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Human parainfluenza viruses (HPIVs) are the etiologic agents of lower respiratory infections
and pneumonia in infants, young children and immunocompromised hosts.The overarching
goal for the prevention of HPIV infection is the development of an effective vaccine against
HPIVs. In the present study, we investigated the effectiveness of oligomannose-coated
liposomes (OMLs) as an antigen-delivery system in combination with a synthetic double-
stranded RNA analog for the induction of mucosal and systematic immunity against HPIV3.
Full-length hemagglutinin-neuraminidase (HN) protein was synthesized using the wheat
germ cell-free protein production system and then encapsulated into OML to serve as
the antigen. Intranasal administration of the HN-filling OML (OML-HN) with the synthetic
double-stranded RNA adjuvant, polyriboinosinic-polyribocytidylic acid [poly(I:C)] generated
significant viral-specific systemic and mucosal immune responses as evidenced by the
prominent induction of serum IgG and nasal wash IgA, respectively. On the other hand, no
significant immune responses were observed in mice immunized with OML-HN without
the adjuvant. Furthermore, serum from mice immunized with OML-HN plus poly(I:C)
significantly suppressed viral infection in cell culture model. Our results provide the first
evidence that intranasal co-administration of OML-encapsulated HN with the poly(I:C)
adjuvant augments the viral-specific immunity against HPIV3.
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INTRODUCTION
Human parainfluenza viruses (HPIVs) belong to the Paramyx-
oviridae family and are one of the major causes of acute res-
piratory infections (ARIs) and asthma in infants and young
children (<5 years old). HPIVs were classified into four serotypes
including HPIV1-4 (Henrickson, 2003; Mizuta et al., 2011). In
particular, human parainfluenza virus type 3 (HPIV3) is an
important infectious agent, second only to respiratory syncytial
virus (RSV), that causes bronchiolitis and pneumonia in infants
(Glezen et al., 1984; Counihan et al., 2001; Belshe et al., 2004;
Schmidt, 2011). Therefore, the development of a practical vac-
cine that can prohibit HPIV3 infection in infants is urgently
needed.

Currently, there is no prophylactic human vaccine against
HPIV3 infection. Several previous studies employed attenuated
viruses or recombinant viruses for vaccination by intranasal
administration (Haller et al., 2000; Karron et al., 2011; Schmidt
et al., 2011; Mason et al., 2013). The HPIV3 cp45 is a practi-
cal nasal vaccine that is derived from the JS wild-type strain of
HPIV3 through 45 passages in African green monkey cells at
a low temperature. This vaccine has been evaluated in clinical
human trials and is known to induce the hemagglutination-
inhibiting (HAI) antibody in seronegative children (Skiadopoulos
et al., 1999; Karron et al., 2003; Belshe et al., 2004). The rB/HPIV3b
vaccine is a cDNA-derived chimeric HPIV3 in which the genomic
cDNA is partially recombined with bovine PIV3 (BPIV3);
the hemagglutinin-neuraminidase (HN) and F genes from

HPIV3 fused with BPIV3 whole genome (Schmidt et al., 2001;
Karron et al., 2012). The rB/HPIV3 vaccine was shown to induce
significantly higher titers of HAI antibodies against HPIV3 in
seronegative children. A major limitation of these vaccines is
their potential to cause actual infection diseases in children or
immunocompromised hosts because they are live attenuated vac-
cines. Therefore, it is necessary to develop a safer HPIV3 vaccine
with lower risks for infection that will be useful for infants and
young children in clinics. In this regard, component vaccines
are desirable because they use non-infectious viral subunit pro-
teins as antigens. A previous report demonstrated the efficacy of
subunit vaccines that target the HPIV3 HN and F proteins in an
animal model (Ray et al., 1988). Other reports also demonstrated
the induction of protective antibodies that prohibit HPIV3 infec-
tion in response to subunit vaccines that target HPIV3 antigens
(Morein et al., 1983; Ray et al., 1985; Ambrose et al., 1991; Brideau
et al., 1993). A caveat of subunit-based vaccination strategies is
their requirement for large amounts of antigens, thus rendering
them costly to produce. Therefore, it is important to develop an
effective subunit vaccine that utilizes lower quantities of antigen.

