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Functional gene pyrosequencing is emerging as a useful tool to examine the diversity and
abundance of microbes that facilitate key biogeochemical processes. One such process,
denitrification, is of particular importance because it converts fixed nitrate (NO−

3 ) to N2
gas, which returns to the atmosphere. In nitrogen limited salt marshes, removal of
NO−

3 prior to entering adjacent waters helps prevent eutrophication. Understanding the
dynamics of salt marsh microbial denitrification is thus imperative for the maintenance
of healthy coastal ecosystems. We used pyrosequencing of the nirS gene to examine
the denitrifying community response to fertilization in experimentally enriched marsh
plots. A key challenge in the analysis of sequence data derived from pyrosequencing is
understanding whether small differences in gene sequences are ecologically meaningful.
We applied a novel approach from information theory to determine that the optimal
similarity level for clustering DNA sequences into OTUs, while still capturing the ecological
complexity of the system, was 88%. With this clustering, phylogenetic analysis yielded 6
dominant clades of denitrifiers, the largest of which, accounting for more than half of all the
sequences collected, had no close cultured representatives. Of the 638 OTUs identified,
only 11 were present in all plots and no single OTU was dominant. We did, however,
find a large number of specialist OTUs that were present only in a single plot. The high
degree of endemic OTUs, while accounting for a large proportion of the nirS diversity
in the plots, were found in lower abundance than the generalist taxa. The proportion of
specialist taxa increased with increasing supply of nutrients, suggesting that addition of
fertilizer may create conditions that expand the niche space for denitrifying organisms and
may enhance the genetic capacity for denitrification.

Keywords: DNA sequence clustering, AIC, network analysis, nirS, salt marsh, eutrophication, functional gene
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INTRODUCTION
Salt marshes, located along the shores of temperate coastal waters
around the world, provide more ecosystem services than any
other coastal habitat (Gedan et al., 2009). These services include
shoreline stabilization, nursery and breeding grounds for com-
mercially important finfish and shellfish species, and interception
of land-derived contaminants (Valiela et al., 2004). Salt marshes
also sequester more carbon in their soils than any other temperate
biome (Duarte et al., 2005) and contribute 1% to the global loss
of fixed nitrogen through microbially-mediated denitrification
(Seitzinger et al., 2006). In 2007 the value of the ecosystem ser-
vices provided by salt marshes was estimated at $14,397 ha−1 y−1,
of which 66% was attributed to services associated with nutrient
removal and transformation (Gedan et al., 2009), much of which
occurs as a result of microbial metabolisms. It is clear that the esti-
mated 40 million hectares of salt marsh area in the world (Duarte
et al., 2005) are teeming with microbes that provide considerable
benefit to human kind, yet we know little of the diversity and
function of the microbes responsible for these critical ecosystem
services.

Despite their economic importance, salt marshes are under
considerable threat from anthropogenic causes (Gedan et al.,
2009; Deegan et al., 2012). Located at the interface between
land and sea, marshes are subject to perturbations from both
biomes. Increasing pressure from expansion of human activi-
ties in the coastal zone has resulted in increased delivery of
land-derived nutrients to estuarine habitats (Valiela et al., 1992;
Howarth et al., 2002; Cole et al., 2006). Since nitrogen (N)
is the nutrient typically limiting primary production in salt
marshes (Valiela and Teal, 1979) and estuaries (Vitousek and
Howarth, 1991; Paerl, 1997), excess anthropogenic nitrogen addi-
tions have resulted in a cascade of deleterious effects in both
coastal waters and their associated wetlands (Bertness et al., 2002;
Diaz and Rosenberg, 2008; Turner et al., 2009; Deegan et al.,
2012). Concurrent with increasing nutrient enrichment, rising
sea levels can result in the landward movement of salt marshes.
In many regions human modification of shorelines prevents such
landward migration, which could ultimately result in drowning
and loss of marsh area (Donnelly and Bertness, 2001). Losses
of wetland area from changing land use on shorelines, shifting
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hydrologic baselines, and nutrient enrichment have also been
well-documented (Bertness et al., 2002; Deegan et al., 2012) and
constrain the capacity of salt marshes to provide the ecosystem
services upon which society depends.

The anthropogenic threat to salt marshes, coupled with the
economic importance of these habitats, has motivated researchers
to undertake extensive studies on the extent to which these wet-
lands can remove anthropogenic nitrogen. Early recognition of
salt marshes’ role as a sink for land-derived nitrogen led to the
establishment of different experimental systems that examine
how nutrient enrichment alters marsh macroecology and bio-
geochemistry (Valiela et al., 1975; Deegan et al., 2007). Multiple
studies indicate that increasing anthropogenic N alters rates of
N loss processes including denitrification, coupled nitrification-
denitrification, and dissimilatory nitrate reduction to ammo-
nia (DNRA) (Hamersley and Howes, 2005; Koop-Jakobsen and
Giblin, 2010; Vieillard and Fulweiler, 2012; Kinney and Valiela,
2013). It is only within recent years, however, that genetic tools
have been developed to examine, in detail, the microbial com-
munities that underlie the biogeochemistry of marsh systems.
Recent terminal restriction fragment length polymorphism anal-
ysis of the ammonia monooxygenase gene in salt marsh plots
exposed to sewage sludge suggests that increased nutrient supply
may shift the community structure of ammonia oxidizing bacte-
ria but not ammonia oxidizing archaea (Peng et al., 2012). Lage
et al. (2010) also show a response by ammonia oxidizing bacteria
to nitrogen enrichment, but nitrogen plus phosphorus additions
show no response among the ammonia oxidizing bacteria. Using
denaturing gradient gel electrophoresis, Piceno and Lovell (2000)
also showed little change to the nitrogen fixing microbial com-
munity as a result of short-term nutrient additions. Functional
gene microarray analysis of the nirS gene, a key gene in the den-
itrification pathway, also showed little change in the denitrifying
community as a result of N addition, at least among the subset of
denitrifiers detected on the microarray chip (Bowen et al., 2011).

