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The community of ammonia-oxidizing prokaryotes was examined in an agricultural soil
treated for six seasons with contrasting nitrogen (N) sources. Molecular tools based on the
genes encoding ammonia monooxygenase were used to characterize the ammonia oxidizer
(AO) communities and their abundance. Soil DNA was extracted from soils sampled from
silage corn plots that received no additional N (control), dairy waste compost, liquid dairy
waste (LW), and ammonium sulfate (AS) treatments at approximately 100 and 200 kg
available N ha−1 over 6 years. The N treatment affected the quantity of AO based on
estimates of amoA by real-time PCR. Ammonia oxidizing bacteria (AOB) were higher
in soils from the AS200, AS100, and LW200 treatments (2.5 × 107, 2.5

7 1 6
× 107, and

2.1 × 10 copies g− soil, respectively) than in the control (8.1 × 10 copies g−1 soil)
while the abundance of amoA encoding archaea [ammonia oxidizing archaea (AOA)] was
not significantly affected by treatment (3.8 × 107 copies g−1 soil, average). The ratio of
AOA/AOB was higher in the control and compost treated soils, both treatments have the
majority of their ammonium supplied through mineralization of organic nitrogen. Clone
libraries of partial amoA sequences indicated AOB related to Nitrosospira multiformis
and AOA related to uncultured Nitrososphaera similar to those described by soil fosmid
54d9 were prevalent. Profiles of the amoC-amoA intergenic region indicated that both
Nitrosospira- and Nitrosomonas-type AOB were present in all soils examined. In contrast
to the intergenic amoC-amoA profile results, Nitrosomonas-like clones were recovered
only in the LW200 treated soil-DNA. The impact of 6 years of contrasting nitrogen sources
applications caused changes in AO abundance while the community composition remained
relatively stable for both AOB and AOA.

Keywords: nitrification, ammonia monooxygenase, nitrogen fertilizers, agricultural soils, manure, compost,
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INTRODUCTION
In soil environments ammonia oxidizing bacteria (AOB) and
ammonia oxidizing archaea (AOA) mediate the first, rate-liming
step of autotrophic nitrification, which is considered to be a
key control point in the nitrogen cycle resulting in increased N
mobility and loss of oxidized N forms through leaching and den-
itrification (Norton, 2008; Schleper, 2010). Several studies have
indicated that AOB and AOA co-exist and play important roles in
soils but questions remain concerning their relative importance in
agricultural soil environments (Leininger et al., 2006; Jia and Con-
rad, 2009; Di et al., 2010; Wessen et al., 2010). Ammonia oxidizers
(AO) are generally slow growing, difficult to isolate and have there-
fore have been primarily investigated using molecular techniques
based on amplification of genes encoding either the 16S ribosomal
RNA or ammonia monooxygenase (amo) (Rotthauwe et al., 1997;
Purkhold et al., 2000; Kowalchuk and Stephen, 2001; Prosser and
Embley, 2002; Junier et al., 2010)

Assessment of the impacts of treatment or management sys-
tems on nitrification rates requires consideration of microbial
abundance in addition to microbial diversity due to differences in

microbial response at low and high cell concentrations (Webster
et al., 2005). Molecular investigations of AO in the environment
have mainly focused on methods which can be summarized into
three groups: (1) PCR amplification of a target gene followed by
either clone assisted or direct sequence analysis, (2) hybridiza-
tion of whole cell or PCR amplified DNA fragments with specific
oligonucleotides probes, and (3) analysis of PCR products with
profiling techniques such as denaturing gradient gel electrophore-
sis (DGGE) or terminal fragment length polymorphism. Norton
et al. (2002) reported the possibility of using the variable length
intergenic region between amoC and amoA (genes encoding two
of the AMO subunits) to profile AOB in environmental sam-
ples without cloning or sequencing. This profiling method has
advantages for rapid assessment within related communities. The
current experimental system has several aspects that include:
(1) original soil environment relatively homogeneous and well-
characterized, (2) multiple year treatments with same crop and
soil amendments in a replicated field experiment, and coordinated
microbial community and functional rate studies on the same
experimental system. We interpret our observations to examine
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the extent of functional redundancy versus niche separation for
the two major groups of ammonia oxidizing prokaryotes under
contrasting sources of available N.