To circumvent the aforementioned problems, oligomannose-
coated liposome (OML) was used as a natural and non-toxic
antigen-delivery system. OML efficiently targets proteins to anti-
gen presenting cells (APCs), such as macrophages or dendritic cells
(Shimizu et al., 2007; Nishimura et al., 2013). Furthermore, pre-
vious reports showed that antigens incorporated into OML were
efficiently delivered to APCs by intranasal administration (de Haan
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et al., 1995; Ishii and Kojima, 2010; Giddam et al., 2012). The effect
of OML was shown to be relatively ineffective at inducing humoral
immunity, while it preferentially activated cell-mediated immu-
nity via cytotoxic T lymphocytes (CTLs). Therefore, for optimal
induction of both humoral and mucosal immunity it is neces-
sary to use vaccination strategies that combine OML with other
adjuvant systems.

Herein, we sought to utilize OML in combination with an
adjuvant double-stranded RNA polyinosinic-polycytidylic acid
[Poly(I:C)] for the induction of effective humoral and mucosal
immunity against HPIV3. The overarching goal was to establish
a vaccination strategy that required a small amount of antigen
and a few doses. Poly(I:C) is an effective adjuvant for antibody
and multi-functional CD4+ T cell responses against viral infec-
tion. Poly(I:C) was shown to be an effective mucosal adjuvant
for the development of antigen-specific immunity even when
hosts were immunized with a relatively small quantity of anti-
gen (Ichinohe et al., 2005; Hasegawa et al., 2009). In addition, we
also took advantage of the wheat germ cell-free protein production
system to synthesize our antigen, full-length HPIV3-HN protein
(Takai et al., 2010). Our results highlight the utility of combin-
ing sophisticated systems in the development of a novel vaccine
against HPIV3.

MATERIALS AND METHODS
CONSTRUCTION OF WHEAT CELL-FREE EXPRESSION VECTOR
HPIV3 (C243) cDNA was kindly provided by Dr. Tsukakoshi. The
HN fragment was amplified by PCR using the primers BamHI-HN
F (5′-GAGAGGATCCCATGGAATACTGGAAGCAT) and NotI-
HN R (5′-GAGAGCGGCCGCTTAACTGCAGCTTTTTGGA).
The amplified fragment was digested with BamHI and NotI and
cloned into either pEU-His or pEU-GST vectors that were pre-
viously digested with the same enzymes. GST-tagged HPIV3-HN
(GST-HN) construct was mutated using the reagents of a PrimeS-
TAR Mutagenesis Basal Kit (TakaraBio, Otsu, Japan) according to
the manufacturer’s instructions.

CELL-FREE PROTEIN SYNTHESIS AND PURIFICATION
In vitro transcription and cell-free protein synthesis were per-
formed as described (Takai et al., 2010). The bilayer translation
method was used to synthesize His-tagged HPIV3-HN (His-HN)
protein using wheat germ extract that was optimized for Ni-affinity
purification (WEPRO 7240H; Cellfree Sciences, Yokohama, Japan)
and a robotic synthesizer (Protemist XE; Cellfree Sciences) accord-
ing to the manufacturer’s instructions. The cell-free translation
reaction (15 ml) was separated into soluble and insoluble frac-
tions by centrifuged at 15000 rpm for 15 min. The insoluble
fraction was lysed using 8M Urea at room temperature for 6 h
and then mixed with Ni-sepharose High Permormance beads (GE
Helthcare, Hino, Japan) in the presence of 20 mM imidazole.
The beads were washed three times with washing buffer (20 mM
Tris–HCl, pH 7.5, 500 mM NaCl) containing 40 mM imidazole.
The His-HN protein was then eluted using washing buffer con-
taining 8M Urea, 500 mM imidazole. Purified His-HN proteins
were concentrated approximately 10–20-fold using Amicon Ultra
Centrifugal Filters (Merck Millipore, Billerica, MA, USA). Full-
length GST-HN protein and GST-HN deletion mutant proteins

synthesized using wheat germ extract optimized for GST-affinity
purification (WEPRO 1240G; Cellfree Science) according to the
manufacturer’s instructions. Quantification of synthesized pro-
teins was performed by densitometric scanning of the Coomassie
Brilliant Blue® (CBB)-stained bands.

