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Much remains to be learned about single-stranded (ss) DNA viruses in natural systems,
and the evolutionary relationships among them. One of the eight recognized families
of ssDNA viruses is the Microviridae, a group of viruses infecting bacteria. In this
study we used metagenomic analysis, genome assembly, and amplicon sequencing of
purified ssDNA to show that bacteriophages belonging to the subfamily Gokushovirinae
within the Microviridae are genetically diverse and widespread members of marine
microbial communities. Metagenomic analysis of coastal samples from the Gulf of
Mexico (GOM) and British Columbia, Canada, revealed numerous sequences belonging to
gokushoviruses and allowed the assembly of five putative genomes with an organization
similar to chlamydiamicroviruses. Fragment recruitment to these genomes from different
metagenomic data sets is consistent with gokushovirus genotypes being restricted to
specific oceanic regions. Conservation among the assembled genomes allowed the
design of degenerate primers that target an 800 bp fragment from the gene encoding
the major capsid protein. Sequences could be amplified from coastal temperate and
subtropical waters, but not from samples collected from the Arctic Ocean, or freshwater
lakes. Phylogenetic analysis revealed that most sequences were distantly related to
those from cultured representatives. Moreover, the sequences fell into at least seven
distinct evolutionary groups, most of which were represented by one of the assembled
metagenomes. Our results greatly expand the known sequence space for gokushoviruses,
and reveal biogeographic separation and new evolutionary lineages of gokushoviruses in
the oceans.
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INTRODUCTION
Viruses are the most abundant (Suttle, 2005) and diverse
(Breitbart et al., 2002; Angly et al., 2006) biological entities in
the oceans. By causing lysis of specific subsets of microbial com-
munities, they influence community composition by controlling
species evenness and maintaining species richness (Hennes et al.,
1995; Thingstad, 2000; Wommack and Colwell, 2000; Middelboe
et al., 2001; Weinbauer, 2004; Winter et al., 2010); thereby, influ-
encing nutrient and energy cycling (Fuhrman, 1999; Wilhelm and
Suttle, 1999; Suttle, 2007). Moreover, viruses harbor an enor-
mous pool of genetic diversity that can be exchanged among
other viruses (Pedulla et al., 2003; Short and Suttle, 2005) and
bacteria (Fuhrman and Schwalbach, 2003; Kenzaka et al., 2010).
Despite the abundance of bacteriophages in marine systems
(often >107 ml−1) and their important role in marine systems,
relatively little is known about the distribution and composition
of most groups of marine viruses.

Metagenomic approaches have provided an in-depth look
at the molecular diversity of ssDNA viruses in a range of

environments including marine systems (Breitbart et al., 2002;
Angly et al., 2006; Bench et al., 2007), the human gut (Zhang
et al., 2006; Breitbart et al., 2008; Minot et al., 2011), modern
stromatolites (Desnues et al., 2008), and freshwaters (Kim et al.,
2008; López-Bueno et al., 2009; Roux et al., 2012a). Recently, 608
ssDNA viral genomes were assembled from marine metagenomic
data revealing far greater evolutionary diversity in ssDNA viruses
than previously known (Labonté and Suttle, 2013).

Gokushoviruses are ssDNA bacteriophages belonging to the
family Microviridae and are represented among sequences found
in metagenomic data. For example, gokushovirus genomes were
assembled from a wide range of environments by mining of
metagenomic data, with 42 assembled from a variety of ecosys-
tems (Roux et al., 2012b), and two others from data collected
from the North Atlantic Ocean (Tucker et al., 2011), indicat-
ing the widespread occurrence of gokushoviruses. These viruses
have a ∼30 nm icosahedral capsid encompassing a positive ssDNA
molecule of 4.4 to 4.8 kb that encodes five major proteins. Based
on the phylogeny of the major capsid protein (VP1) of isolates,
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the Microviridae are divided into two subfamiles (Brentlinger
et al., 2002). Members of the Microvirinae (e.g., phiX174 and
G4) infect enterobacteria including Escherichia coli (Godson et al.,
1978), while members of the Gokushovirinae infect parasitic bac-
teria. The latter includes Chp1 (Storey et al., 1989), Chp2 (Liu
et al., 2000; Everson et al., 2002) and Chp3 (Garner et al., 2004)
that infect Chlamydia spp., while phiMH2K (Brentlinger et al.,
2002) and SpV4 (Chipman et al., 1998) infect Bdellovibrio sp. and
Spiroplasma sp., respectively.