In this study we use functional gene pyrosequencing of the
nirS gene to explore the diversity and structure of the nirS
gene-containing members of the denitrifying community in salt
marsh sediments exposed to different degrees of nutrient enrich-
ment. A key challenge in the analysis of the massive amounts
of sequence data derived from functional gene pyrosequenc-
ing comes in understanding whether small differences in gene
sequences are ecologically meaningful. Here we use an informa-
tion theory approach modified from food web network analysis
(Allesina and Pascual, 2009) to ascertain the most parsimonious
degree of sequence clustering that reduces taxonomic complex-
ity without sacrificing significant ecological information loss.
Specifically, we derive a network between the representative clus-
ter sequence and its abundance in each marsh plot to calculate
the Akaike Information Criteron (AIC) score for each clustering.
The AIC score indicates the degree of network complexity and
fine-scale ecological information about individual sequences that
gets lost as sequence clustering increases. In essence, our cluster-
ing methodology ends up creating the most parsimonious OTU
assignments based jointly on taxonomic and ecological similarity
of individual sequences, balancing the conflicting goals of using
generalized OTU clustering (e.g., 97% sequence similarity used

for 16S rRNA studies) vs. clustering that is specific to this system
alone.

MATERIALS AND METHODS
STUDY SITE AND SAMPLE COLLECTION
We collected samples from the salt marsh fertilization plots at
Great Sippewissett Marsh, Falmouth, MA, in September 2009.
The long-running Sippewissett Marsh experiment has been
described elsewhere (Valiela et al., 1975, 1976) but briefly, the
marsh fertilization experiment began in the early 1970s. Each plot
is 10 meters in diameter and each bisects a marsh creek terminus
so that all marsh habitats (creek bank, low marsh, high marsh) are
equivalently represented in each of the plots (Figure 1). Duplicate
plots were randomly assigned to treatments and have been fertil-
ized (via addition of pelletized sewage sludge) biweekly through
the growing season at the following rates: Control (C): no fertil-
izer added, low dose (LF): 0.85 g N m−2 wk−1, high dose (HF):
2.52 g N m−2 wk−1 and extremely high dose (XF): 7.56 g N m−2

wk−1. We collected surface sediments (top 1 cm, encompassing
the entire redox gradient) using a sterile 25 cc syringe corer.
Duplicate cores from each plot were homogenized and dupli-
cate subsamples were immediately frozen in liquid nitrogen and
returned to the laboratory where they were stored at −80◦C until
DNA extraction.

Cores in each plot were collected from the rooting zone of
pure or nearly pure stands of the tall ecotype of Spartina alterni-
flora, taking care to avoid the edge of the plots that are in close
contact with the creek banks. We restricted our sampling to a
single vegetation type to avoid differences in microbial commu-
nity structure that might result from sampling the rooting zone
of different plant taxa. Thus, we do not intend that the microbial

10 m1:LF 2:HF

3:C 9:HF

5:LF
8:XF

6:XF
7:C

To Buzzards Bay

North

FIGURE 1 | Location and treatment level for each of the marsh plots at

Great Sippewissett Marsh, Falmouth, MA, USA. Fertilizers were added
in the following doses: Control (C): no fertilizer added, low dose (LF): 0.85 g
N m−2 wk−1, high dose (HF): 2.52 g N m−2 wk−1, and extra high dose (XF)
7.56 g N m−2 wk−1. Figure modified from Kinney and Valiela (2013).
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assemblages that we document here are representative of entire
salt marsh plots. Rather, we are specifically testing how the micro-
bial community in one salt marsh habitat responds to increased
supplies of anthropogenic nitrogen.

DNA EXTRACTION, AMPLIFICATION, AND SEQUENCING
Environmental DNA from the eight salt marsh plots were

extracted in triplicate using the PowerSoil® DNA Isolation Kit
from MoBio Laboratories (Carlsbad, CA). DNA products were
pooled and amplified with primers nirS1F and nirS6R (Braker
et al., 1998), in three independent PCR runs. The PCR reaction
consisted of a 1:10 dilution of template DNA, and final con-
centrations of 1× Phusion HF Buffer, 1.5 mM MgCl2, 1.6 mM
dNTP, 0.4 μM forward and reverse primers, 400 μg/mL BSA, 3%
DMSO, and 0.02 U/μL Phusion DNA polymerase (New England
Biolabs, Ipswich, MA). Reaction conditions included denatura-
tion for 2 min at 98◦C, 29 cycles of 98◦C for 10 s, 61◦C for 30 s,
and 72◦C for 1 min, followed by a final extension step at 72◦C
for 5 min. PCR products were agarose gel verified and pooled.
Nested PCR was performed on 0.15% (v/v in final PCR reac-
tion mixture) of the pooled PCR products using pyrosequencing
adapted nirS3F and nirS6R primers in three independent PCR
runs for each sample. The reaction conditions were the same as
above, but with 1.75 mM MgCl2, 0.1 μM forward and reverse
primers, and an annealing temperature of 56◦C. Gel purified PCR
amplicons were quantified via Quant-IT™ Picogreen® Reagent
from Invitrogen (now Life Technologies, Grand Island, NY) on
an Agilent MX3005p qPCR system (Santa Clara, CA). Samples
were eluted in 10 mM Tris-HCl buffer (pH 8) to a concentration
of 10 ng μl−1 and combined in equal ratios for pyrosequenc-
ing on Roche’s 454 FLX Genome Sequencer (Branford, CT)
at the Josephine Bay Paul Center for Comparative Molecular
Biology and Genomics at the Marine Biological Laboratory in
Woods Hole, MA. Pyrosequencing was performed using the
454 Titanium sequencing technology following manufacturers
instructions.

