceanogr. 54, 880–889. doi:
10.4319/lo.2009.54.3.0880

Hedlund, K., Griffiths, B., Christensen,
S., Scheu, S., Setälä, H., Tscharntke,
T., et al. (2004). Trophic inter-
actions in changing landscapes:
responses of soil food webs.
Basic Appl. Ecol. 5, 495–503. doi:
10.1016/j.baae.2004.09.002

Higgins, D., and Dworkin, J. (2012).
Recent progress in Bacillus subtilis
sporulation. FEMS Microbiol. Rev.
36, 131–148. doi: 10.1111/j.1574-
6976.2011.00310.x

Hunter, M. L. J. (1990). Wildlife Forests,
and Forestry. Englewood Cliffs, NJ:
Regents/Prentice Hall.

Ingham, E. R. (1999). Nematodes
[Online]. Available online at:
http://soils.usda.gov/sqi/soil_ qual-
ity/soil_biology/soil_biology_prime
r.html

IPCC. (2007). “Summary for pol-
icymakers,” in Climate Change
2007: The Physical Science Basis.
Contribution of Working Group I to
the Fourth Assessment Report of the
Intergovernmental Panel on Climate
Change, eds S. Solomon, D. Qin,
M. Manning, Z. Chen, M. Marquis,
K. B. Averyt, M. Tignor, and H. L.
Miller (Cambridge, UK and New

York, NY: Cambridge University
Press).

Jansson, J. K., and Prosser, J. I. (2013).
Microbiology: the life beneath
our feet. Nature 494, 40–41. doi:
10.1038/494040a

Kasel, S., Bennett, L. T., and Tibbits,
J. (2008). Land use influences soil
fungal community composition
across central Victoria, south-
eastern Australia. Soil Biol. Biochem.
40, 1724–1732. doi: 10.1016/j.
soilbio.2008.02.011

Klappenbach, J. A., Dunbar, J. M.,
and Schmidt, T. M. (2000). RRNA
operon copy number reflects eco-
logical strategies of bacteria. Appl.
Environ. Microbiol. 66, 1328–1333.
doi: 10.1128/AEM.66.4.1328-
1333.2000

Kravchenko, A., Chun, H. C., Mazer,
M., Wang, W., Rose, J. B., Smucker,
A., et al. (2013). Relationships
between intra-aggregate pore
structures and distributions of
Escherichia coli within soil macro-
aggregates. Appl. Soil Ecol. 63,
134–142. doi: 10.1016/j.apsoil.2012.
10.001

Lake, P. S. (2000). Disturbance, patchi-
ness, and diversity in streams. J. N.
Am. Benthol. Soc. 19, 573–592. doi:
10.2307/1468118

Lamb, E. G., Han, S., Lanoil, B. D.,
Henry, G. H. R., Brummell, M. E.,
Banerjee, S., et al. (2011). A high
Arctic soil ecosystem resists long-
term environmental manipulations.
Glob. Change Biol. 17, 3187–3194.
doi: 10.1111/j.1365-2486.2011.
02431.x

Lavorel, S., and Garnier, E. (2002).
Predicting changes in community
composition and ecosystem func-
tioning from plant traits: revisit-
ing the Holy Grail. Funct. Ecol.
16, 545–556. doi: 10.1046/j.1365-
2435.2002.00664.x

Lennon, J. T., Aanderud, Z. T.,
Lehmkuhl, B. K., and Schoolmaster,
D. R. Jr. (2012). Mapping the niche
space of soil microorganisms using
taxonomy and traits. Ecology 93,
1867–1879. doi: 10.1890/11-1745.1

Lindstrom, E. S., and Langenheder,
S. (2012). Local and regional fac-
tors influencing bacterial commu-
nity assembly. Environ. Microbiol.
Rep. 4, 1–9. doi: 10.1111/j.1758-
2229.2011.00257.x