PREPARATION OF LIPOSOMES
Liposomes were prepared as described previously (Giddam et al.,
2012; Nishimura et al., 2013). Briefly, a chloroform:methanol (2:1,
v/v) solution containing 1.5 μmol of DPPC, 1.5 μmol of choles-
terol and varying amounts of Man3-DPPE (0.15–0.0015 μmol)
was added to a flask and evaporated to prepare a lipid film. PBS
containing 1 or 0.5 mg/ml of full-length HPIV3-HN protein was
added to the dried lipid film and multi-lamellar vesicles were pre-
pared by intense vortex dispersion. The vesicles were extruded 10
times through a 1 μm pore polycarbonate membrane (Nucleo-
pore, Pleasanton, CA, USA). The amount of entrapped protein
was measured using a Modified Lowry Protein Assay Kit (Pierce,
Rockford, IL, USA) in the presence of 0.3% (w/v) sodium dodecyl
sulfate using HN as the standard. The particle size of the lipo-
somes was determined using a dynamic light scattering particle
size analyzer (BioMedCore Inc., Yokohama, Japan).

IMMUNIZATION OF MICE
Female BALB/c mice (Japan SLC Inc., Hamamatsu, Japan), age
6–8 weeks at the time of immunization, were used in all of the
experiments. All animal experiments were carried out in accor-
dance with the Guides for Animal Experiments Performed at
Yokohama City University (YCU) and approved by the Interna-
tional Animal Care and Use Committee of YCU. Three to six mice
for each experimental group were anesthetized with isoflurane
prior to being immunized. For the primary immunization, 13 μl
of single-shot mixtures were prepared as containing OML-HN
(0.1 or 1.0 μg) and/or poly(I:C) (10 μg), and administered 6.5 μl
of mixtures into each nostril. Three weeks later, the secondary
immunization was administered in the same manner. Two weeks
after the secondary immunization, as tertiary immunization, 16 μl
single-shot mixtures were prepared as containing OML-HN (0.2
or 2.0 μg) and/or Poly(I:C) (10 μg), and administered 8.0 μl of
mixtures into each nostril.

ENZYME-LINKED IMMUNOSORBENT ASSAY
Serum was collected on days 7 and 14 after the secondary
immunization and on days 7, 14, 21, and 28 after the ter-
tiary immunization. On day 28 after the third immunization,
all of the mice were sacrificed and nasal wash fluid was col-
lected by washing the nasal cavity of the excised head with
1 ml of PBS(-) containing 0.1% BSA. The levels of IgG and
IgA antibodies against HPIV3-HN in the serum and nasal wash
fluid were determined by enzyme-linked immunosorbent assay
(ELISA) as described previously. Briefly, ELISA was conducted
sequentially from the solid phase (Anti-GST coated 96-well plate;
Thermo, Waltham, USA) with a ladder of reagents consisting of
the following: (1) GST-HN protein and GST protein as a con-
trol; (2) serum or nasal wash fluid; (3) either anti-mouse IgG
antibody-conjugated HRP (1:10000, Thermo) or anti-mouse IgA
antibody-conjugated HRP (1:10000, BETHYL, Montgomery, TX,
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USA); (4) TMB substrate buffer (Thermo); and (5) 2M sulfu-
ric acid. The chromogen produced was measured by determining
the absorbance at 450 nm with an ELISA reader. The relative
levels of IgG and IgA antibodies against HN were determined rel-
ative values calculated as follows; Relative values = mean value in
immunized vaccine group/mean value in immunized OML-empty
group. Each values were normalized with the optic values to GST
protein.

IMMUNOBLOTTING
Using standard immunoblotting methods, the presence of HN-
specific IgG was detected using pooled serum from each group
of mice and incubated with anti-mouse IgG HRP-conjugated sec-
ondary Ab (Thrmo) at a dilution of 1:10000 in TBST. Immobilon
was used for detection (Merck Millipore).

QUANTITATIVE REAL-TIME PCR
We performed an infection inhibitor assay by mouse serum
using immortalized MRC5 cells (pNifty cells). pNifty cells were
seeded in 24-well plates at a concentration of 2.5 × 105 cells
per well, and after 12 h the cells were infected with pre-
incubated HPIV3 virus (107TCID50) with or without 5 μl
mouse serum in 200 μl DMEM supplemented with 5% fetal
bovine serum (FBS) and 1% penicillin and streptomycin (PS).
At 4 h post-infection, the cells were washed and replaced in
200 μl of DMEM containing 10% FBS and 1% PS. At 48 h
after medium change, the cells were washed with PBS and
total RNA was extracted using the RNeasy Mini Kit (QIAGEN,
Hilden, Germany) according to the manufacturer’s protocol.
cDNA was synthesized using a cDNA synthesis kit (Toyobo,
Osaka, Japan) and subjected to RT-PCR analysis with the
SYBR Premix Ex gent Kit TaqII (Takara Bio) using an Applied
Biosystems 7300 real-time PCR System. The primer sets used
were as follows: HPIV3, 5′-CTCGAGGTTGTCAGGATATAG-
3′ and 5′-CTTTGGGAGTTGAACACAGTT-3′; mGAPDH, 5′-
CCATGGAGAAGGCTGGGG-3′ and 5′-CAAAGTTGTCATGGAT
GACC-3′.