PROCESSING PYROSEQUENCING DATA
Following pyrosequencing, sequences with mismatches to the 5′
primer were removed, as were sequences containing any ambigu-
ous bases. The remaining sequences were trimmed to 432 bp
and were processed using FunFrame (Weisman et al., 2013),
a functional gene analysis pipeline we developed for the high
throughput analysis of protein coding gene amplicons. Briefly,
FunFrame uses HMM-FRAME (Zhang and Sun, 2011) along with
a hidden Markov model of the cytochome D1 nirS gene from
Pfam (accession PF02239.10) to identify and correct frameshift
errors that result from homopolymer misreads. The pipeline also
examines sequences for chimeras using UCHIME run in de novo
mode (Edgar et al., 2011). ESPRIT-Tree (version 11152011; Cai
and Sun, 2011) is embedded in FunFrame to cluster sequences
into operational taxonomic units (OTUs) and is parameterized
by the sequence similarity within OTU clusters. For the analyses
reported here, we extended FunFrame to iterate this parameter
over a range of sequence similarities, from 74 to 99%, to derive a
series of OTU clusterings (Table S1). We used each cluster, along
with the network generated between the representative cluster

sequence and its abundance in each of the salt marsh plots, to
calculate the AIC score for each cluster. The AIC score provides
an assessment of the degree of complexity lost with each step
increase in sequence clustering, thereby providing a guideline for
determining the degree of clustering that is ecologically relevant.

We used the percent sequence similarity with the lowest AIC
score to cluster our sequences using ESPRIT-Tree. A representa-
tive sequence from each cluster, along with a number of refer-
ence sequences derived from sequenced genomes containing the
nirS gene (Jones and Hallin, 2010) were aligned using PyNAST
(Caporaso et al., 2010). The alignment was used as input to
FastTree (Price et al., 2010) to generate a phylogenetic tree. This
tree was visualized using the Interactive Tree of Life (Letunic and
Bork, 2011). Representative sequences from the most abundant
clades were assigned taxonomy using a BLASTn search against the
NCBI nucleotide collection. All sequence data were submitted to
NCBI’s Sequence Read Archive (Accession number SRP029151).

CALCULATING AIC
We calculated AIC scores by modifying an approach pioneered in
food web network analysis (Allesina and Pascual, 2009) to deter-
mine the largest degree of sequence aggregation we could perform
without sacrificing too much ecologically relevant complexity in
our model. To do this, we took advantage of the fact that we can
define a bipartite network N(S + r, L) with S + r nodes con-
sisting of S sequence types connecting to r plots by L links. These
sequences are grouped into k OTUs. We first worked with a binary
network (all edges have equal weight) where an OTU and plot are
considered connected when a sequence from an OTU is found in
a plot. Defining the probability of choosing any sequence from
OTU i at random and finding a link to plot q with Liq links of
sequences in OTU i to plot is,

p(iq) = Liq/Si (1)

where Si is the number of sequence types in an OTU. We can
modify the equations from Allesina and Pascual (2009) to calcu-
late the probability of any given OTU-plot association in network
structure N, given the observed p(iq), such that,

P(N| p(iq)) = p(iq)Liq(1 − p(iq))Liq − Si (2)

This translates to a log likelihood of any given OTU-plot associa-
tion given network N as,

LL (iq|N) = Liq log(p(iq)) (3)

+ (Liq − Si) log(1 − p(iq))

Summing over all OTU-plot associations gives a log-likelihood
value for the network as a whole. In any given network configu-
ration with S sequences, k groups, and r sites, there are 2S + 2kr
parameters for the total log-likelihood calculation. Thus, taking
0log(0) = 0, the AIC value for an imposed network configura-
tion is,

AIC(N) = 2kr + 2S − 2
k∑

i = 1

r∑
q = 1

LL(iq|N) (4)
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Thus, we are able to calculate the AIC of the structures implied
by different OTU configurations based on 74% sequence sim-
ilarity to 99% sequence similarity. Minimizing the AIC yields
the OTU structure that best reproduces the observed patterns of
sequences in the data while minimizing the complexity of our
OTU structure.

We know, however, that sequences vary in abundance across
plots. We want to define an “optimal” OTU structure as one where
species within an OTU not only exhibit similar patterns of co-
occurrence, but also similar abundances when they co-occur. To
incorporate abundance information into our network AIC cal-
culations, we took our bipartite network and assigned a weight
to each edge based on sequence abundance. Using this weighted
network, we calculated the log-likelihood of observing the distri-
bution of abundances of sequences in OTU i in plot q. We began
by assuming that observed sequences were Poisson distributed
within a plot. Defining ajiq as the abundance of sequence j in
group i and plot q, a.iq as the summed abundance of all sequences
in group i and plot q, we can calculate the log-likelihood of
observing a pattern of abundances A of sequence types in group i
in plot q as,

LL
(
iq| A

) =
j∑

i = 1

Poisson

(
ajiq;λ = a.iq

Si

)
(5)

We also considered using a Binomial distribution instead of a
Poisson so that,

LL
(
iq| A

) =
j∑

i = 1

Binomial

(
ajiq; size = a.iq, p = 1

Si

)
(6)

But we found little difference (optimal clustering at 92% instead
of 88%), and so do not report the results here. Adding abundances
adds 2kr more parameters, so, now, an OTU-site network AIC is
as follows,

AIC(N) = 4kr + 2S − 2
k∑

i = 1

r∑
q = 1

[
LL(iq| N) + LL(iq| A)

]
(7)

Again, the lowest AIC score indicates the degree of clustering that
provides the best descriptor of the network structure while penal-
izing for an overly complex description of the system. All analyses
were carried out in R 2.15.2 (R Core Team, 2013).