Long, X., Chen, C. R., Xu, Z. H.,
Linder, S., and He, J. Z. (2012).
Abundance and community struc-
ture of ammonia oxidizing bac-
teria and archaea in a Sweden
boreal forest soil under 19-year
fertilization and 12-year warming.
J. Soils Sediments 12, 1124–1133.
doi: 10.1007/s11368-012-0532-y

Mangold, S., Potrykus, J., Bjorn,
E., Lovgren, L., and Dopson, M.
(2013). Extreme zinc tolerance
in acidophilic microorganisms
from the bacterial and archaeal
domains. Extremophiles 17, 75–85.
doi: 10.1007/s00792-012-0495-3

Maraun, M., Visser, S., and Scheu,
S. (1998). Oribatid mites enhance
the recovery of the microbial com-
munity after a strong disturbance.
Appl. Soil Ecol. 9, 175–181. doi:
10.1016/S0929-1393(98)00072-9

Matthiessen, B., Ptacnik, R., and
Hillebrand, H. (2010). Diversity and
community biomass depend on dis-
persal and disturbance in microalgal
communities. Hydrobiologia 653,
65–78. doi: 10.1007/s10750-010-
0349-x

McIntyre, H. J., Davies, H., Hore,
T. A., Miller, S. H., Dufour, J.-
P., and Ronson, C. W. (2007).
Trehalose biosynthesis in Rhizobium
leguminosarum bv. trifolii and its
role in desiccation tolerance. Appl.
Environ. Microbiol. 73, 3984–3992.
doi: 10.1128/AEM.00412-07

Miki, T., and Jacquet, S. (2008).
Complex interactions in the micro-
bial world: underexplored key
links between viruses, bacteria
and protozoan grazers in aquatic
environments. Aquat. Microb.
Ecol. 51, 195–208. doi: 10.3354/
ame01190

Milcu, A., Thebault, E., Scheu, S.,
and Eisenhauer, N. (2010). Plant
diversity enhances the reliability
of belowground processes. Soil
Biol. Biochem. 42, 2102–2110. doi:
10.1016/j.soilbio.2010.08.005

Miller, E. N., and Ingram, L. O.
(2008). Sucrose and overexpres-
sion of trehalose biosynthetic genes
(otsBA) increase desiccation tol-
erance of recombinant Escherichia
coli. Biotechnol. Lett. 30, 503–508.
doi: 10.1007/s10529-007-9573-5

Mordhorst, I. L., Claus, H., Ewers, C.,
Lappann, M., Schoen, C., Elias, J.,
et al. (2009). O-acetyltransferase
gene neuO is segregated accord-
ing to phylogenetic background
and contributes to environ-
mental desiccation resistance
in Escherichia coli K1. Environ.
Microbiol. 11, 3154–3165. doi:
10.1111/j.1462-2920.2009.02019.x

Mouillot, D., Graham, N. A. J.,
Villéger, S., Mason, N. W. H.,
and Bellwood, D. R. (2013). A
functional approach reveals com-
munity responses to disturbances.
Trends Ecol. Evol. 28, 167–177. doi:
10.1016/j.tree.2012.10.004

Nannipieri, P., Giagnoni, L., Renella,
G., Puglisi, E., Ceccanti, B.,
Masciandaro, G., et al. (2012). Soil

enzymology: classical and molecu-
lar approaches. Biol. Fertil. Soils 48,
743–762. doi: 10.1007/s00374-012-
0723-0

Nemergut, D. R., Cleveland, C. C.,
Wieder, W. R., Washenberger, C.
L., and Townsend, A. R. (2010).
Plot-scale manipulations of organic
matter inputs to soils correlate
with shifts in microbial community
composition in a lowland tropical
rain forest. Soil Biol. Biochem. 42,
2153–2160. doi: 10.1016/j.soilbio.
2010.08.011

