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Single-cell analysis is a powerful method to assess the heterogeneity among individual
cells, enabling the identification of very rare cells with properties that differ from those
of the majority. In this Methods Article, we describe the use of a large-scale femtoliter
droplet array to enclose, isolate, and analyze individual bacterial cells. As a first example, we
describe the single-cell detection of drug-tolerant persisters of Pseudomonas aeruginosa
treated with the antibiotic carbenicillin. As a second example, this method was applied
to the single-cell evaluation of drug efflux activity, which causes acquired antibiotic
resistance of bacteria. The activity of the MexAB-OprM multidrug efflux pump system
from Pseudomonas aeruginosa was expressed in Escherichia coli and the effect of an
inhibitor D13-9001 were assessed at the single cell level.
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INTRODUCTION
Opportunistic infection with bacteria resistant to multiple antibi-
otics is a continuing clinical challenge (Taubes, 2008). The
antibiotic resistance of bacteria can be classified into two cat-
egories, natural resistance (tolerance) and acquired resistance.
In natural resistance, a very small proportion of the bacte-
rial population is resistant to multiple antibiotics despite having
the same genotype as the sensitive majority. These bacteria are
often referred to as “persisters” (Lewis, 2010). However, the
nature of these persisters is not fully understood because they
occur at a very low frequency in a bacterial population (typ-
ically less than 1%), which makes systematic studies difficult
(Allison et al., 2011; Balaban, 2011, Gerdes and Maisonneuve,
2012; Kint et al., 2012). In the first section of this review arti-
cle, we describe a microdroplet-based method to identify and
culture individual bacterial cells for efficient detection of per-
sisters. In contrast, acquired antibiotic resistance is caused by a
change in the genotype of the sensitive strain. The four main
mechanisms of acquired resistance are suppression of drug influx
into the cell due to decreased expression of membrane channel
proteins, inactivation of drugs by intracellular and extracellu-
lar enzymes, mutations in the target proteins of drugs, and
active efflux of the drugs from the cell due to increased expres-
sion of efflux pumps (Fischbach and Walsh, 2009; Nikaido,
2009). Here we focused on the active efflux of drugs from the
cell. In the second section, we introduce a microdroplet-based
method for assessing the drug efflux activity of single bacterial
cells.

ADVANTAGES OF SINGLE-CELL ANALYSIS USING A
MICRODEVICE
Single-cell analysis is a powerful approach for detecting variations
among the cells in a population, such as differences in the expres-
sion of proteins, the copy number of genes, and the concentration
of metabolites (Li and Xie, 2011; Trouillon et al., 2013). Single-cell
analysis can overcome the limitations associated with ensemble-
averaged data from multiple cells, and enable the identification
of very rare cells with properties that differ from those of the
majority. Microfabricated devices have contributed greatly to the
development of massively parallel and high-throughput single-cell
analyses.

However, in most microdevices, the target cells are eukary-
otic, such as mammalian cells and yeasts (Sims and Allbrit-
ton, 2007; Gupta et al., 2010, Lindstrom and Andersson-Svahn,
2010), because their size, a few millimeters to tens of microm-
eters, allows for easy handling compared to bacteria, which
are much smaller in size. Thus far, only a few studies have
used microdevices for single bacterial cell analysis (Balaban
et al., 2004; Cai et al., 2006, Ottesen et al., 2006; Weibel et al.,
2007, Boedicker et al., 2009; Teng et al., 2013, Wakamoto et al.,
2013). In addition, in many microdevices that are based on
microfluidic channels and valves or droplets generated in a
microfluidic channel, the closed nature of the system makes
the collection of cells from the device and their subsequent
use difficult. Therefore, the development of microdevices from
which individual bacterial cells can be recovered has been highly
anticipated.
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LARGE-SCALE FEMTOLITER DROPLET ARRAY FOR SINGLE
BACTERIAL CELL ANALYSIS
We recently developed a micron-sized femtoliter droplet array
fixed on a hydrophilic-in-hydrophobic micropatterned surface
(Sakakihara et al., 2010). In our new microdevice, a large number
of dome-shaped femtoliter droplets can be prepared that enclose
individual bacterial cells (Iino et al., 2012a). One prominent fea-
ture of this array is that the individual droplets containing the
enclosed cells can be accessed and collected with a micropipette.
The array can also be used for mass culture and gene and protein
analyses.