There are no reported gokushovirus isolates, and their hosts
remain unknown. Based on bacterial genomic sequences bacteria
in the Bacteroidetes appear to be hosts for a proposed sub-
family, Alpavirinae (Krupovic and Forterre, 2011), of previously
unknown microviruses. As well, eight ssDNA phages have been
isolated that are morphologically similar but genetically different
to microviruses (Holmfeldt et al., 2013, 2012).

Our study examined the genetic diversity and relatedness
of Gokushovirinae-like viruses from temperate and subtropical
coastal environments. From three ssDNA-enriched metagenomic
datasets we assembled and phylogenetically compared five new
gokushovirus genomes. Recruitment of metagenomic reads to
these genomes showed spatial differences in the most abundant
gokushovirus genotypes. The genetic richness of gokushoviruses
was also assessed through amplification of a ∼800 bp fragment
of the conserved gene encoding the major capsid protein, VP1.
These results reveal biogeographic separation and new evolu-
tionary lineages of marine gokushoviruses, and likely reflect the
underlying distributions of their hosts.

MATERIALS AND METHODS
COLLECTION AND PREPARATION OF SAMPLES
Samples (∼20 to ∼200 L) were collected using GO-FLO or
Niskin bottles either mounted on a CTD rosette or directly on
a hydrographic wire [Saanich Inlet (SI)], or by bucket from the
surface (lake samples). For each sample, the viruses were concen-
trated ∼10–100-fold (∼200 mL final volume) using ultrafiltration
(Suttle et al., 1991). Briefly, particulate matter was removed by
pressure filtering (<17 kPa) the samples through 142-mm diam-
eter glass-fiber filters (MFS GC50, nominal pore size 1.2 µm)
and polyvinylidene difluoride filters (Millipore GVWP, pore size
0.22 µm) connected in series. The viral size fraction in the fil-
trate was then concentrated by ultrafiltration though a 30 kDa
molecular weight cut-off cartridge (Amicon S1Y30, Millipore),
and stored at 4◦C in the dark until processed.

In order to integrate variation within a region, numerous
virus concentrates (VCs) collected from different locations and
at different times within a geographic region were combined
into a single mix. Except for the SI and freshwater samples,
these mixes corresponded to those used by Angly et al. (2006) in
which the first ssDNA viral sequences were reported from marine
metagenomic data. VCs from the Strait of Georgia (SOG) and
surrounding inlets and bays were pooled into the following four
mixes by combining 2 mL of each VC: BC1-1999 (23 samples),
BC3-2000 (26 samples), BC4-2004 (16 samples), and BC2-Low
salinity (19 samples). Similarly, samples from the Gulf of Mexico
(GOM) were combined into four mixes from the eastern GOM (8
samples), northern GOM (6 samples), western GOM (6 samples),

and the Texas Coast (13 samples), while samples from the Arctic
Ocean were made into mixes from the Beaufort Sea (20 sam-
ples), Chukchi Sea (14 samples) and High Arctic (22 samples). To
look at the diversity of freshwater gokushoviruses, two mixes were
made from Chilliwack (6 samples) and Cultis (8 samples) Lakes.
An extensive description of all the samples that were combined in
each mix is presented in the Supplementary Material of Labonté
and Suttle (2013). SI is unusual as it undergoes seasonal anoxia
(Zaikova et al., 2010). For the metagenomic study, we combined
surface samples from April 2007, and January, March, May, July,
August, and November 2008. PCR amplifications were performed
on the following nine samples from SI: 10, 120, and 150 m sam-
ples from April 2007, and surface samples from January, March,
May, July, August, and November 2008.

ssDNA PREPARATION
As described in Labonté and Suttle (2013), ssDNA was pre-
pared from 10 mL of 0.22-µm filtered (PDVF; Millipore) pooled
mixes from British Columbia (SOG), the GOM, the Lakes (LA),
and the Arctic (ARC), or from 10 mL of each individual VCs
from SI. Briefly, ssDNA was extracted using a silica column and
amplified using multiple-displacement whole-genome amplifi-
cation (WGA) to convert ssDNA into dsDNA. Pure amplified
dsDNA was resuspended in ultrapure H2O for pyrosequencing
or Tris-HCl for PCR amplification.

