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The increasing number of antibiotic resistant bacteria motivates prospective research
toward discovery of new antimicrobial active substances. There are, however,
controversies concerning the cost-effectiveness of such research with regards to the
description of new substances with novel cellular interactions, or description of new
uses of existing substances to overcome resistance. Although examination of bacteria
isolated from remote locations with limited exposure to humans has revealed an absence
of antibiotic resistance genes, it is accepted that these genes were both abundant and
diverse in ancient living organisms, as detected in DNA recovered from Pleistocene
deposits (30,000 years ago). Indeed, even before the first clinical use of antibiotics
more than 60 years ago, resistant organisms had been isolated. Bacteria can exhibit
different strategies for resistance against antibiotics. New genetic information may lead
to the modification of protein structure affecting the antibiotic carriage into the cell,
enzymatic inactivation of drugs, or even modification of cellular structure interfering in the
drug-bacteria interaction. There are still plenty of new genes out there in the environment
that can be appropriated by putative pathogenic bacteria to resist antimicrobial agents.
On the other hand, there are several natural compounds with antibiotic activity that
may be used to oppose them. Antimicrobial peptides (AMPs) are molecules which are
wide-spread in all forms of life, from multi-cellular organisms to bacterial cells used to
interfere with microbial growth. Several AMPs have been shown to be effective against
multi-drug resistant bacteria and have low propensity to resistance development, probably
due to their unique mode of action, different from well-known antimicrobial drugs. These
substances may interact in different ways with bacterial cell membrane, protein synthesis,
protein modulation, and protein folding. The analysis of bacterial transcriptome may
contribute to the understanding of microbial strategies under different environmental
stresses and allows the understanding of their interaction with novel AMPs.
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INTRODUCTION
According to our recent history, human activity has markedly
enhanced the evolution and distribution of resistant bacteria
worldwide both in hospitals, human, and animal communities,
and in the open environment, although this human activity is not
necessarily the only, or even the proximate, cause for antimicro-
bial resistance phenomenon (Josephson, 2006; Wright, 2010). In
this regard, most of the scientific research in antibiotic resistance
over the past six to seven decades has been focused on association
of drug-resistance with pathogenic bacteria. Given what we now
know about the dispersal of resistance genes in nonpathogenic
bacteria, this focus on pathogens actually neglects the majority
of genes associated with resistance (D’Costa et al., 2006).

Since its use as a therapeutic tool to fight infectious diseases
was proposed, antimicrobial drugs have reduced the mortal-
ity, but not the persistency of infectious diseases. Due to their

use and misuse, these drugs have stimulated bacterial evolution
toward the development of resistance, as an adaptive mecha-
nism to the environment. While the selective pressure is main-
tained, adaptive mechanisms are transmitted to new generations,
through the genetic flow. The phenomenon has acquired consid-
erable importance in public health (Levy, 1998). The resistance
may be associated with chromosomal mutations or imported
genes through genetic recombination. In antimicrobial resistant
microorganisms, resistance genes such as plasmids, transposons,
and integrons can be inserted into the chromosome or extra-
chromosomal genome. Resistance may also be associated with a
general impermeability of the bacterial cell envelope (El-Halfawy
and Valvano, 2012).

The development of microbial resistance to antimicrobials had
been going on in nature long before antibiotics were made avail-
able to chemotherapy. It is recognized that bacteria, including
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human pathogens, may acquire resistance genes in natural envi-
ronments, particularly in soils (Josephson, 2006; Wright, 2007).
Taking the recent methodological approaches, the concept of the
antibiotic resistome has been advanced to serve as a framework
for understanding the ecology of resistance on a global scale
(Wright, 2007).

The resistome consists of a collection of all antibiotic resistance
genes including those circulating in pathogenic bacteria, antibi-
otic producers, and benign non-pathogenic organisms found
either free living in the environment or as commensals of other
organisms (D’Costa et al., 2006). Most of the so called antibi-
otic producers live in soils, and as an ecological consequence,
most of the susceptible bacteria in their vicinity, including human
pathogens, die off, but some develop resistance to these natural
products thought of control the microbial population (Wright,
2010; Cox and Wright, 2013).