MATERIALS AND METHODS
EXPERIMENTAL FIELD PLOTS
The experimental design, soil, treatments and nitrogen dynamics
of this experiment have been previously described (Shi et al., 2004;
Habteselassie et al., 2006a,b). The soil is an irrigated, very strongly
calcareous Millville silt loam (Coarse-silty, carbonatic, mesic Typic
Haploxeroll) with pH1:1 of 8.2 and CEC of 14 cmolc kg−1. The
experimental design is a complete randomized block with four
replications of seven nitrogen treatments. Treatments are con-
trol (no N fertilization), low level dairy waste compost (DC100),
high level DC (DC200), low level liquid dairy waste (LW100),
high level LW (LW200), and ammonium sulfate (AS) at 100 and
200 kg available N ha−1 (AS100 and AS200) annually from 1997
to 2003. The low and high levels of waste treatments were applied
to provide approximately 100 and 200 kg available N ha−1 after
considering contributions from soil organic matter and previ-
ous year applications (Habteselassie et al., 2006a,b). Treatments
were applied in early May and incorporated into approximately
the top 10 cm. The plots were planted each year with silage
corn. Two soil cores (3 × 15 cm) were collected from each repli-
cate plot in August 2002 and 2003 and frozen (−20◦C) until
used.

BACTERIAL STRAINS AND DNA EXTRACTION
Genomic DNA of strains of Nitrosospira sp. NpAV, Nitrosospira
multiformis 24C, Nitrosospira sp. 39-19, Nitrosospira briensis C-
128, Nitrosospira tenuis NV-12, Nitrosolobus multiformis 25196,
Nitrosomonas europeae 19178, Nitrosomonas eutropha C-91, and
Nitrosomonas cryotolerans 49181 were used as references for pro-
filing AOB based on the variable size amo intergenic region and for
primer development (Norton et al., 2002). DNA from soil samples
was extracted as described in Zhou et al. (1996) and purified using
gel electrophoresis or using a commercial kit (Power Soil MoBio,
Carlsbad, CA, USA) before further analysis or PCR.

QUANTITATIVE ANALYSIS OF AO WITH REAL-TIME PCR
The copy number of bacterial and archaeal amoA in DNA extracted
from all soil samples was determined similarly to the approach
of Leininger (Leininger et al., 2006). The real-time PCR was car-
ried out in a iCycler iQ5 instrument (Bio-Rad laboratories, USA)
with the amoA189F/amoA2R′ primer set (Okano et al., 2004) for
AOB and the amo19F and amo643R primers for AOA (Leininger
et al., 2006) using the iQTM 2× SYBR® green super mix [100 mM
KCl, 40 mM Tris-HCl, pH 8.4, 0.4 mM of each dNTP, iTaq DNA
polymerase, 50 U/mL, 6 mM MgCl2, SYBR Green I, 20 nM fluores-
cein, and stabilizers (Bio-Rad laboratories, Hercules, CA, USA)].
The standard curve for quantification of amoA copy number used
plasmids containing cloned amoA products from genomic DNA
of Nitrosospira multiformis ATCC 25196 or from environmental
DNA. Improved quantification was obtained after diluting the soil
DNA extracts by 10× before quantification. Each 25 μL reac-
tion contained 12.5 μL 2× SYBR® green super mix, 1.0 μL of
extracted DNA, 1.25 μL of both forward and reverse primers

(500 nM reaction concentration), 0.5 μL bovine serum albu-
min (400 ng μL−1 reaction concentration) and 8.5 μL of water.
The amplification used the following protocol: an initial denat-
uration step of 95◦C for 10 min, 40 cycles of 95◦C for 45 s,
60.1◦C for 1 min, and 72◦C for 45 s and a final extension step
of 72◦C for 10 min. Fluorescence intensity was measured dur-
ing the 72◦C step of each cycle, and a melt curve was performed
after the final extension step to confirm the specificity of the
amplified DNA. All standards and samples were processed in
triplicate. PCR reactions showed high efficiencies and no inhi-
bition was detected. The standard curve for quantification of the
copies of amoA from soils was log-linear with R2 values 0.99 or
greater.