RESULTS
GENERATION OF OML VACCINE AGAINST HPIV3-HN
To produce the full-length HPIV3-HN antigen, we subcloned
full-length HN cDNA into two different cell-free expression
vectors, pEU-His and pEU-GST for the expression of N-
terminally His-tagged or GST-tagged fusion proteins, respectively
(Figure 1A). We found that both His-HN and GST-HN proteins
were efficiently synthesized using the wheat germ cell-free system
(Figures 1B,C). His-HN proteins precipitated into the insoluble
fraction (Figure 1B) were purified using Ni-sepharose beads in
the presence of 8M Urea. GST-HN proteins were purified using
glutathione sepharose beads in a regular buffer (Figure 1C).

After the large scale preparation of His-HN, the protein was
incorporated into OML (Figure 1D). The particle diameter of HN-
filling OML (OML-HN) and empty OML were 882 and 519 nm,
respectively. The amount of carrier HN protein was approxi-
mately 32 mg per 1 mg cholesterol (Figure 1E) and the molar
ratio of enclosed-OML to non-enclosed OML was found to be
approximately 7:3 (data not shown).

IMMUNIZATION OF MICE WITH OML-HN
We investigated whether intranasal administration of OML-
HN could induce a humoral immune response against the
HN. Figure 2A depicts the time course for the immuniza-
tions and blood collection from the immunized mice. Mice
were immunized intranasally with OML-HN (1 or 0.1 μg)
with or without Poly(I:C), OML with or without Poly(I:C),
Poly(I:C) only, or PBS. One week after the third immuniza-
tion, HN-specific serum IgG was detected in mice immunized
with OML-HN (1 μg) plus Poly(I:C). The serum IgG lev-
els were increased between days 7 and 14 and reached the
peak at 21 days after the final immunization. Mice immunized
with the lower amount of OML-HN (0.1 μg) plus Poly(I:C)
also produced HN-specific serum IgG at 28 days after the last
immunization (Figure 2B). In contrast, there was no signif-
icant HN-specific serum IgG in mice immunized with OML-
HN without Poly(I:C) or the other negative control groups
(Figure 2B).

We next measured the levels of serum IgG and nasal wash
IgA in each individual mouse by ELISA and immunoblotting
(Figures 3A–C). Mice immunized with OML-HN (1 μg) plus
Poly(I:C) exhibited prominent induction of HN-specific IgG
(Figures 3A,C). HN-specific IgA in nasal wash fluid was most
prominently induced in mice with OML-HN (1 μg) plus Poly(I:C)
compared to other groups (Figure 3B). Interestingly, the induction
of the HN-specific IgA was higher in mice that were immu-
nized with the lower amount of antigens, OML-HN (0.1 μg) plus
Poly(I:C) (Figure 3B).

EPITOPE MAPPING OF INDUCED ANTIBODIES
We next determined the region of HN that was recognized by
the HN-specific serum IgG produced by the mice that were
immunized with OML-HN (1 μg) plus Poly(I:C). Three domain
mutants of HPIV3-HN, the N-terminal region (1-190), the middle
region (168-408) and C-terminal region (400-572) were syn-
thesized using the wheat germ cell-free system (Figure 4A left)
and protein production was confirmed by SDS-PAGE (Figure 4A
right). Based on ELISA analysis, all of the serum samples contained
HN-specific antibodies that had high reactivity to the N-terminal
region (Figure 4B).