Orsini, L., Schwenk, K., De Meester,
L., Colbourne, J. K., Pfrender, M.
E., and Weider, L. J. (2013). The
evolutionary time machine: using
dormant propagules to forecast how
populations can adapt to changing
environments. Trends Ecol. Evol. 28,
274–282. doi: 10.1016/j.tree.2013.
01.009

Orwin, K. H., Wardle, D. A., and
Greenfield, L. G. (2006). Context-
dependent changes in the resistance
and resilience of soil microbes to
an experimental disturbance for
three primary plant chronose-
quences. Oikos 112, 196–208. doi:
10.1111/j.0030-1299.2006.13813.x

Orwin, K. H., Buckland, S. M.,
Johnson, D., Turner, B. L., Smart,
S., Oakley, S., et al. (2010). Linkages
of plant traits to soil properties and
the functioning of temperate grass-
land. J. Ecol. 98, 1074–1083. doi:
10.1111/j.1365-2745.2010.01679.x

Pimm, S. L. (1984). The complexity and
stability of ecosystems. Nature 307,
321–326. doi: 10.1038/307321a0

Postma-Blaauw, M. B., De Vries, F.
T., De Goede, R. G. M., Bloem,
J., Faber, J. H., and Brussaard, L.
(2005). Within-trophic group inter-
actions of bacterivorous nematode
species and their effects on the bac-
terial community and nitrogen min-
eralization. Oecologia 142, 428–439.
doi: 10.1007/s00442-004-1741-x

Prescott, L. M., Harley, J. P., and Klein,
D. A. (1996). Microbiology. Boston,
MA: WCB McGraw-Hill.

Pritchard, S. G. (2011). Soil organ-
isms and global climate change.
Plant Pathol. 60, 82–99. doi:
10.1111/j.1365-3059.2010.02405.x

R-Core-Team. (2012). R: A Language
and Environment for Statistical
Computing. Vienna: R Foundation
for Statistical Computing.

Renker, C., Otto, P., Schneider,
K., Zimdars, B., Maraun, M.,
and Buscot, F. (2005). Oribatid
mites as potential vectors
for soil microfungi: study of
mite-associated fungal species.
Microb. Ecol. 50, 518–528. doi:
10.1007/s00248-005-5017-8

Frontiers in Microbiology | Terrestrial Microbiology September 2013 | Volume 4 | Article 265 | 12

http://soils.usda.gov/sqi/soil_quality/soil_biology/soil_biology_primer.html
http://soils.usda.gov/sqi/soil_quality/soil_biology/soil_biology_primer.html
http://soils.usda.gov/sqi/soil_quality/soil_biology/soil_biology_primer.html
http://www.frontiersin.org/Terrestrial_Microbiology
http://www.frontiersin.org/Terrestrial_Microbiology
http://www.frontiersin.org/Terrestrial_Microbiology/archive


de Vries and Shade Controls on microbial community stability

Ritz, K., McNicol, W., Nunan, N.,
Grayston, S., Millard, P., Atkinson,
D., et al. (2004). Spatial structure
in soil chemical and microbiological
properties in an upland grassland.
FEMS Microbiol. Ecol. 49, 191–205.
doi: 10.1016/j.femsec.2004.03.005

Roper, M., Seminara, A., Bandi, M.
M., Cobb, A., Dillard, H. R., and
Pringle, A. (2010). Dispersal of
fungal spores on a cooperatively
generated wind. Proc. Natl. Acad.
Sci. U.S.A. 107, 17474–17479. doi:
10.1073/pnas.1003577107

Royer-Tardif, S., Bradley, R. L., and
Parsons, W. F. J. (2010). Evidence
that plant diversity and site pro-
ductivity confer stability to for-
est floor microbial biomass. Soil
Biol. Biochem. 42, 813–821. doi:
10.1016/j.soilbio.2010.01.018

Rykiel, E. J. (1985). Towards a defini-
tion of ecological disturbance. Aust.
J. Ecol. 10, 361–365. doi: 10.1111/j.
1442-9993.1985.tb00897.x