NETWORK VISUALIZATION
After determining the optimal OTU-plot network structure, we
examined the resulting OTU-plot network in several ways. First,
we plotted bipartite OTU-plot networks at different levels of
sequence clustering with edge width proportional to abundance
of an OTU in a given plot. Second, we plotted the network of
OTUs and salt marsh plots as a graph with marsh plots included
as their own nodes using the Fruchterman and Reingold (1991)
algorithm for ease of visualization. We then investigated (1) the
distribution of the number of marsh plots in which each OTU
occurred (i.e., from specialists occurring in one plot to general-
ists occurring in all eight), and (2) the distribution of abundances

of OTUs and their pattern of plot specialization. Plots were made
using ggplot2 (Wickham, 2009) and network (Butts et al., 2012)
libraries. Frequency of co-occurrence was calculated as the frac-
tion of OTUs shared between two plots. The heatmap was visu-
alized using the heatmap2 function in the gplots library (Warnes
et al., 2012). Clustering for the dendrogram was determined using
the hclust function in gplots, which performs complete linkage
hierarchical clustering.

RESULTS
DETERMINING ECOLOGICALLY RELEVANT SEQUENCE CLUSTERING OF
THE nirS GENE
Pyrosequencing of functional genes has the capacity to produce
a tremendous amount of sequence data on the distribution and
abundance of specific protein coding genes in the environment.
The eight salt marsh samples analyzed in this study represent
only a subset of the samples pooled into one pyrosequencing run.
After low quality sequences were removed, we sequenced between
2122 and 4733 different OTUs of the nirS genes per marsh plot
derived from a grand total of 66,279 sequences that were retained.
With such tremendous sequence diversity it becomes challeng-
ing to determine at what point two orthologous genes that have
somewhat divergent sequences are ecologically distinct from one
another.

To illustrate this challenge, we first clustered all the nirS
sequences from the marsh plots at a sequence similarity of 99%
(Figure S1A) and then clustered the same sequences at a sequence
similarity of 76% (Figure S1B). When OTUs were defined at
greater than 99% sequence similarity (Figure S1A) there were
7790 different sequences among all the plots, of which between
473 and 1258 sequences were present as singletons (occurring
only one time in only one plot). By contrast, an OTU definition at
76% sequence similarity (Figure S1B) yielded 27 OTUs, of which
only one was present in all the plots and six were present only one
time. Somewhere in between these two extremes lies a degree of
sequence clustering that reduces the overall sequence complexity
without sacrificing ecological relevance.

In this study the nirS DNA sequences derive from eight ecolog-
ically meaningful units in the form of duplicated salt marsh plots
that have been exposed to specific degrees of nutrient enrichment
for over 40 years. Using the network formed between the marsh
plots and the nirS sequence information, we calculated AIC scores
for each degree of clustering (Figure 2). The lowest AIC score was
achieved at a clustering of 88% sequence similarity (Table S2).
Ninety and eighty-six percent clusters resulted in AIC values that
were >250 larger (Table S2). As a result of the AIC analysis we
use a clustering of 88% sequence similarity to define OTUs for
downstream ecological analysis.

COMMUNITY STRUCTURE OF nirS GENES IN FERTILIZED SALT MARSH
PLOTS
When clustered at 88% sequence similarity, we reduced the num-
ber of different OTUs from 7790 to 638 (Figure S2, Table 1). Each
plot contained between 86 and 265 different OTUs (Table 1), of
which between 16 and 78 were singletons. Although there was no
significant difference between the numbers of different sequences
in the plots that receive higher doses of nitrogen (plots 2, 6, 8,
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and 9) compared to the low dose and control plots (plots 1, 3,
5, and 7; Student’s t-test, p = 0.099), there were more singletons
in the high dose plots relative to the low dose and control plots
(Student’s t-test, p = 0.047).

We used network analysis to further explore how increasing
the supply of nitrogenous fertilizer altered the genetic capacity
for denitrification in the salt marsh plots. We began by examining
the role of generalists vs. specialists. Generalist bacteria are able
to exploit a diverse array of habitats, though with lower fitness in
any given habitat than specialist bacteria (Wilson and Yoshimura,
1994; Kassen and Rainey, 2004). One possible effect of nutrient
enrichment could be to increase the abundance of specialist bac-
teria that are able to thrive under the explicit conditions generated
by the nutrient additions. In this experiment we define general-
ists as those taxa that are present in at least six of the eight marsh
plots (green dots, Figure 3A) and specialists as those taxa that are
endemic to a single plot (red dots, Figure 3A). Only 11 of the 638
OTUs were present in all eight plots and an additional 20 were
found in six or seven of the eight plots.