PROFILING AOB BASED ON THE VARIABLE SIZE amoC-amoA
INTERGENIC REGION
Primers that target the intergenic region between amoC and
amoA were designed and evaluated with the help of the
Amplify (Engels, 1993) and Windows 32 Primerselect 5.05 (DNA-
STAR, Inc., Madison, WI, USA) programs from several amo
sequences that were obtained from our sequence library and
GenBank. All the primers used in this study are summarized
in Table 1 and synthesized commercially (Genemed Synthesis
Inc., or Operon Technologies). Soil DNA extracts were PCR
amplified with amoC311F/amoA302R and amoC305F/amoA302R
primer sets employing Taq polymerase (Promega, Madison,
WI, USA). No visible amplification products were obtained.
Semi-nesting of the PCR products with amoC311F/amoA310R,
amoC305F/amoA310R, and amoC305F/amoA304R gave visible
and variable size bands. The PCR conditions were 4 min at 94◦C
followed by 42 (soil samples) or 30 (genomic DNA) cycles at 94◦C
for 1 min, 52◦C for 1 min, 72◦C for 4 min with a final extension
step of 10 min at 72◦C.

The annealing temperature for the genomic DNA and the semi-
nesting step was raised to 57◦C to avoid non-specific amplification.
The intergenic amplicons were run in a 3% high-resolution agarose
gel and visualized in UV light after staining with ethidium bro-
mide. The bands were analyzed using the RFLPscan program
(Scanalytics/CSPI, Billerica, MA, USA). The bands were further
analyzed with amoC and amoA specific probes to verify their sim-
ilarity to known amo sequences (data not shown). The intergenic
banding profiles were analyzed as a matrix of shared bands/ total
bands for all the blocks and the matrices clustered by average
linkage methods using SAS (version 9.3).

CLONE LIBRARIES OF amoA FROM SOIL DNA
Soil DNA extracts from AS200, DC200 and LW200 plots were
amplified with Taq bead hot start polymerase (Promega, Madi-
son, WI) and primer sets targeting amoA to obtain fragments
of amoA for developing clone libraries. The PCR products were
run in 0.8% agarose gel. Bands of the right size were cut out
and purified. The purified PCR products were ligated into pCR
II plasmids and One Shot competent Escherichia coli cells were
transformed according to the manufacturer’s instructions (TA
Cloning Systems, Invitrogen, San Diego, CA, USA). The trans-
formation products were plated on LB agar containing kanamycin
(50 mg L−1). For soils from each treatment (AS200, DC200, and
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Table 1 | Primers used in this study for a real time PCR assay of amoA, amplification of the intergenic region between amoC and amoA, and

development of amoA clone libraries from soil DNA.

Name Sequence (5’–3’) Positiona Conc. (nM) Reference Description

AmoA189F GGHGACTGGGAYTTCTGG 1130–1147 500 Holmes et al. (1995) Real time PCR and clone library for

Bacteria

AmoA2R’ CCTCKGSAAAGCCTTCTTC 1781–1799 500 Okano et al. (2004)

Amo19F ATGGTCTGGCTWAGACG 500 Leininger et al. (2006) Real time PCR and clone library for

Archaea

Amo643R TCCCACTTWGACCARGCGGCCATCCA 500 Leininger et al. (2006)

AmoA302R TTTGATCCCCTCTGGAAAGCCTTCTTC 1781–1808 500 Norton et al. (2002) AOB profile based on variable size

amoC-amoA intergenic region

AmoC305F GTGGTTTGGAACRGNCARAGCAAA 763–786 500 Norton et al. (2002)

AmoA310R TACCGCTTCCGGCGGCATTTTCGCC 1015–1039 500 This study

aPositions in N. europaea amoCAB2 sequence (McTavish et al., 1993; Norton et al., 2002; Chain et al., 2003).