Schimel, J., Balser, T. C., and
Wallenstein, M. (2007). Microbial
stress-response physiology and its
implications for ecosystem func-
tion. Ecology 88, 1386–1394. doi:
10.1890/06-0219

Schimel, J. P., and Bennett, J.
(2004). Nitrogen mineraliza-
tion: Challenges of a changing
paradigm. Ecology 85, 591–602. doi:
10.1890/03-8002

Schlesinger, W. H. (2006). Global
change ecology. Trends Ecol. Evol.
21, 348–351. doi: 10.1016/j.tree.
2006.03.004

Shade, A., Gregory Caporaso, J.,
Handelsman, J., Knight, R.,
and Fierer, N. (2013). A meta-
analysis of changes in bacterial
and archaeal communities with
time. ISME J. 7, 1493–1506. doi:
10.1038/ismej.2013.54

Shade, A., Peter, H., Allison, S. D.,
Baho, D. L., Berga, M., Burgmann,
H., et al. (2012a). Fundamentals
of microbial community resistance

and resilience. Front. Microbiol.
3:417. doi: 10.3389/fmicb.2012.
00417

Shade, A., Read, J. S., Youngblut, N.
D., Fierer, N., Knight, R., Kratz,
T. K., et al. (2012b). Lake micro-
bial communities are resilient after a
whole-ecosystem disturbance. ISME
J. 6, 2153–2167. doi: 10.1038/ismej.
2012.56

Six, J., Frey, S. D., Thiet, R. K., and
Batten, K. M. (2006). Bacterial and
fungal contributions to carbon
sequestration in agroecosystems.
Soil Sci. Soc. Am. J. 70, 555–569. doi:
10.2136/sssaj2004.0347

Theuerl, S., and Buscot, F. (2010).
Laccases: toward disentangling their
diversity and functions in rela-
tion to soil organic matter cycling.
Biol. Fertil. Soils 46, 215–225. doi:
10.1007/s00374-010-0440-5

Theuerl, S., Dorr, N., Guggenberger, G.,
Langer, U., Kaiser, K., Lamersdorf,
N., et al. (2010). Response of recal-
citrant soil substances to reduced
N deposition in a spruce forest
soil: integrating laccase-encoding
genes and lignin decomposi-
tion. FEMS Microbiol. Ecol. 73,
166–177. doi: 10.1111/j.1574-6941.
2010.00877.x

Thomas, T., Gilbert, J., and Meyer,
F. (2012). Metagenomics - a guide
from sampling to data analysis.
Microb. Inform. Exp. 2, 3. doi:
10.1186/2042-5783-2-3

Treves, D. S., Xia, B., Zhou, J., and
Tiedje, J. M. (2003). A two-species
test of the hypothesis that spatial
isolation influences microbial
diversity in soil. Microb. Ecol. 45,
20–28. doi: 10.1007/s00248-002-
1044-x

Van der Heijden, M. G. A., Bardgett, R.
D., and Van Straalen, N. M. (2008).
The unseen majority: soil microbes
as drivers of plant diversity and
productivity in terrestrial ecosys-
tems. Ecol. Lett. 11, 296–310. doi:
10.1111/j.1461-0248.2007.01139.x

Van Veen, J. A., and Paul, E. A.
(1979). Conversion of biovolume
measurements of soil organisms,
grown under various moisture ten-
sions, to biomass and their nutrient
content. Appl. Environ. Microbiol.
37, 686–692.