In contrast to the small number of generalist taxa, when
clustered at 88% sequence similarity there were a considerable
number of OTUs that were endemic to specific marsh plots
(Table 1, Figure 3A). There were between 21 and 140 endemic
OTUs, depending on the plot, and these OTUs accounted for
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FIGURE 2 | AIC scores calculated from the bipartite network of

sequences and plots, for sequences clustered at a range of similarities,
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between 20 and 53% of all OTUs. Remarkably, even when clus-
tered at only 76% sequence similarity (Figure 3B) 15 of the 27
OTUs were present in only one plot and more then half of these
endemic species were found in the XF plots. One XF plot had
more endemics than the other when clustered at both 88 and 76%
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FIGURE 3 | Network graph displaying the connectivity among marsh

plots derived from clustering at 88% sequence similarity (A) and at

76% sequence similarity (B). The different colors indicate the number of
different plots that contain each individual OTU. The black circles denote the
8 marsh plots and the white lettering indicates the treatment level of the
plot. C, control; L, Low dose; H, High dose; and X, extra high dose.

Table 1 | Number of total sequences, total number of unique OTUs, and number of plot endemic OTUs, along with the number of singletons,

the number of generalist sequences, and the number of endemic sequences found in each of the salt marsh plots when clustered at 88%

sequence similarity.

Control Low fert High fert Extra fert

Plot number 3 7 1 5 2 9 6 8

Total number of sequences 8281 8588 8023 9729 4440 12,244 10,693 5231

Number of unique OTUs 106 128 86 141 195 158 265 112

Number of plot endemic OTUs 21 29 23 30 70 45 140 32

Number of singletons 18 16 15 23 51 32 78 27

Number of generalist1 sequences 7974 8157 7660 8901 2857 10420 4310 532

Number of endemic sequences 25 55 58 39 164 81 660 113

1Number of generalists defined as the total number of sequences from OTUs found in at least six of the eight plots.
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sequence similarity (Figure 3), presumably due to differences in
sequencing depth between the two plots (Table 1).

Although the endemic OTUs accounted for a large portion
of the diversity of the nirS gene in the salt marsh plots, they
were numerically less abundant than the more generalist taxa
(Figure 4). Although not all generalist taxa were highly abundant,
the two most abundant OTUs in the marsh were present in all
eight plots. Two other highly abundant taxa were present in six of
the eight plots (Figure 4) though these two OTUs, notably, were
absent from the most highly fertilized plots. By contrast, the taxa
that were present in only one or two plots were much lower in
abundance than the more ubiquitous sequences. The two most
abundant endemic OTUs were present 133 and 110 times in our
sequence database and both were found only in plot six, one of
the XF plots.

The proportion of specialists in the marsh plots increased with
the amount of exogenous nitrogen added (Figure 5). The 31 gen-
eralist OTUs accounted for the vast majority of the sequences
in the control and low dose plots (μ = 94.6% ± 2.1). These
sequences were also present in the high dose plots, but they
accounted for a significantly smaller (Student’s t-test, p = 0.033)
proportion of the high dose sequences (μ = 50.0% ± 32.2). The
highest number of plot endemics were found in the four most
highly fertilized plots (plots 2, 6, 8, and 9).

In addition to containing a higher proportion of specialist
denitrifiers, the frequency of co-occurrence of nirS sequences
was lowest among the most highly fertilized plots (Figure 6).
Hierarchical clustering of the co-occurrence frequencies identi-
fied two clusters, one containing the XF plots, and the other
containing the remaining six plots. Within the larger cluster there
are two sub-clusters, one containing plots 1 and 2 and the other
containing the remaining four plots. Plots one and two are adja-
cent to one another (Figure 1) and are located a small distance
from the remaining plots, therefore this sub-cluster could indi-
cate that dispersal mechanisms are responsible for the patterns of
co-occurrence among the remaining plots. The XF plots, however,
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FIGURE 4 | Abundance of sequences in specialist vs. generalist taxa.

Each value represents the total abundance of an OTU as a function of how
many plots contained that sequence. The most abundant sequences were
typically present in most, if not all, plots.

have the lowest frequency of co-occurrence and do not clus-
ter any where near plot 7, the control plot that is located in
between the two XF plots. Thus, dispersal alone cannot explain
the co-occurrence patterns observed here.

PHYLOGENETIC ANALYSIS OF THE nirS GENE
The 638 OTUs were divided into six major phylogenetic clades.
The first clade (red shading, Figure 7) consisted solely of one
cluster of denitrifiers, but among all the clades it showed the
strongest taxonomic response to fertilization, with 99.9% of the
sequences found in either the HF or XF plots. This clade con-
tained 3142 sequences distributed across 23 OTUs (Table 2). One
OTU (634) accounted for the majority of sequences in this clade
(Table S3) but it had only a 79% sequence similarity to a cul-
tured representative, Pseudomonas stutzeri (Table 3), and a 92%
sequence similarity to an environmental clone from the Hai River
(accession #: JF966924.1). Clade two (Figure 7, orange shad-
ing) contained sequences most closely related to Pseudomonas
aeruginosa, one of the cultures commonly used to study denitrifi-
cation. This entire clade, however, consisted of one cluster of low
abundance taxa (19 sequences from 13 different OTUs) and one
unaffiliated OTU (193), which was a singleton.