EFFECT OF OML-HN VACCINE ON HPIV3 INFECTION IN VITRO
We asked whether sera from the immunized mice could inhibit
the HPIV3 infection of fibroblast cells. Infectious HPIV3 virions
were pre-incubated with mouse serum harvested from three mice
that were immunized with OML-HN plus Poly(I:C) and then used
to infect MRC5 cells. Cellular HPIV3 mRNA was measured using
quantitative reverse transcription PCR (qRT-PCR). The levels of
HPIV3 mRNA were significantly reduced in cells pre-incubated
with the immunized mouse serum compared to control serum
that immunized with OML-empty (Figure 4C). These results indi-
cate that the immunization with OML-HN plus Poly(I:C) induced
serum antibodies that protect HPIV3 infection.

DISCUSSION
Herein, we developed a novel subunit vaccine against HPIV3-HN
using OML and a mucosal adjuvant Poly(I:C). Consequently we
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FIGURE 1 | Production of full-length HPIV3-HN and its encapsulation

into OML. (A) Schematic representation of the expression vector for
the wheat germ cell-free system. Full-length HN cDNA was subcloned
into either pEU-His or pEU-GST vectors. (B) Expression and solubility of
His-HN proteins that were synthesized using the wheat germ cell-free
system. The translation reaction mixture (T) was subjected to centrifu-
gation followed by the separation of the soluble supernatant (S) and
insoluble precipitate (P) fractions. These samples were subjected to
SDS-PAGE and visualized with Coomassie Brilliant Blue (CBB) staining.
The single asterisk indicates the band of His-HN. (C) Purification of
recombinant GST-tagged HPIV3-HN proteins that were synthesized using

the wheat germ cell-free system. The translation mixture (T) was
subjected to the separation into supernatant (S) and precipitate (P)
fractions by centrifugation. GST-HN proteins were purified using
glutathione sepharose bead and then resolved by SDS-PAGE and CBB
staining. The single asterisk indicates the band of GST-HN. FT, Flow
through fraction; E, elute fraction. (D) Schematic of the production of
OML-encapsulated His-HN. The single asterisk indicates the band of
His-HN. (E) The amount of encapsulated HN was quantitated by
SDS-PAGE (right panel). The diameter of OML-HN or control OML were
measured by dynamic light scattering particle size analyzer (left panel). The
arrow indicates the band of His-HN.

successfully induced antigen-specific immunoglobulin G and A
with the immunization of lower quantities of HN antigen via the
nasal route. Furthermore, the immunized mouse serum exhibited
the ability to suppress the virus infection in cell culture model.
These results indicate that our newly developed OML vaccine
could offer a powerful means to protect HPIV3 infection.

In our current study, we used the wheat germ cell-free pro-
tein production system to synthesize full-length HN protein as

an antigen (Takai et al., 2010). In comparison to cell-mediated
procedures such as Escherichia coli and baculovirus systems, the
wheat germ cell-free system is beneficial for the rapid and effi-
cient preparation of high-quality proteins (Endo and Sawasaki,
2006). Moreover, this cell-free system is suitable for the genera-
tion of toxic viral proteins for immunization and beneficial for the
purification of naturally folded proteins, as well as scalability. This
system, however, may not be cost-effective for preparing large
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FIGURE 2 | Serum antibody responses in mice immunized with

OML-HPIV3-HN. (A) Balb/c mice were immunized with the indicated
antigens and/or adjuvant on days 0, 21, 35 as described in the Materials and
Methods. Serum was collected from each mouse on days 7, 14, 21, and 28

after the third immunization. The bottom panel summarizes the time course
for the immunizations. (B) HN-specific IgG in pooled serum from each group
was measured by ELISA. Data represents the mean ± SE. (t test:
**P < 0.01, *P < 0.05)

amounts of viral antigens for vaccine development. Therefore,
efforts were made to reduce the amount of antigen needed vaccina-
tion. Herein, we utilized a OML and Poly(I:C) vaccination strategy
in an attempt to reduce the amount of antigen required. OML is a
lipid vesicle that has mannose on its surface, which aids in efficient
targeting to APCs (Shimizu et al., 2007; Nishimura et al., 2013).
In a previous report, antigenic proteins incorporated into OML
were efficiently delivered to APCs via intranasal administration
(Ishii and Kojima, 2010). In that report, intranasal administra-
tion of 5 μg ovalbumin (OVA) incorporated into OML four times
effectively induced immune responses in mice (Ishii and Kojima,
2010). Poly(I:C) is a synthetic double-stranded RNA (dsRNA)
molecule that induces effective mucosal immune responses by
stimulating Toll-like receptor 3 (TLR3) as a molecular mimic
of dsRNA, which is a byproduct of viral replication (Ichinohe