We prepared the hydrophilic-in-hydrophobic micropatterned
surface through conventional microfabrication (Figure 1A). A
hydrophobic polymer of carbon-fluorine (CYTOP; Asahi Glass,
Japan) was deposited on a SiO2 cover glass, and photolithography
was performed using a high-viscosity photoresist. The resist-
patterned substrate surface was dry-etched with O2 plasma by
using a reactive ion-etching system to produce circular micropat-
terns on a hydrophilic SiO2 glass surface. The diameter of the
exposed hydrophilic SiO2 surfaces was 10–30 μm, and they were
surrounded by a hydrophobic polymer layer with a height of
1 μm. A fabricated micropatterned cover glass was attached to
the bottom of a perforated petri dish (Figure 1B). The circu-
lar micropatterns were grouped into islands and were numbered

FIGURE 1 | Formation of a femtoliter droplet array containing bacteria.

(A) Schematic of the fabrication procedure for preparation of a hydrophilic-
in-hydrophobic micropatterned surface. (B) Image of the assembled device
(left). Scale bar, 10 mm. Microscopic image of the hydrophilic-in-hydro-
phobic micropatterned surface (right). Scale bar, 200 μm. (C) Procedure for
bacterial enclosure into the femtoliter droplet array. (D) The number of
bacterial cells in each droplet in microdevices with different hydrophilic
surface diameters just after enclosure.

to identify the individual droplets and the cells enclosed in each
droplet.

To form a droplet array containing bacteria, we covered the
micropatterned cover glass with medium containing a bacterial
suspension (Figure 1C, left). Then, fluorinated oil (Fluorinert FC-
40; Sigma Aldrich, USA), which has a higher density than water,
was flowed over the medium near the surface. The hydrophilic
SiO2 glass surfaces retained the medium and the bacteria, whereas
the hydrophobic surface was replaced with oil. As a result, many
droplets containing one or more bacteria were formed (Figure 1C,
right). More than 3 × 105 droplets could be simultaneously pre-
pared in a 1-cm2 area in a single device. Enclosure of the cells in
the droplets was stochastic and was dependent on the cell den-
sity of the bacterial suspension. At an optical density (turbidity)
at 600 nm (OD600) of 0.6, approximately 20–30% of the droplets
contained single cells. Increasing the diameter of the hydrophilic
surfaces to 20 or 30 μm increased the fraction of droplets con-
taining multiple cells; however, the fraction of droplets containing
single cells did not increase significantly (Figure 1D). In con-
trast, the number of droplets formed increased significantly when
we used a device with hydrophilic surfaces of a smaller diameter.
Therefore, to increase the total number of droplets containing sin-
gle cells, we used a microdevice containing hydrophilic surfaces
with a diameter of 10 μm.

DETECTION OF PERSISTER BACTERIA IN A FEMTOLITER
DROPLET ARRAY
We generated a femtoliter droplet array of Pseudomonas aerugi-
nosa PAO1 using our microdevice to detect persisters under an
optical microscope. In the control experiment without antibiotic
treatment, most cells underwent multiple cell divisions after incu-
bation overnight at 37◦C (Figures 2A,B). The divided cells showed
active flagellar motion, indicative of high metabolic activity. To
detect persisters, an antibiotic, carbenicillin (at final concentra-
tion of 5 mg/mL, which is ∼100 times higher than the minimal
inhibitory concentration), was added to the bacterial suspension
that was grown to late exponential phase (OD600 ∼1.0) in trypti-
case soy broth. The suspension was further incubated at 37◦C for
3 h, and then the cells were collected, washed, resuspended in fresh
medium (OD600 ∼0.2). This suspension was enclosed in a droplet
array. After enclosure, the whole device was placed in an incuba-
tor at 37◦C, and the cells were cultured overnight. The persisters
were easily identified under an optical microscope the overnight
culture (Figure 3A). The divided cells were not cells that acquired
resistance, but were actually persisters. This was confirmed by col-
lecting the cells with a micropipette with an aperture diameter of
10–15 μm (Figures 3B,C), inoculating a culture in test tubes, and
antibiotic susceptibility testing.