Wallenstein, M. D., and Hall, E. K.
(2012). A trait-based framework for
predicting when and where micro-
bial adaptation to climate change
will affect ecosystem functioning.
Biogeochemistry 109, 35–47. doi:
10.1007/s10533-011-9641-8

Wertz, S., Degrange, V., Prosser,
J. I., Poly, F., Commeaux, C.,
Guillaumaud, N., et al. (2007).
Decline of soil microbial diversity
does not influence the resistance
and resilience of key soil micro-
bial functional groups following
a model disturbance. Environ.
Microbiol. 9, 2211–2219. doi:
10.1111/j.1462-2920.2007.01335.x

Wittebolle, L., Marzorati, M., Clement,
L., Balloi, A., Daffonchio, D.,
Heylen, K., et al. (2009). Initial
community evenness favours func-
tionality under selective stress.
Nature 458, 623–626. doi: 10.1038/
nature07840

Worm, B., and Duffy, J. E. (2003).
Biodiversity, productivity and
stability in real food webs. Trends
Ecol. Evol. 18, 628–632. doi:
10.1016/j.tree.2003.09.003

Yarwood, S., Brewer, E., Yarwood,
R., Lajtha, K., and Myrold, D.
(2013). Soil microbe active com-
munity composition and capability
of responding to litter addi-
tion after 12 years of no inputs.
Appl. Environ. Microbiol. 79,
1385–1392. doi: 10.1128/AEM.
03181-12

Yergeau, E., Bokhorst, S., Kang, S.,
Zhou, J., Greer, C. W., Aerts,
R., et al. (2012). Shifts in soil
microorganisms in response
to warming are consistent
across a range of Antarctic

environments. ISME J. 6, 692–702.
doi: 10.1038/ismej.2011.124

Young, I. M., Griffiths, B. S., Robertson,
W. M., and McNicol, J. W. (1998).
Nematode (Caenorhabditis elegans)
movement in sand as affected by
particle size, moisture and the
presence of bacteria (Escherichia
coli). Eur. J. Soil Sci. 49, 237–241.
doi: 10.1046/j.1365-2389.1998.
00151.x

Zhang, Q., and Van, T. (2012).
Correlation of intracellular
trehalose concentration with desic-
cation resistance of soil Escherichia
coli populations. Appl. Environ.
Microbiol. 78, 7407–7413. doi: 10.
1128/AEM.01904-12

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 04 April 2013; accepted:
17 August 2013; published online: 05
September 2013.
Citation: de Vries FT and Shade A
(2013) Controls on soil microbial com-
munity stability under climate change.
Front. Microbiol. 4:265. doi: 10.3389/
fmicb.2013.00265
This article was submitted to Terrestrial
Microbiology, a section of the journal
Frontiers in Microbiology.
Copyright © 2013 de Vries and Shade.
This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) or licensor are cred-
ited and that the original publication
in this journal is cited, in accordance
with accepted academic practice. No use,
distribution or reproduction is permit-
ted which does not comply with these
terms.

www.frontiersin.org September 2013 | Volume 4 | Article 265 | 13

http://dx.doi.org/10.3389/fmicb.2013.00265
http://dx.doi.org/10.3389/fmicb.2013.00265
http://dx.doi.org/10.3389/fmicb.2013.00265
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Terrestrial_Microbiology/archive


de Vries and Shade Controls on microbial community stability

APPENDIX

Table A1 | Pearson correlation coefficients between variables

explaining microbial community resistance in Case study 1.

PC1 axis F/B ratio Gram+/Gram− ratio

PC1 axis

F/B ratio 0.75

Gram+/Gram− ratio −0.87 1.7 * 10−5

Underlines values designate significant correlations (P < 0.05).

Table A2 | Pearson correlation coefficients between variables

explaining microbial community resilience in Case study 1.

Protozoa Micro PC1 F/B Gram+/ Microbial

arthropods ratio Gram− C/N

ratio ratio

Protozoa

Microarthropods −0.35

PC1 0.43 −0.35

F/B ratio 0.26 0.10 0.36

Gram+/Gram−
ratio

−0.08 0.015 −0.43 −0.67

Microbial C/N
ratio

−0.09 0.18 −0.25 −0.21 0.21

Underlines values designate significant corrections (p < 0.05).