The third clade was subdivided into four groups (3A–3D).
Clade 3A (Figure 7, yellow shading) contained one of the most
abundant clusters of nirS denitrifiers. Cluster three (Table 2) con-
tained 11,111 sequences from 109 OTUs. The control plots had
the largest number of sequences in this clade. Three sequences
from clade 3A (OTUs 521, 600, and 605) were present in all
eight plots (Figure 8), and OTU600 was the second most abun-
dant sequence overall. This OTU was an 82% match to the
beta-proteobacteria Brachymonas denitrificans (Table 3), and an
85% match to an environmental clone from the Chesapeake Bay
(accession #: DQ676092.1). Although abundant in plots 5 (LF),
7 (control), and 9 (HF), it was completely absent from the XF
plots. Clade 3B (Figure 7, green shading) consisted of 6 clusters
of nirS denitrifiers and accounted for more than half of all the
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FIGURE 6 | Heat map of the frequency of co-occurrence of bacterial

taxa among the marsh plots. The less frequent the co-occurrence the
warmer the colors. Hierarchical clustering indicates two clusters, one
containing the XF plots and the other containing all six remaining plots.

sequences discovered, yet none of these clusters had close cul-
tured representatives. Within this clade, cluster 8 had many more
sequences in the control and low dose plots than in the highly
fertilized plots, while cluster 9 showed the reverse pattern, with
much greater sequence abundance in the highly fertilized plots
than in the control and low dose plots (Table 2). Cluster 8 con-
tained the most abundant OTU identified in the marsh plots
(OTU580; Figure 8), whose closest cultured representative, the
beta-proteobacteria Azoarcus aromaticum (Table 3), shared only
78% sequence similarity. This OTU shared a 93% sequence iden-
tity to the same Chesapeake Bay environmental clone identified
above. This OTU, however, was found in high abundance only in
plot 1 (LF) and plot 3 (control). Clade 3C (Figure 7, blue shad-
ing) contained one cluster of 42 OTUs, the majority of which were
found in the HF plots (Table 2), as well as some unaffiliated OTUs
that clustered together with Marinobacter and Hahella species.
This clade also had a number of taxa that were present only in
the XF plots. The last clade, 3D (Figure 7, violet shading) con-
tained several smaller clusters as well as many unaffiliated OTUs.
Cluster 17 contained the most sequences (8422) in clade 3D, 99%
of which were found in the LF and HF plots (Table 2).

DISCUSSION
USING AIC SCORES TO ASSESS MODELS FOR SEQUENCE CLUSTERING
Finding a meaningful definition of “species” among bacteria has
been a subject of considerable debate (Cohan, 2002; Stackebrandt
et al., 2002; Gevers et al., 2005; Konstantinidis et al., 2006). Based
on genetic analysis compared with DNA-DNA hybridization tech-
niques, it is generally accepted that different bacterial OTUs are
defined at less than 97% sequence similarity in the 16s rRNA gene
(Gevers et al., 2005), and multiple different algorithms (sum-
marized in Lozupone and Knight, 2008) have been developed
to analyze community structure based on the 16S rRNA derived
phylogenies. These algorithms, and the 97% clustering threshold,
do not implicitly apply to protein coding genes. Different protein
coding genes will accrue mutations at different rates depending
on specific evolutionary pressures so defining a universal degree

of clustering to operationally define bacterial taxonomic units
using protein coding genes is inappropriate. Nonetheless, for any
given protein coding gene, we need useful mechanisms to define
ecologically relevant OTUs that are complementary to methods
already developed for the analysis of 16S rRNA genes.

We modified an approach used in food web ecology wherein
the best model for trophic structure is identified using AIC
(Allesina and Pascual, 2009; Baskerville et al., 2011). Rather than
attempting to delineate trophic structure, however, we applied
the same principle to derive a novel technique to define the
most ecologically relevant OTUs for the study of nirS genes in
the environment. Furthermore, we built on the framework of
Allesina and Pascual to incorporate abundance information using
weighted networks. This technique should be useful for food webs
and other weighted ecological networks as well. By integrating
sequence abundance information within an ecological network of
plots we were able to determine the degree of sequence clustering
that resulted in the best structure of the network (as defined by
the network formulation when no clustering was used) when the
loss of information achieved by clustering was taken into account.
The results indicated that through a range of sequence cluster-
ing (82–97% similarity, Figure 2) very similar AIC scores were
achieved, suggesting that conclusions about community structure
drawn from nirS genes may be robust to the degree of sequence
clustering. The sharp increase in AIC scores when sequences were
clustered at 80% sequence similarity and below suggests that there
is a clear point at which relevant ecological information is lost.
Whether or not the threshold of 88% sequence similarity applies
to other functional genes remains to be tested, but this approach
provides one avenue for beginning to assess the appropriate
degree of sequence clustering for protein coding genes.

THE ROLE OF INCREASED NITROGEN SUPPLY IN STRUCTURING THE
DENITRIFYING BACTERIAL COMMUNITY
The role that exogenous nutrients play in structuring microbial
systems has received considerable attention, but the results of
different studies lead to equivocal conclusions. A recent meta-
analysis indicated that 84% of studies showed some sensitivity
by microbes to nutrient enrichment (Allison and Martiny, 2008).
These results have since been supported by additional research
that showed shifts in soil microbial communities as a result of
increased nutrient supply (Fierer et al., 2012). In salt marshes,
however, microbes appeared to be resistant to long-term nutrient
enrichment in two different marsh systems (Bowen et al., 2009,
2011).

The response of specific functional genes to nutrient enrich-
ment has also led to ambiguous results. Soil microbial commu-
nities have shown strong response by protein coding genes to
nutrient enrichment (Enwall et al., 2005, 2007; Fierer et al., 2012).
By contrast, in salt marsh sediments, analysis of the ammonia
monooxygenase (amoA) gene in both ammonia oxidizing archaea
and bacteria indicated a fertilization induced shift in bacterial
amoA but not in archaeal amoA (Peng et al., 2012). There was
no significant shift in the structure of the nitrogen fixing bac-
terial community as determined by analysis of the nitrogenase
gene in marsh sediments (Piceno and Lovell, 2000; Lovell et al.,
2001), and there was no difference in the community structure
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FIGURE 7 | Phylogenetic tree of the 638 OTUs present in the

salt marsh plots. Where sequences existed that had no close
cultured representatives, the sequences were collapsed into

clusters. Log normalized relative abundances for each cluster or
OTU, plotted as a function of treatment, are displayed on the
right of the figure.

of denitrifying bacteria as a result of nutrient enrichment when
examined using a functional gene microarray (Bowen et al.,
2011).