Bacterial cells that divided multiple times were counted, and the
frequency of persisters was calculated. The frequency of persisters
in the femtoliter droplet array (1.5 ± 0.72%, N = 4; Figure 3D)
was quite unexpectedly much higher than that estimated by con-
ventional agar plate assays (0.10 ± 0.03%, N = 4). In the plate
assays, the carbenicillin-treated preculture sample was prepared
as described above along with an untreated culture sample, and
then the samples were serially diluted and cultured overnight
at 37◦C on agar plates. The number of colonies on the plates
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FIGURE 2 | Enclosure and culture of bacteria in a femtoliter droplet

array. (A) Images of P. aeruginosa PAO1 after 0 h (left) and 24 h (right) of
culture in the femtoliter droplet array. (B) Distribution of the number of cells
after 24 h of culture.

from carbenicillin-treated and untreated preculture samples were
counted and compared. It has been recently reported that quorum
sensing autoinducer increased the frequency of persister appear-
ance (Moker et al., 2010; Leung and Levesque, 2012, Vega et al.,
2012), and that inhibiting the quorum signal restored antibiotic
susceptibility (Pan et al., 2012, 2013). Furthermore, the quorum-
sensing signal could be transduced even in single isolated cells
when PAO1 was enclosed in picoliter-volume droplets (Boedicker
et al., 2009). Therefore, enclosure of a single cell in a femtoliter
droplet may enhance the quorum sensing signal and increase per-
sister frequency. The effect of the quorum sensing signal on the
frequency of persister appearance in the femtoliter droplet array
can be more clearly confirmed by treating the cells with antibi-
otic after enclosure in the droplets by adding the antibiotic with a
micropipette (Sakakihara et al., 2010).

A SINGLE-CELL DRUG EFFLUX ASSAY IN A FEMTOLITER
DROPLET ARRAY
The AcrAB-TolC multicomponent efflux pump system recognizes
and expels a wide variety of compounds, including antibiotics,
dyes, and detergents. In this system, AcrA is the membrane fusion
protein that stabilizes the complex (Zgurskaya and Nikaido, 1999),
AcrB is the inner membrane transporter protein that belongs to the
resistance-nodulation-division (RND) family (Murakami et al.,
2006; Nakashima et al., 2011, 2013), and TolC is the outer mem-
brane channel protein (Koronakis et al., 2000). The AcrAB-TolC
efflux system is responsible for both intrinsic and acquired drug
resistance of Gram-negative bacteria such as Escherichia coli and
Salmonella enterica (Nishino and Yamaguchi, 2008; Nikaido and
Takatsuka, 2009). Two systems P. aeruginosa that are homologous

FIGURE 3 | Detection of the persisters in the femtoliter droplet array.

(A) Images of P. aeruginosa PAO1 persisters (indicated by circle) after 0 h
(left) and 21 h (right) of culture in the femtoliter droplet array. (B) Image of
the micropipette used for droplet collection. (C) Sequential images of
droplet collection. (D) Distribution of the number of cells in each droplet
before and after overnight culture. Top, control cells without carbenicillin
treatment. Bottom, carbenicillin-treated cells.

to the AcrAB-TolC system, MexAB-OprM and MexXY-OprM, lead
to multidrug resistance in clinical isolates (Morita et al., 2001;
Livermore, 2002; Hocquet et al., 2006, 2007; Henrichfreise et al.,
2007).

We have recently developed a single-cell drug efflux assay using
the femtoliter droplet array (Figure 4; Iino et al., 2012a). In this
assay, E. coli cultured in test tubes was mixed with a fluorogenic
substrate, fluorescein-di-β-D-galactopyranoside (FDG), enclosed
in a droplet array, and then cultured for 15–20 min at room
temperature. Upon entering the cytoplasm of E. coli, FDG is
hydrolyzed into the fluorescent dye fluorescein by β-galactosidase.
Both FDG and fluorescein are substrates for the AcrAB-TolC sys-
tem (Matsumoto et al., 2011; Iino et al., 2012b). In wild-type cells,
FDG was effectively pumped out before hydrolysis, and no flu-
orescence was detected (Figure 4A, left, and Figure 4B, top). In
contrast, when FDG was imported into �acrB (�B) and �tolC
(�C) strains it was hydrolyzed to fluorescein. In �B cells, not only
the cells, but also the droplets themselves fluoresced (Figure 4A,
center, and Figure 4B, middle) because the remaining minor
RND efflux pumps slowly pumped out the fluorescein. Although
only a small amount of the dye was pumped out, it could be
easily detected because it was confined to the femtoliter droplet
(Rondelez et al., 2005; Sakakihara et al., 2010, Kim et al., 2012). In
�C cells, fluorescein accumulated in the cell (Figure 4A, right, and
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FIGURE 4 | Single-cell drug efflux assay. (A) Schematic of the principle of
the single-cell drug efflux assay. (B) A representative assay. Phase-contrast
(left) and fluorescence (right) images of the same field are shown.