Table A3 | Pearson correlation coefficients between variables

explaining microbial community resilience in Case study 2.

F/B ratio PC1 Gram+/Gram−
ratio

Microbial

biomass

F/B ratio

PC1 −0.71

Gram+/Gram−
ratio

0.59 −0.97

Microbial
biomass

0.63 −0.90 0.92

Underlines values designate significant correlations (P < 0.05).

Table A4 | Axis loadings of individual PLFA in Case study 1.

PC1 score PC2 score

i.C14.0 −0.27999 −3.67E-05

C14.0 −0.25943 −0.15196

i.C15.0 −0.28069 −0.04368

a.C15.0 −0.28717 −0.0606

C15.0 0.01904 −0.19215

X3.hydroxy.C12.0 −0.03272 −0.17065

methyl.C16.0 −0.00739 0.243093

C16.0 0.007681 0.201414

C16.1w7 0.024379 −0.45926

X10.methyl.C16.0 0.110574 0.294226

i.C17.0 0.168 0.275936

a.C17.0 0.220549 0.157182

i.C17.1w6 0.067054 −0.13123

n.methyl.C17.0 0.250714 −0.13939

C17.0 0.266306 −0.05702

C17.0.cyclo 0.205752 −0.30061

X10.methyl.C17.0 0.194742 −0.16161

C18.0 0.266156 0.049383

C18.1 0.058706 0.156452

trans.C18.1w9 0.241332 −0.06568

cis.C18.1w9 0.222525 −0.07776

X10.methyl.C18.0 0.267682 −0.11721

cis.C18.2w6 0.020817 0.373708

C18.3 −0.0547 0.096218

C19.0.cyclo 0.250798 0.192782

C20.0 0.251506 −0.11747

Axis 1 explained 43% of variation, axis 2 explained 14% of variation. PLFAs

marked green, red, and yellow are representative of Gram-positive, Gram-

negative, and fungi, respectively.
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Table A5 | Axis loadings of individual PLFA in Case study 2.

PC1 score PC2 score

Methyl.2.hydroxydecanoate 0.218345 −0.04861

i.C14.0 0.215282 −0.04387

C14.0 −0.11147 −0.16243

i.C15.0 −0.21785 −0.1755

a.C15.0 0.241314 0.032725

C15.0 0.241365 0.052056

X14.methyl.C15.0 −0.24439 −0.03885

X3.hydroxy.C12.0 −0.23551 −0.11515

methyl.C16.0 −0.24441 −0.0385

C16.0 −0.16101 0.30498

C16.1w7 0.222117 0.165607

C16.1 and C17.0merged 0.057127 −0.32505

i.C17.0 0.117704 −0.11584

a.C17.0 0.130821 0.029151

X2.hydroxy.C14.0 −0.14187 −0.12541

i.C17.1w6 0.201859 −0.01235

n.methyl.C17.0 −0.08864 −0.21781

C17.0 0.107442 0.153301

C17.0cyclo 0.2358 0.02104

X10.methylC17.0 −0.23775 −0.04534

X3.OH.C14.0 −0.23064 −0.10203

C18.0 −0.02399 0.352795

C18.1 0.037532 0.107055

trans.C18.1w9 −0.12215 0.366805

cis.C18.1w9 0.229866 0.126425

X10.methyl.C18.0 −0.08328 0.358585

cis.C18.2w6 −0.15507 0.3251

X2.hydroxy.hexadecanoic.methyl.ester 0.114723 −0.02548

C18.3 −0.14311 0.117455

C19.0.cyclo −0.2067 0.199156

C20.0 −0.14997 −0.05973

Axis 1 explained 53% of variation, axis 2 explained 15% of variation. PLFAs

marked green, red, and yellow are representative of Gram-positive, Gram-

negative, and fungi, respectively.
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Table A6 | CA axis scores for the 20 most abundant bacterial taxa in Case study 3.