et al., 2005; Hasegawa et al., 2009). The efficacy of nasal vaccines
made of subunit proteins in the combination with mucosal adju-
vants was demonstrated for influenza virus and RSV (Ichinohe
et al., 2005; Hasegawa et al., 2009; Ainai et al., 2010; Kamphuis
et al., 2013). We utilized a mucosal adjuvant Poly(I:C) to induce
HN-specific antibodies in serum and nasal wash fluid through
intranasal immunization with OML-HN. Using our vaccination
strategy, we were able to decrease the amount of antigen required
to 20% relative to previous reports (Mader et al., 2000; Ishii and
Kojima, 2010).

The mucosa of respiratory tracts is the site of defense against
virus infection since respiratory viruses attack and infect the res-
piratory mucosal tissues and cells (Tamura and Kurata, 2004).
Mucosa is generally protected by mucin and defensin produced
from goblet cells and Paneth cells. The TLR family members,
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FIGURE 3 | Measurement of HPIV3-HN-specific serum IgG and nasal

wash IgA. (A) The levels of HN-specific IgG in the serum of each immunized
mouse on day 21 after the third immunization were determined by ELISA.
(B) The levels of HN-specific IgA in nasal wash fluid on day 28 after the third

immunization were determined by ELISA. Each bar represents the mean ± SE
(t test: *P < 0.05). (C) Immunoblot analysis of recombinant HN proteins in
mouse sera. Recombinant GST or GST-HN proteins were subjected to
SDS-PAGE followed by the immunoblotting with the indicated serum.

TLR3, TLR7, TLR8, and TLR9 can recognize viral nucleotides and
induces type I interferon (IFN-I) production if viruses intrude
into tissues beyond the barrier. IFN-I activates the defense mech-
anism against virus by promoting the maturation of DCs and the
induction of NK cells (Takeda et al., 2003; Akira et al., 2006). On
the other hand, it is known that Microfold cells (M cells) promotes
adherence and transport of antigens to APCs (Sato and Kiyono,
2012). M cells reside in the follicle-associated epithelium of Peyer’s
patches in the intestinal tract or nasal lymphoid tissue (NALT) of
rodents in the upper respiratory tract, and plays a pivotal role
in the induction of antigen-specific immunity (Nochi and Kiy-
ono, 2006). The APCs promote adaptive immune responses by
presenting antigens to naïve B cells and activate it to differentiate
into antigen specific B cells. In the mucosa, secretory IgA is trans-
ported to mucosal surface by polymeric Ig receptor (pIgR) and
the secreted IgA plays an important role in the protection of viral
infection in the respiratory tract (Mostov and Deitcher, 1986). It
is known that the intranasal immunization can activate mucosal
immunity thereby enhancing the induction of mucosal IgA in
addition to the generation of systemic IgG against viral antigen.
Our current study employed OML as an effective tool to deliver the
antigen to APCs and M cells in respiratory mucosa. A recent report
demonstrated that OML-mediated intranasal immunization can

efficiently induce Th2 cytokines such as IL-5 and IL-6 that even-
tually help produce secretory IgA in mucosal system in mouse
model (Ishii and Kojima, 2010). We further combined OML with
a mucosal adjuvant Poly(I:C) to facilitate the specific mucosal
immunity against HPIV3-HN. Poly(I:C) has been shown to be
an effective mucosal adjuvant stimulating TLR3 as a molecular
mimic. A previous report indicated that a nasal influenza virus vac-
cine combined with Poly(I:C) synergistically induced IFN-1 and
Th2 cytokine leading to an effective humoral immunity including
secretory IgA in mucosa (Ichinohe et al., 2005). Our current study
also demonstrated that the combinatory use of nasal vaccine with
Poly(I:C) has a profound effect in inducing mucosal immunity
against viral antigen.