LW200 for AOB, all treatments for AOA), more than 40 clones
were randomly selected and grown overnight in terrific broth. The
plasmids were purified (MO BIO Inc., Carlsbad, CA) and ana-
lyzed for the presence of inserts with restriction digestion using
EcoRI before they were sequenced with M13R primer and DNA
polymerase for dideoxy dye-primer cyclo-sequencing (ABI 373A,
USU Center for Integrated Biosystems). Nucleotide sequences
were cleaned of vector and primer contamination and checked for
frame shift errors using Sequencher software (Gene Codes, Madi-
son, WI,USA) and investigated for sequence identity and similarity
using the NCBI Blast (Altschul et al., 1997) and MegAlign (DNAS-
TAR, Inc., Madison, WI, USA) programs. Multiple alignments of
sequences were done with the ClustalW software. All the sequences
were first aligned and the subsection of the alignment excluding
primers was used for further analysis using the ARB programs
(Ludwig et al., 2004). AOA amoA sequences were trimmed to
570 bp and aligned to an existing high-quality amoA database
(http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3328746/bin/em
i0014-0525-SD1.arb) and the 97% identity phylogenetic tree of
Pester et al. (Pester et al., 2012). All AOA sequences were above
the 85% identity level with existing sequences in the database.
AOB amoA sequences were aligned with ClustalW and trimmed
to 534 bp and then analyzed with the interactive parsimony tool
within the ARB package (Ludwig et al., 2004). Reference sequences
were retrieved from GenBank or from (Norton et al., 2002).
The amoA sequences from this study are available as accessions
KF541098-KF541236 in GenBank (Benson et al., 2008).

STATISTICAL ANALYSIS
Results were summarized with descriptive statistics (e.g., mean,
standard error). The amoA copy numbers were subject to ANOVA
analysis to test the statistical significance of the different N sources
on bacterial and archaeal amoA abundance. Tukey’s Studentized
Range Test was used for means separation. The data was log trans-
formed after the necessary test for normality and homogeneity of
variance. ANOVA analysis was also done to test the significance of
difference between AOB and AOA amoA copy numbers for each

N source or treatment. All statistical analyzes were done in SAS
(2002-2003, SAS Institute, Inc., North Carolina) at significance
level of α = 0.05.

RESULTS AND DISCUSSION
QUANTIFICATION OF AOB AND AOA WITH REAL TIME PCR
The copy number of amoA genes from AOB and AOA in soils
that received different treatments is shown in Figure 1. For
AOB amoA copies ranged from 8 × 106 to 3 × 107 g−1 soil
equivalent to approximately 106 to 107 cells g−1 soil assum-
ing 2–3 copies of amoA per cell (Norton et al., 2002). These
numbers are comparable or slightly higher than the AOB popu-
lation sizes reported in agricultural soils using competitive and
real-time PCR techniques by targeting amoA and 16S rDNA

FIGURE 1 | AOB and AOA copy # of amoA gene per gram of soil treated

with ammonium sulfate (AS), dairy waste compost (DC), and liquid

dairy waste (LW) at two rates of application, 100 and 200 kg N ha-1.

Bars with same letter superscript are not significantly different at p ≥ 0.05.
No significant difference was found between the treatments for AOA copy
number.
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(Phillips et al., 2000b; Mendum and Hirsch, 2002; Okano et al.,
2004; Jia and Conrad, 2009; Gubry-Rangin et al., 2010).