The in depth examination of the community structure of den-
itrifiers from marsh plots that we report provides evidence that
there are, in fact, changes to the distribution of the nirS functional
gene as a result of fertilization. Our data indicate that fertiliza-
tion increases both the number of singletons found in marsh
plots as well as the number of taxa that are endemic to a specific
plot. Several taxa were present in high abundances only in the

HF or XF plots and may indicate taxa that are able to special-
ize on the specific conditions induced by the fertilization. These
conclusions would suggest that increasing the supply of nutri-
ents may provide additional niche space where specialist bacteria
are able to thrive at the expense of the handful of generalist taxa
that dominate the sequence abundances of the control and low
dose plots. Even when clustered at very low degrees of sequence
similarity (76%; Figure 3B) the highly fertilized plots showed a
large degree of taxonomic endemism, suggesting that the supply
of anthropogenic nitrogen may promote the success of unique
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denitrifiers with highly divergent nirS sequences. The role that
these rare and unique denitrifiers play in the biogeochemistry
of the plots requires further exploration, but their greater abun-
dance in the highly fertilized marsh plots suggests that the overall
genetic capacity for denitrification may be enhanced as a result of
the nutrient additions.

Table 2 | Summary of the phylogenetic distribution of nirS OTUs in 18

clusters represented in six clades on the phylogenetic tree (Figure 8).

Cluster Number Clade C LF HF XF

of OTUs

1 23 1 1 2 974 2435

2 13 2 1 5 10 3

3 109 3A 4527 2758 2666 1160

4 26 3B 28 722 451 1

5 18 3B 2789 1819 2829 525

6 10 3B 0 1 100 6

7 69 3B 988 1566 237 2274

8 80 3B 5661 5432 659 702

9 108 3B 1975 266 2758 5580

10 42 3C 138 354 1393 74

11 8 3D 2 2 12 1

12 5 3D 1 0 11 4

13 13 3D 365 543 290 24

14 11 3D 5 7 15 0

15 21 3D 128 36 90 289

16 7 3D 1 3 8 15

17 16 3D 247 4035 4121 19

18 6 3D 2 3 8 15

Unaffiliated 53 19 201 55 2780

For each cluster information is provided on the total number of OTUs per cluster,

the representative clade, and the number of sequences found in each of the

treatments. Unaffiliated OTUs are those distributed throughout the phylogenetic

tree but that did not cluster with any of the other groups.

Although singeltons could be a result of sequencing errors that
escaped detection by our quality control measures, we have previ-
ously shown that the likelihood of this is rare. Our functional gene
analysis pipeline had an error rate of 0.0–0.18% when used to
analyze pyrosequencing data of known controls (Weisman et al.,
2013), furthermore, this pipeline removes more spurious diver-
sity while retaining a greater number of real nirS sequences than
approaches based solely on the removal of sequences with unex-
pected stop codons (Weisman et al., 2013). Finally, the realization
that the number of singletons is not evenly distributed over sam-
ples from all the plots provides further evidence that this result is
not likely a product of random sequencing error. Additionally, it
is possible that low abundance taxa that we interpret to be spe-
cialists could, in fact, be generalists that were not detected due
to incomplete sampling. Such methodological limitations have
been suggested previously (Barberán et al., 2012) and cannot
be discounted here. However, if this were the case here, then
there should be a correlation between the number of individu-
als sequenced per plot and the number of endemics or singletons

OTU 453

OTU 626

OTU 627

OTU 628

OTU 629

OTU 605

OTU 600

OTU 580

OTU 533

OTU 531

OTU 521

plot endemics

plot: 3 7 1 25 6 89

Control Low Fert High Fert eXtra Fert

FIGURE 8 | Stacked bar chart identifying the generalist OTUs that were

found in all 8 plots along with the relative proportion of sequences

that are endemic to each of the plots.

Table 3 | Closest matches of OTUs present more than 1000 times (in descending order from the most abundant) to both a cultured

representative and to an environmental clone.

Plot information Closest cultured representative (% match) Closest environmental clone (% match)

OTU580 All 8 plots Azoarcus aromaticum (78) Chesapeake Bay (93)

OTU600 All 8 plots Brachymonas denitrificans (82) Chesapeake Bay (85)

OTU622 Not in XF plots Cupriavidus pauculus (76) Pearl River Estuary (85)

OTU638 Not in XF plots Cupriavidus pauculus (81) Bohai Gulf (83)

OTU626 All 8 plots Halomonas denitrificans (73) Gulf of Mexico Shelf (80)

OTU634 Only in HF and XF Pseudomonas stutzeri (79) Hai River (92)

OTU629 All 8 plots Halomonas nitroreducens (76) Hai River (91)

OTU628 All 8 plots Pseudomonas aeruginosa (79) Bahia del Tobari (89)

OTU625 Abundant in 6 (XF) Halomonas koreensis (80) Wetland NE Spain (84)

OTU589 Abundant in 6 (XF) Dechlorosoma suillum (86) California Aquifer (84)

OTU623 Abundant in 6 (XF) Halomonas denitrificans (75) Chesapeake Bay (81)

OTU627 All 8 plots Polymorphum gilvum (79) Gulf of Mexico Shelf (79)

Percent values indicate the % match to the associated GenBank sequence. All environmental clones were from sediments of the system listed, except for OTU

589, which was identified in a coastal aquifer.
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identified in the plot (Table 1). No such correlation exists among
these samples (R2 < 0.1). Furthermore, as we change the degree
of clustering used to define OTUs from 88 to 76% (Figure 3,
Table S1), we still see a greater number of specialist taxa in the
highly fertilized plots. If this were solely a function of incomplete
sequencing the presence of specialist taxa should be randomly
distributed across the plots. Taken together, these points provide
some confidence that this is a biologically relevant distribution,
rather than an artifact of incomplete sampling.