Our newly developed OML-HN vaccine has several advantages
as compared with previously developed vaccine methods including
live attenuated vaccines. Although there is no practical prophy-
lactic vaccine against HPIV3 infection, several previous studies
have indicated that attenuated vaccines created by reducing the
virulence of HPIV3 can indeed effectively induce the mucosal
immunity when treated by intranasal administration (Karron
et al., 2003). However, a major problem of these vaccines is their
potential to cause a live infection in infants and immunocompro-
mised hosts. Furthermore, there is a small risk of reversion to
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FIGURE 4 | Anti-infectious activity of mouse serum. (A,B) Epitope
mapping of antibodies induced in the immunized mouse. We selected
arbitrary three representative sera from mice immunized with OML-HN (1 μg)
plus Poly(I:C) that exhibited the highest HN-specific IgG induction (#1–#3). The
full-length and three deletion mutants of GST-HN were produced using the
wheat germ cell-free system. These purified proteins were separated by
SDS-PAGE and visualized using CBB staining (A). Using the recombinant HN

proteins, the target region of the three sera (#1–#3) was analyzed by ELISA
(B). (C) Schematic representation of the experimental procedure of
infection-inhibitory assay (left panel). Immunized mouse sera (#1–#3) were
tested for this assay. An OML-empty-treated mouse serum was used as a
control. The anti-infection ability was measured using quantitative real-time
PCR for HPIV3-HN mRNA. Each bar represents the mean ± SE of two
independent experiments as normalized by control serum (t test: *P < 0.05).

virulence by genetic mutations that results in the onset of severe
disease. Therefore, it is desirable to develop a safer HPIV3 vac-
cine with lower risks of infection. On the other hand, intranasal
subunit vaccines against HPIV3 have been demonstrated to be
effective in animal models without the risk of viral replication and
live infection. According to a report by Ray et al., the intranasal

administration of HN and F proteins extracted from virions could
induce significant anti-viral immunity in hamsters (Ray et al.,
1988). However a drawback of subunit vaccines is their require-
ments for large amounts of antigens and concomitant high cost.
Therefore, it is important to develop a cost-effective subunit vac-
cine that dispenses with substantial quantity of antigens. In order
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to overcome this problem, we used OML and Poly (I:C) aiming
for efficient vaccine delivery and immune response, respectively.
Indeed, our current study demonstrated that a combination of
OML-HN with poly(I:C) induced antigen-specific IgA and IgG by
three times more than the immunization without poly(I:C). The
safety in the use of either OML or poly(I:C) has been reported
in previous studies. For OML-based vaccine, Fukasawa et al. have
reported that OML has indeed no obvious toxicity and immuno-
genicity by itself (Fukasawa et al., 1998). Furthermore, Poly(I:C)
has shown to be non-toxic as compared with conventional vaccine
adjuvant such as cholera toxin subunit B (Ichinohe et al., 2005).
However, further careful analysis should be necessary to validate
the effectiveness and feasibility of our newly-developed vaccine
strategy using virus infection models with multiple genotypes of
HPIV3.

In our current study, we demonstrated that the OML-based
vaccine incorporated with full-length HN protein induced IgG
that targets the N-terminal region of HN protein. The N-terminal
region of HN contains the stalk region while the C-terminal region
contains the globular head domain. The stalk region of HN is
known to play a crucial role in virion-host cell fusion via an
interaction with F protein while the globular head binds sialic
acid and neuraminidase (Moscona, 2005; Porotto et al., 2012).
Although effective antigenic epitopes for HPIV vaccine remain
elusive (Henrickson, 2003), a monoclonal antibody targeting the
stalk region of HPIV2-HN has been shown to have a profound
inhibitory activity against viral infection (Yuasa et al., 1995). Based
on the observation, it seems that the antibodies induced by our
vaccine system could also target the stalk region since they effec-
tively blocked the viral infection in cell culture model. Further
careful analysis will be required for the mapping of the epitope
affecting virus infection in our current model.

In this study, we did not investigate other routes of antigen
administration besides the intranasal route. However, previous
studies have indicated that non-nasal immunization of HPIV3
components failed to prohibit the infection of HPIV3 in a cot-
ton rat model. Indeed, the intramuscular immunization with HN
and F recombinant proteins could not protect virus infection in
upper respiratory tract although it had some effects on the protec-
tion of pneumonia and lower respiratory tract infection (Ambrose
et al., 1991). It is generally believed that intranasal immunization
has a great benefit for protecting virus infection itself by inducing
antigen-specific secretory IgA in respiratory mucosa (Hirabayashi
et al., 1990; Durrer et al., 2003). Our current study also confirmed
this advantage of nasal vaccination where the OML-based nasal
vaccine provides high performance for the induction of antigen-
specific secretory IgA in nasal wash fluids. Therefore, intranasal
administration of OML-based vaccine with poly(I:C) adjuvant
could be an effective way of vaccination against respiratory viruses
including HPIV3.
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