GENOME ANALYSIS, BINNING, AND ASSEMBLY
Metagenomic libraries were constructed from WGA ssDNA from
SI, SOG, and GOM ssDNA. The purified WGA DNA was resus-
pended in 100 µL of RNAse- and DNAse-free water (Invitrogen)
and concentrated using a Millipore YM-30 Microcon centrifugal
filter to a final volume of ∼50 µL; 3–5 ug of DNA from each sam-
ple was sent for pyrosequencing (Roche 454 FLX instrumentation
with Titanium chemistry) at Genome Québec, McGill University
(SOG) and the Broad Institute at the Massachusetts Institute of
Technology (GOM and SI).

The sequences were quality and linker trimmed, and
assembled into contiguous sequences (contigs) using the
Newbler Assembler (Roche). The individual reads and assem-
bled sequences were compared to a database of all available
genomes in GenBank (as of February 2010) from viruses belong-
ing to the Microviridae using the tBLASTx algorithm with an
e-value cut-off of 10−5. Reads with significant similarity to
gokushoviruses were aligned onto the assembled contigs using the
add454Reads.perl script and were reassembled into new contigs
using the phredPhrap.perl script of the Consed package (Gordon,
2003). Additional contig analyses (BLAST, circularization of the
genomes, annotations, alignments, and phylogeny) were per-
formed within the Geneious Pro package v5.6 (Biomatters).

PRIMER DESIGN AND PCR AMPLIFICATION
Two forward (MicroVP1-F1, 5′-CGN GCN TAY AAY TTR
ATH-3′; MicroVP1-F2, 5′-AGN GCN TAY AAY TTR CTN-
3′) and two reverse (MicroVP1-R1, 5′-TTY GGN TAY CAR
GAR AGN-3′; MicroVP1-R2, 5′-NCT YTC YTG RTA NCC
RAA-3′) primers with respective degeneracies of 256, 215,
256, and 256 were designed from alignments of the inferred
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amino acid sequences of the major capsid protein (VP1) of the
chlamydiaphages Chp1 (accession number NC_001741.1), Chp2
(NC_002194.1), Chp3 (NC_008355.1), Chp4 (NC_007461.1),
phiCPAR39 (NC_002180.1), and phiCPG1 (NC_001998.1),
Spiroplasmaphage Sp4 (NC_003438.1), bdellovibriophage
phiMH2K (NC_002643.1), and the Sargasso Sea Chp1-like
assembled genome (Angly et al., 2006; Tucker et al., 2011).
The primers amplify a ∼800 bp VP1 gene fragment from the
subfamily Gokushovirinae in the Microviridae.

Prior to use in PCR reactions, the purified WGA DNA was
resuspended in 100 µL of TE, and 10 µL was used as a template
in each PCR reaction mixture consisting of Taq DNA poly-
merase assay buffer [20 mM Tris·HCl (ph 8.4), 50 mM KCl],
1.5 mM MgCl2, 125 µM of each deoxyribonucleoside triphos-
phate, 1 µM of each MicroVP1-F1, MicroVP1-F2 and MicroVP1-
R1 and MicroVP1-R2 primer and 2.5 U of PLATINUM Taq DNA
polymerase (Invitrogen). Negative controls contained all reagents
except DNA template. The samples were denatured at 94◦C for
3 min, followed by 35 cycles of denaturation at 94◦C for 30 s,
annealing at 50◦C for 30 s, and elongation at 72◦C for 50 s, with a
final elongation step of 72◦C for 5 min.

CLONE LIBRARY CONSTRUCTION AND RFLP ANALYSIS
PCR amplicons were purified with a MinElute PCR purification
kit (Qiagen), ligated into pCR2.1-Topo (Invitrogen), and used to
transform chemically competent E. coli Top10 cells. For each sam-
ple, 30 clones were checked by colony PCR to verify that they
contained an insert of the correct size. Restriction fragment length
polymorphism (RFLP) analysis was then performed on 20 posi-
tive clones. For each RFLP reaction, 15 µL of colony PCR product
was digested with AluI (New England BioLabs) in a reaction con-
taining 1 U/µg of DNA and 1× NEBuffer 4 (20 nM Tris-acetate,
50 mM potassium acetate, 10 mM magnesium acetate, 1 mM
DTT, pH 7.9) by incubating at 37◦C for 16 h, followed by heat
inactivation at 65◦C for 20 min. RFLP products were separated
on a 2% agarose gel in 0.5× TBE (9 mM Tris base, 9 mM boric
acid, 2 mM EDTA, pH 8.0) running at 110 V for ∼2 h. Sequencing
of representative clones confirmed that each unique restric-
tion pattern could be considered as an operational taxonomic
unit (OTU). Forward and reverse sequences (∼800 bp) were
obtained for each RFLP pattern using Big-Dye Terminator Cycle
Sequencing (Applied Biosystems) and ABI 373 Stretch or ABI
Prism 377 sequencers (Nucleic Acid Protein Service Unit, UBC).