OTU_ID CA1 CA2 Total no. seqs Consensus lineage

7721 −0.052755783 0.128596257 1232 k__Bacteria; p__Proteobacteria;
c__Alphaproteobacteria; o__Rhizobiales;
f__Hyphomicrobiaceae; g__Rhodoplanes; s__

7592 −0.277985389 0.384482383 559 k__Bacteria; p__Proteobacteria;
c__Alphaproteobacteria; o__Rhizobiales;
f__Bradyrhizobiaceae

5179 −0.031267675 0.274724392 477 k__Bacteria; p__Proteobacteria;
c__Alphaproteobacteria; o__Rhizobiales;
f__Hyphomicrobiaceae; g__Rhodoplanes; s__

4450 −0.368835276 −0.01104972 434 k__Bacteria; p__Proteobacteria;
c__Deltaproteobacteria; o__Syntrophobacterales;
f__Syntrophobacteraceae; g__; s__

3664 −0.203535915 0.204631553 397 k__Bacteria; p__Proteobacteria;
c__Alphaproteobacteria; o__Rhizobiales;
f__Hyphomicrobiaceae; g__Rhodoplanes; s__

232 0.317417102 −0.327066878 291 k__Bacteria; p__Acidobacteria;
c__Acidobacteria-5; o__; f__; g__; s__

6514 0.374990616 0.045919714 275 k__Bacteria; p__Acidobacteria;
c__Acidobacteria-2; o__; f__; g__; s__

3615 0.148161131 0.186057802 271 k__Bacteria; p__Acidobacteria;
c__Acidobacteria-2; o__; f__; g__; s__

6194 0.272492541 −0.440098295 243 k__Bacteria; p__Nitrospirae; c__Nitrospira;
o__Nitrospirales; f__Nitrospiraceae;
g__Nitrospira; s__

1968 0.406077387 −0.153510689 236 k__Bacteria; p__Proteobacteria;
c__Alphaproteobacteria; o__Rhizobiales;
f__Hyphomicrobiaceae; g__Rhodoplanes; s__

2877 −0.452435542 0.331937119 214 k__Bacteria; p__Bacteroidetes; c__Flavobacteriia;
o__Flavobacteriales; f__Flavobacteriaceae;
g__Flavobacterium

5980 1.037736522 −0.623269339 211 k__Bacteria; p__Acidobacteria;
c__Acidobacteria-2; o__; f__; g__; s__

3158 0.511248597 −0.360815747 177 k__Bacteria; p__Proteobacteria;
c__Betaproteobacteria; o__; f__; g__; s__

741 0.561319057 −0.242946783 166 k__Bacteria; p__Acidobacteria; c__Acidobacteria;
o__Acidobacteriales; f__Koribacteraceae; g__; s__

9410 0.330214073 0.053950661 162 k__Bacteria; p__Acidobacteria; c__Acidobacteria;
o__Acidobacteriales; f__Koribacteraceae;
g__Candidatus Koribacter; s__

4283 −0.21498302 0.197813008 158 k__Bacteria; p__Proteobacteria;
c__Alphaproteobacteria; o__Rhizobiales;
f__Rhodobiaceae; g__; s__

2587 −0.012292612 0.229939177 157 k__Bacteria; p__Proteobacteria;
c__Alphaproteobacteria; o__Rhizobiales;
f__Hyphomicrobiaceae; g__Rhodoplanes; s__

2250 0.126551331 −0.137573106 154 k__Bacteria; p__Proteobacteria;
c__Deltaproteobacteria; o__Syntrophobacterales;
f__Syntrophobacteraceae; g__; s__

8618 −0.03958676 0.222012965 153 k__Bacteria; p__Proteobacteria;
c__Gammaproteobacteria; o__Xanthomonadales;
f__Sinobacteraceae; g__; s__

CA axis 1 explained 5.47% and CA axis 2 explained 5.05% of variation.
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