In our study, higher AOB populations were found in soils from
the AS100, AS200 and LW200 treatments compared to the control
soil. The DC treatment did not result in a significantly higher AOB
population size than the control. This is consistent with a study by
Innerebner et al. (2006) in which AOB population size in the con-
trol soil was not significantly different from the soil that received
cattle manure compost, a kind of compost similar to ours, for more
than 10 years at 175 kg N ha−1 annually. The AS and LW treat-
ments in our study were similar in that most of the N was found in
a more readily available (inorganic) form as opposed to the control
or DC treatments (Habteselassie et al., 2006a). The spring fertilizer
pulse of available ammonium will most likely stimulate activity
and possibly growth of AOB over a short period of time (Shi
et al., 2004). In these soils nitrification rates are rapidly increased
by ammonium additions when compared to gross nitrification
rates suggesting ammonium limitation of ammonia oxidation
(Habteselassie et al., 2006b; Koper et al., 2010). In a soil micro-
cosm study, Okano et al. (2004) reported 8 and 11 fold increases
in AOB population size one week after AS applications at 80 and
400 kg N ha−1 rates, respectively. The potentially mineralizable N
pool size is, however, higher in DC than AS or LW treated soils
(Habteselassie et al., 2006b). This pool releases ammonium slowly
over a longer period of time, which will most likely lead to a
more sustained and consistent AO population size throughout the
season in the DC treated plots as opposed to AS or LW treated
plots. Our study, however, did not measure seasonal changes in
AO population size in the differently treated plots. Phillips et al.
(2000b) and Mendum and Hirsch (2002) had similarly reported
increased AOB population size as a result of ammonium nitrate
and AS fertilization, respectively. The magnitude of the increase
in AOB population size was dependent on the time between fertil-
ization and measurement. The above findings are also supported
by recent studies that reported significant increases in AOB abun-
dance as a result of fertilization with mineral sources of N under
both field and soil microcosm set-ups (Verhamme et al., 2011;
Taylor et al., 2012).

Based on 2 to 5 fold higher potential and gross nitrification
rates measurements in the DC200 versus the AS200 treated soils
(Habteselassie et al., 2006a,b), it was expected that DC200 treated
soil would have larger, if not similar AO population size in com-
parison to the AS200 treated soils. Contrary to our expectation
there was no significant difference for either the AOA nor the
AOB populations between the DC treated soils and the other
treatments. One reason for this could be that the organic mat-
ter content of soils that received the DC200 treatment increased
twofold over 6 years (Habteselassie et al., 2006a). These rapid
increases in organic matter creates hot spots of mineralization
and nitrification due to uneven distribution of waste (Korsaeth
et al., 2001) suggesting increased heterogeneity in the DC treated
soils.

During the extent of this field study the role of archaeal prokary-
otes containing putative amoA genes in soils became known
(Leininger et al., 2006). In our study using archived samples, we
were able to quantify the amoA gene copies based on primers tar-
geting archaeal AO (Leininger et al., 2006). The archaeal amoA

gene copies were similar or higher than those found for AOB
amoA genes with an average value of 3.8 × 107 per gram soil,
with no significant differences between soil treatments (Figure 1).
The ratio of archaeal to bacterial amoA gene copies is shown
in Figure 2. The ratio of AOA/AOB was higher in the control
and compost treated soils versus the other treatments. The sup-
ply of ammonium via mineralization is higher in the compost
treated soils (four year average DC200 treatment is 5.7 mg N
kg−1d−1) versus the control (1.4 mg N kg−1 d−1) or the AS200
(1.3 mg N kg−1 d−1) treated soils. However, the DC and Control
soils have in common that the majority of their ammonium is
supplied through mineralization of organic nitrogen rather than
directly through ammonium additions in fertilizers (AS) or LW
(Habteselassie et al., 2006a,b). Our findings are consistent with
other studies that show AOB are favored by inputs of ammo-
nium. In a wetland soil, AOB abundance was higher in soils with
ammonium additions from a septic tank leak compared to unpol-
luted soils (Hofferle et al., 2010). In fallowed or pasture soils where
organic matter was higher than matched cropped fertilized soils,
AOA abundance was several fold higher than AOB abundance
(Taylor et al., 2010; Zeglin et al., 2011). Under high ammonium
concentration, as in situations where ammonium is supplied in a
readily available mineral form, AOB abundance was either compa-
rable or higher than the corresponding AOA abundance (Di et al.,
2010; Verhamme et al., 2011; Taylor et al., 2012). These studies,
along with ours, clearly indicate differential growth response by
AOA and AOB to different forms and concentrations of nitrogen
sources.