PHYLOGENETIC ANALYSIS
For the whole genome phylogeny, non-coding sequences were
removed and the five major open reading frames were ordered.
The sequences were aligned using MAFFT (Katoh et al., 2002)
and maximum likelihood analysis with 100 bootstrap replicates
were performed using PhyML (Guindon et al., 2010).

VP1 from the previously sequenced isolates, environmental
sequences, and the degenerate PCR products from this study
were trimmed to the PCR-product length (∼800 bp) and aligned
using MAFFT (Katoh et al., 2002). The alignment was cured with
GBlocks to remove unconserved regions that aligned with mul-
tiple gaps using the less stringent setting (allowing for smaller
final blocks, gap positions within the final blocks and less strict

flanking positions) (Talavera and Castresana, 2007). Bayesian
phylogenetic analyses were performed on the cured alignment
with MrBayes (Huelsenbeck and Ronquist, 2001). MrBayes uses
a Markov chain Monte Carlo (mcmc) approach to approximate
prior and posterior probabilities. Under the HKY85 substitution
model with an invgamma distribution, two independent analyses
of 4 (1 cold and 3 heated) mcmc chains with 20,000,000 cycles
were run, sampled every 1000th cycle. The consensus tree was
generated in Geneious with a burnin of 25%. Trees were viewed
in Fig Tree (http://tree.bio.ed.ac.uk/software/figtree/).

FRAGMENT RECRUITMENT
Recruitment of the reads from metagenomic data sets onto
the assembled genomes was performed using tBLASTx with
an e-value of 10−10 and allowing only one hit per read. The
metagenomic reads from the marine viromes (Angly et al.,
2006) and microbialites (Desnues et al., 2008) were obtained
from the CAMERA database, while the metagenomic reads
from Lake Pavin and Lake Bourget (Roux et al., 2012a)
were obtained from the SEED database. The environmen-
tal genomes used were Lake_Bourget_052, Lake_Bourget_523,
Lake_Pavin_279 and 68_Microbialite_063 from Roux et al.
(2012b), and SARssphi2 from Tucker et al. (2011).

NUCLEOTIDE SEQUENCE ACCESSION NUMBERS
The five complete gokushovirus genomes as well as the 43 envi-
ronmental PCR product sequences were submitted to Genbank
and are available under the accession numbers KC131021-
KC131025 and KC130978-KC131020, respectively.

RESULTS AND DISCUSSION
ASSEMBLY OF COMPLETE GOKUSHOVIRUS GENOMES
Sequence analysis of ssDNA metagenomic libraries from the SOG,
SI, and the GOM recovered 1733, 374, and 194 sequences, respec-
tively, that were significantly similar to sequences from viruses
belonging to the Microviridae, with >90% of them being most
similar to sequences belonging to the chlamydiamicroviruses and
other gokushoviruses. From these data, five complete circular
genomes were assembled with at least 3-fold coverage (two from
SOG, two from SI and one from GOM). The genome sizes var-
ied from 4062 to 5386 bp, and were uniformly shorter than those
from previously sequenced isolates (Figure 1). Assembly of these
genomes represented the accumulation of 95 reads for SOG-1, 58
for SOG-2, 53 for SI-1, 48 for SI-2, and 38 for GOM.

Even though there was only ∼30–50% similarity at the
nucleotide level among the assembled genomes (Table 1), the
chlamydiaphages and bdellovibriophage phiMH2K, the gene
organization was remarkably similar among them, and included
the five proteins required for replication of gokushoviruses
(Figure 1), implying a common evolutionary origin. These com-
prise VP1, the major capsid protein, VP2 that is hypothesized
to be involved in host recognition (Chipman et al., 1998) and
virus attachment (Everson et al., 2003), VP3 that is a scaffolding
protein found in the procapsid only and not in mature virions
(Clarke et al., 2004), ORF4 that is a replication initiator involved
in ssDNA synthesis (Liu et al., 2000; Garner et al., 2004; Salim
et al., 2008), and ORF5 that is involved in DNA packaging (Liu
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FIGURE 1 | Gokushoviruses share a similar genome organization. Whole
genome phylogeny (Maximum likelihood, 100 bootstrap replicates, HKY85
model) on the ORFs of gokushoviruses rooted with the microvirus phiX174
(left) and pairwise comparisons of the five environmental gokushovirus
genomes assembled from this study (bold) with the isolates and other

environmental genomes. Conserved genes are represented by colored
arrows, while small overlapping genes of unknown function are represented
by short black arrows. The genome similarities were visualized in ACT (Carver
et al., 2005) (e-value <10−5) and the gray shading indicates the level of
similarity; darker shading represents higher similarity between pairs of ORFs.