The limited number of antibacterial classes and the common
occurrence of cross-resistance within and between classes have
also reinforced the urgent need to discover new compounds tar-
geting novel cellular functions not yet targeted by currently used
drugs (Chung et al., 2013). Bacteria are known to employ differ-
ent strategies for antibiotic resistance. Resistance may be acquired
by spontaneous mutation in the coding gene of the target protein
resulting in no or reduced affinity to the antibiotic or by hori-
zontal transfer of antibiotic resistance genes from other bacteria
(Hassan et al., 2012).

An antibiotic-resistance gene product may act by enzymatic
degradation of the antibiotic, by altering the antibiotic target
site or by pumping the incoming antibiotic out of the cell by
a transport mechanism. Such processes make infection treat-
ment very difficult as we face sophisticated, highly resistant and
often multi-resistant pathogens such as Pseudomonas aeruginosa
(Paterson, 2006), Escherichia coli (Overbye and Barrett, 2005),
methicillin-resistant Staphylococcus aureus (MRSA) (Reynolds
et al., 2004) and penicillin-resistant Streptococcus pneumonia
(Karchmer, 2004).

The antimicrobial peptides (AMPs) is a class of molecules
that may be used to overcome the bacterial resistance challenge.
Their occurrence is a wide-spread phenomenon in all forms of
life, from multi-cellular organisms to bacterial cells. In higher
organisms, AMPs contribute to innate immunity and are part
of the first defense line against harmful micro-organisms. In
bacteria, production of AMPs provides a competitive advantage
for the producer in certain ecological niches because the pep-
tide mediates the killing of other bacteria (Hassan et al., 2012).
They are constitutively expressed or induced by endogenous or
exogenous elicitors, such as developmental stage or pathogen pre-
dation (Sachetto-Martins et al., 2000). AMPs are small proteins
20–50 amino acid residues long, often having common proper-
ties such as the small number of amino acid residues, cationicity,
and amphipathicity (Tavares et al., 2008). The AMPs interact
with membranes in different ways, but in general three differ-
ent models have been used to define their mode of actions in
model membrane systems. In the barrel-stave mechanism, pep-
tides integrate into the membrane and form membrane-spanning
pores. In the toroidal-pore mechanism, AMPs form membrane-
spanning pores together with intercalated lipids. And in the carpet

mechanism, peptides accumulate on the membrane surface in a
carpet-like manner and at a threshold density so that they dis-
solve the membrane without forming transmembrane channels
(Pietiäinen et al., 2009; Brogden, 2011). However, membrane
damage is not the single mechanism whereby AMPs cause cell
death. They may also affect functions of several other cell com-
ponents and act as metabolic inhibitors of cellular processes
including biosynthesis of the cell wall, nucleic-acids and pro-
teins. In these cases, the cell death can be the result of multiple
inhibitory effects (Brogden, 2005).

AMPs show broad-spectrum antimicrobial activities against
various microorganisms, including Gram-positive and Gram-
negative bacteria, fungi, and viruses. Many AMPs are effective
against multi-drug resistant (MDR) bacteria and possess low
propensity for developing resistance probably due to their dis-
tinguished mode of action (Seo et al., 2012). AMPs could be
very diverse in sequence and structure but most of them are
positively charged, allowing their interaction with the bacterial
envelope. These peptides are active at very low concentrations
(micromolar to nanomolar range) and most of them kill their
target microorganism via a non-receptor mediated mechanism
involving permeation of the target membrane (Guralp et al.,
2013).

AMPs can be classified into four groups based on their
structures: α-helical peptides, β-sheet peptides, extended pep-
tides, and loop peptides (Nguyen et al., 2011; Fjell et al.,
2012). Understanding the structure-activity relationships (SAR)
of AMPs is essential for the design and development of novel
antimicrobial agents with improved properties. In particular, the
atomic level structures of AMPs can provide versatile informa-
tion for all stages of drug development, including the peptide
design and modification for pharmaceutical application (Seo
et al., 2012).

Microbial pathogens have evolved different systems to resist
the effect of antimicrobial peptides. These mechanisms can
involve the destruction of antimicrobial peptides (by proteolytic
digestion), change of antimicrobial peptide target (i.e., the micro-
bial membrane), and removal of antimicrobial peptides from
their site of action (through efflux pumps or by alteration of
the cell surface composition) (Rio-Alvarez et al., 2012). The
modifications of lipopolysaccharide (LPS) to mask the negative
charges that allow interaction with AMP are one of the main
responses to these compounds in many Gram-negative bacteria
(Costechareyre et al., 2013).