Functional differences between AOB and AOA have also been
reported under different soil treatments. Using stable isotope
probing technique, Xia et al. (2011) reported the functional dom-
inance of AOB in agricultural soil that received AS (100 μg N g−1

soil per week) as opposed to AOA. AOA contribution to nitrifica-
tion was calculated to be a maximum of 23.4%, the rest coming
from AOB. AOB were also functionally dominant, as assessed by

FIGURE 2 | Ratios of amoA copy # per gram of soil of AOA to AOB. Soil
treatments as in Figure 1. *Bars with asterisk indicate that the copy # of
amoA of AOA is significantly higher than the copy # of amoA of AOB for
that treatment at p ≤ 0.05.
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measuring nitrification rate and amoA gene transcription activity,
in grassland soils that received very high urea concentration to
simulate urine patches (Di et al., 2010). AOA were, on the other
hand, the more dominant players in nitrification in an organic
soil based on acetylene inhibition technique (Offre et al., 2009).
A study by Taylor et al. (2010) showed that in recently N fer-
tilized cropped soils with high nitrification potential (NP), the
majority of the recovery of NP (RNP) activity after inhibition
with acetylene was due to AOB, and that in pasture and grassland
soils with lower NP activity, RNP was due primarily to AOA or
to a mixture of AOA and AOB. A subsequent study has shown
that the factors controling the relative contributions are complex
with cropping treatment, soil conditions, and NH4

+ availability
influencing their relative contributions in the field (Taylor et al.,
2012). Using soils from our same site, investigations into the kinet-
ics of ammonia oxidation found Km values similar to other soils
(0.02 mM) but less than for pure cultures of AOB (Koper et al.,
2010). Based on the above mentioned studies, AOB will likely be
relatively more important players in the AS and LW treated plots
in our system, with AOA being functionally more important in the

control and DC treated plots. However, since archived samples are
not appropriate for testing this hypothesis, additional experimen-
tation requires sampling soil from new experimental plots in future
investigations.

THE USE OF THE VARIABLE SIZE amo INTERGENIC REGION TO PROFILE
AOB
Visible products of the amo intergenic region from soil DNA
extracts (Figure 3) were obtained through semi-nested PCR
reactions. Several primer sets were assessed through use with
pure cultures of AOB, soil DNA and in silico and the use of
amoC305/amoA310 resulted in the most reproducible band-
ing patterns. The predicted and observed sizes of the ampli-
cons of amoC305F/amoA310R from some pure culture AOB
strains are shown in Table 2. DNA extracts from soils that
received the AS, DC, and LW treatments were first ampli-
fied with amoC305F/amoA302R primer sets and subsequently
semi-nested with amoC305F/amoA310R. PCR amplification of
the genomic DNA of the pure culture strains indicated that
amoC305F/amoA302R gave a single band amplicon for all the

FIGURE 3 | (A–C) PCR amplicons of the intergenic region between
amoC and amoA with amoC305F-amoA310R primer set from soil
samples that received control, AS100, AS200, DC100, DC200, LW100,
and LW200 treatments from three replicate field blocks (A–C). Lanes
NC, PC, and Marker correspond to negative control (NC), positive

controls (PC) (from top to bottom, Nitrosospira multiformis 25196,
Nitrosospira sp. NpAV, and Nitrosomonas europaea 19178) and
molecular weight markers (marker), respectively. (D) Cluster analysis
for intergenic profiles from four blocks and all seven treatments (see
above).
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Table 2 | Copy number of amo operon and size of the intergenic regions between amoC and amoA of various pure culture AOB strains.

Amplicon length predicted from sequence.

Strain Copy number aamoC-amoA

intergenic region (bp)

305F-310R amplicon (bp)

Nitrosospira sp. NpAV 3 223 331

N. briensis C-128 3 263 371

Nitrosospira sp. 39-19 3 445 553

N. tenuis NV-12 2 427 435

Nitrosospira multiformis 25196 3 336 446

Nitrosospira multiformis 24C 3 261 369

Nitrosomonas cryotolerans 3 195 303

Nitrosomonas europaea 19178 2 163 277

N. eutropha C-91 2 173 287

Nitrosomonas sp. AL212 3 174 282

aNorton et al. (2002, 2008), Suwa et al. (2011).

pure cultures as predicted. Although direct amoC305F/amoA310R
amplification with genomic DNA gave multiple bands for some of
the strains, we did not observe this in semi-nested PCR (data
not shown). The profiles of the amoC305F/amoA310R ampli-
cons (Figure 3) show differences in AOB community composition
between the different treatments. The amoC305/amoA310 gave
visible bands (5–10 total) for all the treatments from all of the field
block replicates, three of which are shown in Figure 3. The band
patterns of each treatment from the field block replicates were
not exactly identical indicating the inherent variability among the
replicates.