Table 1 | Similarity matrix of the coding regions of the five environmental gokushovirus genomes assembled from this study (bold) with the

isolates and other environmental genomes.

GOM SI1 SI2 SOG1 SOG2 SAR SAR MH2K SpV4 Chp1 Chp3 Chp4 CPAR CPG1 X174

ssphi2 ssphi1 39

GOM 36.5 40.6 38.2 42.6 38.0 39.4 35.7 32.1 33.5 38.7 39.1 39.2 39.2 25.3

SI1 36.5 38.7 40.5 40.1 35.8 39.4 33.5 31.8 35.4 38.4 38.9 39.0 39.0 25.8

SI2 40.6 38.7 40.3 49.6 37.4 49.6 35.8 32.2 35.2 41.4 41.9 42.1 42.1 27.1

SOG1 38.2 40.5 40.3 40.0 35.7 39.3 35.9 31.3 35.1 40.3 40.7 40.8 40.7 26.3

SOG2 42.6 40.1 49.6 40.0 38.4 44.6 37.3 33.3 34.4 40.5 41.2 41.4 41.4 26.1

SARssphi2 38.0 35.8 37.4 35.7 38.4 37.3 34.6 28.0 30.1 36.0 36.5 36.7 36.6 24.0

SARssphi1 39.4 39.4 49.6 39.3 44.6 37.3 35.8 30.7 33.4 38.8 38.8 39.2 39.0 25.5

phiMH2K (Bdellovibrio) 35.7 33.5 35.8 35.9 37.3 34.6 35.8 29.0 30.7 36.9 37.2 37.4 37.3 24.7

SpV4 (Spiroplasma) 32.1 31.8 32.2 31.3 33.3 28.0 30.7 29.0 34.6 37.9 39.0 39.1 38.9 24.9

Chp1 (Chlamydia) 33.5 35.4 35.2 35.1 34.4 30.1 33.4 30.7 34.6 44.6 44.7 44.7 44.5 28.6

Chp3 (Chlamydia) 38.7 38.4 41.4 40.3 40.5 36.0 38.8 36.9 37.9 44.6 91.0 91.5 91.6 31.3

Chp4 (Chlamydia) 39.1 38.9 41.9 40.7 41.2 36.5 38.8 37.2 39.0 44.7 91.0 94.3 94.4 32.1

CPAR39 (Chlamydia) 39.2 39.0 42.1 40.8 41.4 36.7 39.2 37.4 39.1 44.7 91.5 94.3 97.0 31.9

phiCPG1 (Chlamydia) 39.2 39.0 42.1 40.7 41.4 36.6 39.0 37.3 38.9 44.5 91.6 94.4 97.0 31.8

phiX174 25.3 25.8 27.1 26.3 26.1 24.0 25.5 24.7 24.9 28.6 31.3 32.1 31.9 31.8

(i.e. � >90%, � 45–89%, � 30–45%, and � <30%).

et al., 2000; Garner et al., 2004; Salim et al., 2008). The presence
of all five essential genes in the assembled genomes strongly sug-
gests they represent complete sequences from extant viruses in the
environment.

Whole genome phylogeny revealed that the environmen-
tal genomes cluster more closely with the bdellovibriophage
phiMH2K, rather than the chlamydiaphages (Figure 1), suggest-
ing that the host for these gokushoviruses is more closely related
to Bdellovibrio spp., which are found in marine waters, than

Chlamydia spp. Whole genome pairwise comparisons showed
that VP2 and ORF4 are the least conserved genes, with very
few regions of conservation. Moreover, there is 91–97% similar-
ity among chlamydiamicroviruses, while only 28–49% similarity
among the environmental phages. A recombination event in
which ORF4 and ORF5 are inverted in phiMH2K, which infects
the bacterial parasite Bdellovibrio bacteriovorus, and in the envi-
ronmental genome SAR phi2. These genomes also cluster together
suggesting a common evolutionary history (Figure 1).
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All of the environmental genomes were shorter than those
from isolates. Some, such as SI-1 and SOG-1, had multiple over-
lapping genes of unknown function. It is postulated (Rokyta and
Burch, 2006) that ssDNA microviruses, such as the coliphages
phiX174 and G4, evolve differently than dsDNA viruses because
of strictly lytic life cycles, small genomes, and low rates of hor-
izontal gene transfer (Breitbart and Rohwer, 2005; Comeau and
Buenaventura, 2005; Hambly and Suttle, 2005). Novel genes were
predicted to originate by overprinting rather than by horizontal
gene transfer (Pavesi, 2006).