Although the data analysis pipeline we employed (Weisman
et al., 2013) removes spurious sequences at rates consistent with
those designed to remove sequencing artifacts from 16S rRNA
data (Huse et al., 2010), there are additional sources of bias
that suggest we are underestimating the overall genetic capac-
ity for denitrification. First, our study only targets the nirS
gene-containing denitrifiers. Denitrifiers that contain the func-
tionally equivalent gene nirK have been documented in marsh
sediments (Beazley et al., 2012) and could be contributing to
denitrification rates in these sediments, but their contribution
was not assessed in this study. Previous work, however, sug-
gests that in marine systems the contribution of nirK-based
denitrifiers is small, though perhaps underreported (Jones and
Hallin, 2010). Second, additional bias could result from differen-
tial amplification of sequences in the multi-template PCR (Polz
and Cavanaugh, 1998), an effect that could also be increased by
the nested nature of the PCR (Pinto and Raskin, 2012). These
types of biases are typically manifested in pyrosequencing data by
altering metrics based on either the rank abundance of taxa or on
richness estimators derived from the number of low abundance
taxa (Pinto and Raskin, 2012). The network analyses used in this
work, however, avoid the biases associated with these metrics,
which is one of the major strengths of network-based approaches.
Third, we may be underestimating the total genetic capacity for
denitrification because any nirS containing microbes whose DNA
sequences are sufficiently divergent in the priming region that
they cannot be amplified by these primers will not be detected.

The data presented here, suggesting that fertilization does alter
the structure of the microbial community, perhaps by enhanc-
ing the niche space for bacterial specialists, contradicts early
work of ours that indicated very little change in the microbial
community as a result of fertilization (Bowen et al., 2011). In
that analysis the overall bacterial community composition was
assessed via pyrosequencing of the 16S rRNA gene, similar to
the methods used in this study to analyze the nirS gene. In our
previous nirS work, however, we used an early generation func-
tional gene microarray to assess how denitrifiers responded to
increased nitrogen supply. This early generation microarray con-
tained 39 nirS oligonucleotide probes derived from sequences
that existed in public databases at the time of array development
(Bulow et al., 2008). A comparison between the sequence data
derived from this study and the oligonucleotides present on the
array indicate, however, that the nirS sequences that we identi-
fied in the marsh are considerably different from those present in
public databases (Table 3) and the majority of these sequences,
even the most abundant ones, would have escaped detection by
the microarray. We conclude that pyrosequencing of functional
gene amplicons provides a much more nuanced examination of

microbial community structure than is possible with microarrays
unless the underlying genetic structure of the system in which the
microarray is being employed is incorporated into the microarray
probe set.

Many pyrosequencing papers have demonstrated that micro-
bial communities consist of a few very abundant taxa and a large
number of taxa that are present in low abundance (Sogin et al.,
2006; Galand et al., 2009; Brazelton et al., 2010). It appears that,
at least for taxa containing the nirS gene, this pattern is consistent.
The role that these low abundance nirS OTUs play in the ecol-
ogy of the salt marsh plots requires further investigation, however
recent examinations of the 16S rRNA:rDNA ratios in coastal
ocean water indicate that the active portion of the microbial com-
munity is often overrepresented among the less abundant taxa
(Campbell et al., 2011; Campbell and Kirchman, 2012). Further
assessment of the active portion of the denitrifying community
in the marsh plots is needed to ascertain what role these rare
denitrifiers play in the biogeochemistry of the salt marsh.

Salt marshes exist at a critical interface between land and sea
and they play an important role in protecting coastal waters from
land-derived nutrient pollution (Valiela and Cole, 2002). Marsh
sediments support some of the highest rates of denitrification
measured (Hopkinson and Giblin, 2008) and rates of denitrifi-
cation appear to be enhanced by increased nutrient supply both
in these marsh plots (Hamersley and Howes, 2005) and in other
studies (Koop-Jakobsen and Giblin, 2010; Vieillard and Fulweiler,
2012). Here, we present the first evidence that increasing the sup-
ply of nutrients to marsh sediments also changes the structure of
the denitrifying community by increasing the proportion of bac-
terial specialists and decreasing the abundance of generalist taxa
in plots receiving increased nutrients.

Our data also indicated that the denitrifiers that are present
in the marsh are not at all similar to those that currently exist
in culture, underscoring the importance of continuing to iso-
late novel bacteria from a wide variety of environments so that
explicit metabolic pathways can be investigated. Overall the highly
abundant taxa were only distantly related (μ = 76.7 ± 3.5%
sequence similarity) to any cultured representatives (Table 3).
These sequences were more closely related to sequences derived
from environmental clones (μ = 85.5 ± 4.7% sequence similar-
ity). In most cases these clones were derived from coastal and
estuarine sediments throughout the world (Table 3). Future work
is needed to (1) determine the metabolic pathways employed by
these denitrifiers, (2) establish what proportion of the denitrifiers
are active, and most importantly (3) link the active portion of
the community with measured rates of denitrification to further
elucidate the connection between marsh microbial diversity and
geochemical function.
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