Comparison of the band pattern of the control with the
rest of the treatments indicates that the control had the low-
est number of visible bands (Figure 3). As indicated in Table 2
and in additional test gels all of the Nitrosospira pure culture
strains had intergenic amplicons of amoC305/amoA310 larger
than 300 bp whereas the Nitrosomonas strains had less than 300 bp
intergenic amplicons with the exception of the marine strain Nitro-
somonas cryotolerans. We observed bands indicating the presence
of Nitrosomonas- and Nitrosospira-like strains from all treatments
as verified by hybridization analysis (data not shown). Cluster
analysis (Figure 3D) suggests three clusters: (1) control and AS100,
(2) LW100, DC200, LW200, DC100, and (3) AS200. The AS200
community is the most distinct likely due to the highest amounts
of ammonium addition. Currently methods are in development
to simplify quantification and accurate sizing of the band pat-
terns in intergenic profiles by using fluorescently labeled primers
and genotyping methods. Similar methods may be developed for
the AOA with attention to the different arrangement of the amo
operon in these prokaryotes (Tavormina et al., 2011).

CLONE LIBRARIES OF amoA GENES
The nucleic acid based comparison of the clone sequences and
selected pure culture AOB and AOA strains is shown in Figures 4
and 5. The corresponding amino acid based phylogenetic trees
(not shown) were also constructed resulting in similar topology
but with differences in branch lengths separating two sequences

due to the occurrences of neutral mutations in amino acids
(Rotthauwe et al., 1997). The superiority of nucleotide sequence
over amino acids for analyzing phylogenetic relationship between
closely related strains of bacteria has been previously noted
(Yamamoto and Harayama, 1996; Rotthauwe et al., 1997).

Clone libraries of partial amoA sequences from soils that
received the AS200, DC200, and LW200 indicated that
Nitrosospira-like strains were the dominant AOB (# of unique
sequences for AS, DC and LW – 18, 15, & 17). None of
the sequences suggested previously undiscovered AOB species
(Purkhold et al., 2000). The dominance of Nitrosospira-like strains
in these soils is not surprising as it has been widely reported
before in soils under different management systems (Stephen
et al., 1996; Bruns et al., 1999; He et al., 2007; Boyle-Yarwood
et al., 2008; Taylor et al., 2012). Nitrosomonas-like sequences were
detected only from soils that received the LW200 treatment and
constituted around 12% of the sequenced clones. This is con-
sistent with the work by Oved et al. (2001) where wastewater
effluent treated soils had both Nitrosospira and Nitrosomonas like
sequences whereas only Nitrosospira like sequences were detected
in soils that received inorganic fertilizer treatment. Enrichments
from the LW have been shown to contain amoA genes related to
Nitrosomonas spp. All clone sequences obtained from soils that
received the AS200 and DC200 treatments were Nitrosospira-like.
This might not necessarily mean that Nitrosomonas-like sequences
did not exist in these soils. Mendum and Hirsch (2002) were able
to detect only Nitrosospira-like sequences using PCR based tech-
niques that targeted the 16S rRNA genes in soils that received
ammonium nitrate and mixture of farmyard manure and ammo-
nium nitrate for several years. They mentioned that Nitrosomonas
species were isolated from same soil samples with enrichment
cultures and that the PCR based technique was not able to
detect Nitrosomonas likely due to their low relative abundance.
Similarly, Phillips et al. (2000a) were not able to detect Nitro-
somonas-like bands in DGGE analysis of 16S rRNA genes extracted
directly from fertilized soils whereas these bands were detected
from soil samples that were incubated in a medium containing
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FIGURE 4 | Analysis of clone library sequences for bacterial amoA

gene (534 bp). Neighbor joining tree for bacterial partial amoA
sequences from soils from the various treatments (see Figure 1)
and reference sequences from GenBank. Scale represents number

of changes per 100 bp. Clone sequences from this study are in
bold and designated with the treatment (see Figure 1) and are
followed with the number of clones with sequences with >99%
identity.