GENETIC RELATEDNESS AMONG GENES ENCODING THE MAJOR
CAPSID PROTEIN
To look more deeply at the genetic richness of gokushoviruses,
degenerate primers were designed to amplify a ∼800 bp frag-
ment of the gene encoding the major capsid protein (VP1) that
has interspaced conserved and variable regions. For the assem-
bled genomes, the phylogeny of VP1 is congruent with the whole
genome; thus, the phylogeny of VP1 can be used to infer viral
phylogeny. PCR amplification was performed on samples from
the SOG (4 mixes), GOM (4 mixes), SI (9 samples), and Arctic
(ARC; 3 mixes) (Table S1). No products were amplified from the
ARC, LA, SOG-Low Salinity, or Eastern GOM mixes. This means
that gokushoviruses were absent or at low concentrations in these
samples, or that they are too divergent to be amplified by the
primers.

Twenty VP1 clones from each of the 20 samples were digested
using AluI to reveal 77 different RFLP patterns. Representative
clones from each restriction pattern were sequenced (data not
shown). Of these, 43 sequences were at least 98% different at the
nucleotide level, and thus identified as unique gokushovirus VP1
sequences. Some sequences occurred in more than one sample
from the same geographic region; for example, the sequence SI-
07 was sequenced from multiple dates in SI (i.e., January, April,
May and Aug), but no sequences occurred in more than one
location (Figure 2). Some sequences were found in both SOG
and SI, but no sequences were found in GOM and SOG, or
GOM and SI. The 85 % of the VP1 sequences that contained the
primer sequences and translated into a putative protein were kept
for further analysis. The nucleotide alignment revealed multiple
regions of conservation, as well as regions that were confined to
specific groups, agreeing with observations made during primer
design.

The amplified VP1 PCR products were compared to VP1
sequences containing the primer sequences from the assembled
genomes, the chlamydiamicrovirus isolates, as well as Genbank
environmental sequences from modern stromatolites (Desnues
et al., 2008), freshwater (Lake Needwood, MD; Kuzmickas et al.,
unpublished), rice paddy soil (Kim et al., 2008) and marine
genomes (Venter et al., 2004). Few sequences were similar to those
from isolates. Phylogenetic analysis using Bayesian (Figure 2)
and maximum-likelihood algorithms produced similar trees with
gokushoviruses sub-divided into at least seven well-supported
new groups containing more than two sequences (Figure 2). Five
of the new clades are represented by an assembled genome or
sequenced isolate (Figure 2). Several sequences, such as SOG4-
04 and SI-18, were too divergent to be assigned to a cluster;

however, as only 20 clones were analyzed for each sample, rarer
phylogenetic clusters were poorly sampled.

Sequences from a given location were usually more closely
related to ones from the same location; most GOM sequences
clustered within ENV6 and ENV7, while ENV2 is represented
exclusively by SOG sequences. Sequences found in more than one
sample also usually clustered together. For example, the sequences
SI-10 and SI-07, which were found in SI on multiple dates, clus-
tered within ENV5, along with sequences from GOM and SI-2.
Collectively, these data imply that viruses in the ENV5 group
are widespread in nature. Other data from modern stomatolites
and marine genomes clustered together as specific phylogenetic
groups.

HOST SPECIFICITY AND GEOGRAPHIC DISTRIBUTION OF
ENVIRONMENTAL GOKUSHOVIRUS GENOMES
Isolates in the Gokushovirinae infect parasitic bacteria, such as
Chlamydia spp., Bdellovibrio spp., and Spiroplasma spp., with host
specificity likely being dictated by variable genomic regions. To
investigate conserved and variable motifs, metagenomic reads
from our ssDNA data, as well as other viral metagenomic data
sets from marine (Angly et al., 2006), freshwater (Roux et al.,
2012a), and microbialite (Desnues et al., 2008) environments
were recruited against environmental gokushovirus genomes
(Figure 3). Recruitment was more even when the reads were
recruited against genomes assembled from metagenomic data col-
lected from the same region (Figures 3, 4; Figures S1, S2). For
the SOG-1, SOG-2, and SI-2 genomes, few reads were recruited
from data sets other than those from which the genomes were
assembled, suggesting that these genomes are not widespread
(Figure 3). In contrast, reads from all of the metagenomic data
sets aligned on the GOM genome (Figure 3), indicating a wider
geographic distribution of these viruses. The high level of recruit-
ment from other data sets on the GOM genome is also con-
gruent with the phylogenetic clustering of the VP1 gene with
other VP1 sequences that were present in multiple samples
(Figure 2).