Figure 4B, bottom) because TolC is a channel protein common to
both the major and minor RND efflux pumps in E. coli.

With this method, the inhibitory effect of chemical com-
pounds against the efflux pump can be easily assessed. The effect
of an efflux pump inhibitor, D13-9001 (Yoshida et al., 2007), is
shown in Figure 5. D13-9001 has been reported to enhance the
antibacterial activities of several antibiotics by binding tightly
to the drug binding pockets of AcrB and MexB (Nakashima
et al., 2013). A �B�C double-knockout E. coli strain that sta-
bly expresses MexAB-OprM from P. aeruginosa was used for the
experiment. This strain did not fluoresce in our assay, indicating
that the exogenously expressed MexAB-OprM worked well in E.
coli, and that the cells recovered drug efflux activity (Figure 5,
top). Addition of D13-9001 increased the number of fluores-
cent cells (Figure 5, bottom). The fluorescence intensity of the
cells increased as the concentration of D13-9001 increased, indi-
cating a concentration-dependent inhibitory effect. D13-9001 is
a specific inhibitor of MexB, a major efflux pump in P. aerug-
inosa. However, it does not inhibit MexY, which is another
major efflux pump in P. aeruginosa (Yoshida et al., 2007). Our
simple and rapid approach would be useful to screen for new
inhibitors that are also effective against MexY and other efflux
pumps.

FIGURE 5 | Effect of the pump inhibitor D13-9001 on the efflux activity

of MexAB-OprM expressed in the �B�C E. coli strain. Phase-contrast
(left) and fluorescence (right) images of untreated control cells (top) or cells
treated with 16 μg/mL D13-9001 (bottom).

PHENOTYPIC CHANGE AFTER GENETIC TRANSFORMATION
As a demonstration of the rapid phenotypic change after genetic
transformation, we introduced the S. enterica tolC gene into E. coli
�C cells. After electroporation with the expression vector, the cells
were incubated for different time durations in the presence of the
selection marker kanamycin and drug efflux activity was assessed.
The efflux-active phenotype was observed after 3 h (Figure 6,
top), whereas no phenotypic change was observed in the control
experiment (Figure 6, bottom).

A prominent feature of the femtoliter droplet array is the abil-
ity to access individual droplets. Using a micropipette, not only
droplets but also the cells within the droplets can be collected
(Figures 3B,C). Collected single cells divide multiple times after

FIGURE 6 | Phenotypic change after genetic transformation.

Phase-contrast (left) and fluorescence (right) images of E. coli �C cells
transformed with a vector expressing tolC from Salmonella enterica
(pTH18kr::tolC; top) or a control vector pTH18kr (bottom).
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transfer to growth medium in a test tube. The plasmid in the
divided cells can be extracted and used for subsequent gene analy-
sis (Iino et al., 2012a). Culturing after cell collection can be omitted
by amplifying the DNA by single-cell PCR (Ottesen et al., 2006).
Considering the rapid detection (3 h) of the phenotypic change
after genetic transformation, single-cell gene analysis would enable
high-throughput screening.

PERSPECTIVE
As described above, the femtoliter droplet array is useful for single-
bacterial cell analysis. Single-cell analysis of persister bacteria
could help elucidate the mechanism of persister appearance and
the reversible switching dynamics between persister and sensitive

cells. This single-cell drug efflux assay can be used to screen for
pump inhibitors, which requires the testing of numerous com-
pounds. Our method is a direct evaluation of efflux activity, it
takes only 20-30 min, and its advantage over the conventional
method, based on the shift in the minimal inhibitory concentra-
tion is evident. Furthermore, with the advantage of individual
droplet accessibility, single persister cells and cells exhibiting the
efflux-active phenotype can be easily collected and used for subse-
quent analysis. It should be possible to screen for genes encoding
functional efflux pump systems with a plasmid library of cloned
genomic fragments. We believe that our approach will aid in
addressing the challenge of infectious diseases caused by bacteria
that are multidrug tolerant and resistant.
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