1000 μg NH4
+-N mL−1 for MPN counts. Inherent biases asso-

ciated with molecular techniques that might shift the relative
proportion of the different amoA sequences may also explain non-
detection of certain group of AOB from environmental samples
(Rotthauwe et al., 1997).

The results from the clone libraries were similar with the
results obtained by targeting the variable size intergenic amo
region in that both techniques indicated differential impacts
of the treatments on the AOB community composition. The
difference is that profiling based on the intergenic region indi-
cated the presence of both Nitrosospira and Nitrosomonas like
populations in all the treatments whereas only Nitrosospira like
populations were detected with the clone library method except
in LW200 treatments. It seems that profiling AOB community
composition by targeting the intergenic region could be useful
in getting a quick snapshot of the community in a manner that
is more inclusive because of nesting during PCR, which could
pick up the less abundant Nitrosomonas like populations. This

method can also be used to further identify the population type
by excising, purifying and sequencing the DNA in the different
bands.

The differential response of the AOB community to the treat-
ments is reasonable considering the different forms of N and C
inputs associated with each treatment. Peacock et al. (2001) noted
that application of dairy manure over a 5-year period resulted
in significant increase in C, N and soil microbial biomass, as
well as changes in microbial community structure. They indi-
cated that those practices that enhance soil carbon and provide
slowly mineralizable nutrients might result in larger and poten-
tially more robust microbial community. The above statement
is relevant to the DC treatment, which might have a long-term
effect on the AO community due to its impact on the organic
C and N pools of the soil. The DC and LW treatments might
also change the AOB community composition by directly inocu-
lating the soil with new AO strains. Strains inoculated this way
are often not the dominant populations in the soil (Innerebner
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et al., 2006). The effect of inorganic N fertilizers might mainly
be to increase the size of the AOB population without a corre-
sponding change in composition (Phillips et al., 2000a). However,
there have been studies that reported changes in AOB community
composition in response to inorganic N fertilizers (He et al., 2007;
Glaser et al., 2010).

The AOA clone libraries were not significantly different between
treatments with all dominated by a group of closely (>97% iden-
tity) related sequences that group with the 1.1B Nitrososphaera
clade associated with the soil fosmid 54d9 (Schleper and Nicol,
2010; Schleper, 2012; Figure 5). Clone AOA 62 represents
34 sequences >99% identical and clone AOA 88 represents 38
sequences >96% identical to that from soil fosmid 54d9 (Treusch
et al., 2005; Schleper, 2012; Figure 5). This group represents
more than 89% of all clones from all soil treatments. There
were several other clones representing minor components of the
community all associated with Nitrososphaera clusters (>85%
identity) previously found. These AOA lineages are commonly
found in agricultural soils worldwide (Pester et al., 2012; Zhal-
nina et al., 2013). The low richness of the archaeal amoA genes
recovered is typical of observations that consider soils sampled
at a single location (Alves et al., 2013). Their conclusion that
dominant phylotypes showed local specificity is supported by our
results.

In summary, gene counts for AOB were higher in soils from
the AS200, AS100, and LW200 treatments (2.5 × 107, 2.5 × 107,
and 2.1 × 107 copies g−1 soil, respectively) than in the con-
trol (8.1 × 106copies g−1) while the abundance of AOA was
not significantly affected by treatment (3.8 × 107copies g−1 soil,
average). The ratio of AOA/AOB was higher in the control and
compost treated soils, both treatments have the majority of their
ammonium supplied through mineralization of organic nitrogen.
PCR amplification of the intergenic region between amoC and
amoA was shown to be a potentially useful method of profil-
ing changes in AOB community composition but the analogous
method for AOA needs further development for the method to be
generally useful. Clone libraries of partial amoA sequences indi-
cated AOB related to Nitrosospira multiformis and AOA related
to an uncultured Nitrososphaera soil fosmid (54d9) were preva-
lent. Ongoing investigations will address how AO community
diversity and abundance is related to in situ ammonia oxidation
activity.
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