The distribution of reads from other environmental samples
that recruited to the assembled genomes was very uneven, show-
ing regions of higher conservation within VP1 and VP3, while
few reads were recruited to the VP2 region, indicating high
variability in this gene (Figure 4). Since the VP2 sequences of
the assembled genomes differ from those of isolates, and VP2
encodes for the minor capsid protein involved in host recognition
(Chipman et al., 1998), the environmental sequences are likely
not from viruses infecting the genera Chlamydia, Bdellovibrio,
or Spiroplasma. Recruitment to ORF4 was limited to the source
environment for the assembled genomes, and metagenomic data
from British Columbia were not recruited to ORF4 of the GOM
genome. Thus, both the pairwise comparison (Figure 1) and the
recruitment of metagenomic reads (Figure 3) showed that VP2
and ORF4 are less conserved. Similar patterns were observed
with genomes assembled from other data sets (Figures S1 ),
showing that specific gokushovirus genotypes are restricted in
distribution.

No sequences similar to gokushoviruses were amplified from
the Arctic Ocean or two lakes in British Columbia. However,
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FIGURE 2 | Genetic relatedness of the major capsid protein gene VP1.

Unrooted Bayesian phylogenetic analysis (20 million MCMC generations with
25% burnin; HKY85 model) of PCR products from GOM (red), Strait of Georgia
(light blue), Saanich Inlet (dark blue), cultured isolates (black), and other
environmental sequences (white). Bootstrap support of at least 90%, 75%

and less than 75% is represented by black, dark gray, and light gray branches,
respectively. Colored bubbles represent the different supported sub-groups of
gokushoviruses with more than two sequences containing a complete
sequenced environmental genome (blue), only isolates (gray), or only PCR
products (red). The scale bar represents 0.2 nucleotide changes per site.

gokushovirus sequences have been found in an Antarctic lake
(López-Bueno et al., 2009) and other freshwater environments
(Roux et al., 2012a), suggesting that freshwater gokushoviruses
differ enough in sequence that they cannot be amplified using our
primers.

POSSIBLE ROLE OF GOKUSHOVIRUSES IN AQUATIC ENVIRONMENTS
The distribution of gokushovirus OTUs with respect to spe-
cific marine environments differs from observations that some
viral genotypes are widely distributed Chen and Suttle, 1996;
Fuller et al., 1998; Hambly et al., 2001; Short and Suttle, 2002,
2005; Breitbart et al., 2004; Labonté et al., 2009. However, Tucker

et al. (2011) observed differences in the depth distribution of
gokushovirus sequences in the North Atlantic Ocean that likely
reflected the distribution of hosts. Most VP1 sequences that were
found in more than one sample were also relatively closely related,
perhaps reflecting viruses that have a broader host range, or
viruses that infect widely distributed hosts. In contrast, sequences
specific to a single location are probably from viruses that infect
bacteria that are environment specific. Although some bacterial
species are very widely distributed (Rusch et al., 2007; Biers et al.,
2009), others are restricted to specific habitats (Biers et al., 2009).
Hence, it is not surprising that some gokushoviruses have a very
restricted distribution.
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FIGURE 3 | Fragment recruitment of the viral ssDNA reads on

the genomes from this study to show regions of conservation

among ssDNA gokushoviruses. Each assembled genome (GOM,
SI1, SI2, SOG1, SOG2) is represented by a different panel. Each
horizontal line represents a metagenomic read from ssDNA data

sets from the Gulf of Mexico (dark red), Saanich Inlet (Dark blue),
and Strait of Georgia (aqua) on each of the assembled genomes.
Reads were recruited using tBLASTx with an e-value of 10−10. The
position of each line represents the percent similarity of the read
to the genome.
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FIGURE 4 | Fragment recruitment of reads from environmental viral

metagenomes to show the regions of conservation within different

environments. Each assembled genome (GOM, SI1, SI2, SOG1, SOG2) is
represented by a different panel. Each horizontal line represents a read
recruited from one of the following publicly available metagenomic data sets:

Gulf of Mexico (dark red), Strait of Georgia (aqua), Sargasso Sea (orange),
Lake Bourget (light green), Lake Pavin (dark green), and microbialites (purple).
Reads were recruited against each of the assembled genomes using tBLASTx
with an e-value of 10−10. The position of each line represents the percent
similarity of the read to the genome. VP1 is represented by a red arrow.
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Based on previous work (Labonté and Suttle, 2013),
gokushovirus sequences were not the most abundant viruses
in our samples, and comprised only 1.6, 0.4, and 0.2% of
the metagenomic reads from the SOG, SI, and GOM, respec-
tively. In contrast, in metagenomic data from the Sargasso Sea,
gokushovirus sequences comprised nearly 6% of the reads (Angly
et al., 2006), while in Lake Bourget they were more than 90%
of the sequences (Roux et al., 2012a). These differences may be
because the small genomes of gokushoviruses permit rapid repli-
cation and high burst sizes, and allow them to dominate following
a lytic event, this is consistent with the hypothesis that the most
abundant marine viruses are virulent opportunists that repli-
cate rapidly, have high burst sizes and small genomes in order
to exploit rapidly growing populations of rare marine bacteria
such as Roseobacter spp. or Vibrio spp. (Suttle, 2007). For exam-
ple, ∼500 genomes are produced each time the chlamydiaphage
Chp2 infects its parasitic host (Salim et al., 2008). High burst
sizes coupled with genomes usually <5 kb support the idea that
gokushoviruses are highly virulent and are selected for rapid pop-
ulation growth, which are characteristics of r-strategists. In con-
trast, many large DNA viruses have a low burst size, large genome
and decay slowly, which are characteristics of K-strategists.

Discovering the hosts of marine gokushoviruses is a high pri-
ority in order to understand the roles that these viruses play in
ecosystems. Given the challenges in culturing marine microbes,
culture-independent techniques will likely be needed to deter-
mine the hosts for most of these viruses. One approach that
we have tried with some success is to use fluorescence in situ
hybridization (FISH) using labeled VP1 sequences to probe natu-
ral microbial communities. Another approach that has been used
to visualize phage-infected gammaproteobacterial cells is phage-
FISH (Allers et al., 2013), which could be adapted to search
for cells infected by gokushoviruses. Finally, single-cell genomics
(SCG) allows everything in a cell, including plasmids and viruses
to be sequenced (Stepanauskas, 2012). If applied to samples with
abundant gokushoviruseses, it should be possible to sequence
infected cells.

This manuscript presents a new set of degenerate primers
that have been used to reveal at least five new evolutionary
groups of gokushoviruses, and clearly show they share a common
evolutionary history with viruses that infect the obligate intracel-
lular parasitic bacteria Chlamydia and Bdellovibrio. Phylogenetic
analysis of the major capsid protein, combined with fragment
recruitment of environmental metagenomic sequences shows that
the distribution of some evolutionary groups of gokushoviruses
is very environment dependent, whereas others are more cos-
mopolitan. The high-burst size, rapid replication rates and likely
lytic nature of these viruses suggests that they may play an
important role as mortality agents in marine systems.
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Figure S1 | Fragment recruitment of viral ssDNA reads onto assembled

environmental gokushovirus genomes. Each assembled genome

(Lake_Bourget_052, Lake_Bourget_523, Lake_Pavin_279,

68_Microbialite_063, and SARssphi2) is represented by a different panel.

Each horizontal line represents a read recruited from one of the

metagenomic data sets from this study: Gulf of Mexico (dark red), Saanich

Inlet (Dark blue), and Strait of Georgia (aqua). Reads were recruited

against each of the assembled genomes using tBLASTx with an e-value of

10−10. The position of each line represents the percent similarity of the

read to the genome. VP1 is represented by a red arrow.

Figure S2 | Fragment recruitment of reads from environmental viral

metagenomes to show the regions of conservation within different

environments. Each assembled genome (Lake_Bourget_052,

Lake_Bourget_523, Lake_Pavin_279, 68_Microbialite_063, and

SARssphi2) is represented by a different panel. Each horizontal line

represents a read recruited from one of the following publicly available

metagenomic data sets: Gulf of Mexico (dark red), Strait of Georgia

(aqua), Sargasso Sea (orange), Lake Bourget (light green), Lake Pavin (dark

green), and microbialites (purple) metagenomic data sets on each of the

assembled genomes that recruited at using tBLASTx with an e-value of

10−10. The height of line represent the percent similarity of the read to the

genome. VP1 is represented by a red arrow.
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