Some bacteria such as Staphylococcus enterica serovar
typhimurium exhibit a regulatory system controls virulence
that is involved in the regulation of Mg2+ uptake systems,
survival in macrophages and resistance to antimicrobial
peptides (AMP). Several enzymes, encoded by pagP, pagO,
pmrC, pmrG, lpxO, pmrHFIJKLM, modify LPS, mostly by
adding or modifying palmitate, phosphoethanolamine or
4-aminoarabinose to mask negative charges that allow inter-
action with cationic AMPs (Costechareyre et al., 2013).
Costechareyre et al. (2013) using Dickeya dadantii, which is
an insect and plant pathogen, to understand the regulation of
genes involved in response to AMPs, observed that through
transcriptome different genes are involved in response to AMPs
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when the bacteria infect the aphid (Acyrthosiphon pisum) and
plant.

Antimicrobial peptides (AMPs), particularly the so-called bac-
teriocins produced by bacteria, may be an important contributor
in this context as they often have a relatively narrow killing
spectrum which comprises mostly bacteria closely related to the
producers (Hassan et al., 2012).

Many hundreds of different peptides, differing in size, charge,
hydrophobicity, conformation, primary structure, as well as in
post-translational modifications, have been demonstrated in frog
defensive skin secretions (Evaristo et al., 2013).

The knowledge about AMP action mode and resistance mech-
anisms shared by different microorganisms may point the direc-
tion for discovery and design of new drugs.

NEW APPROACHES TO AMPs RESISTANCE
The knowledge acquired in the last two decades concerning the
evolution of antimicrobial resistance to widely prescribed drugs,
and the search for new antimicrobial candidates such as AMPs,
thought to be natural barriers against bacteria, eukaryotic para-
sites, viruses, and fungi, has resulted in a better understanding
of how microorganisms have become resistant to these proteins
(Marshall and Arenas, 2003; Wilcox, 2004; Hancock and Sahl,
2006; Perron et al., 2006).

The variety of already described antimicrobial peptides related
to the different sequences, shows that the same peptide sequence
is rarely associated with two different species, even closely related.
Several multicellular organisms express a collection of peptides of
different chemical structures, as a local defensin (Zasloff, 2002).
However, despite the structural diversity, most of the already
sequenced antimicrobial peptides show at least 50% hydropho-
bic amino acid residues and a low proportion of both neutral
polar and negatively charged amino acids (Hancock and Chapple,
1999). It is accepted that this structural skeleton may explain
why the majority of AMPs persists at water-lipid interfaces and
then disturb microbial membrane components (Ruissen et al.,
2001). Membrane damage is considered the primary antimi-
crobial mechanism of the so called cationic antimicrobial pep-
tides (CAMPs) or ribosomally synthesized antimicrobial peptides
(RAMPs) (Perron et al., 2006), and requires interaction with
microbial membrane lipids and hydrophobic properties to enable
integration of the peptide into the hydrophobic core of the
membrane (Peschel and Sahl, 2006).

Studies with CAMPs thrombocidins, defensins, and cathe-
licidins show a potential use as skin and epithelia protectors
against invading microorganisms, such as Staphylococcus aureus
and Salmonella enterica, by reducing the net negative charge of the
bacterial cell envelope through covalent modification of anionic
molecules (e.g., teichoic acids, phospholipids, and lipid A) result-
ing in repulsion of CAMPs. Other mechanisms have also been
reported such as expelling CAMPs through energy-dependent
pumps, altering membrane fluidity and CAMPs cleavage with
proteases (Peschel, 2002; Marshall and Arenas, 2003).

Although nonspecific targets led researchers to suggest that
it would be difficult for the bacteria to develop resistance to
some peptides (Ge et al., 1999a,b; Schroder, 1999; Zasloff, 2002;
Boman, 2003; Jenssen et al., 2006), molecular mechanisms of

resistance to CAMPs have been suggested in several groups
(Zasloff, 2002). In S. aureus, changes in the cell wall appear to
involve the operon dltABCD, which results in carriage of posi-
tively charged D-alanine from the cytoplasm to anionic teichoic
acids (Peschel et al., 1999; Kristian et al., 2003; Nizet, 2006).
Perron et al. (2006) have studied the effects of resistance to pex-
iganan, CAMP analog of magainin, in different bacterial strains
(mutants for mutS and mutL genes—Pseudomonas fluorescens
and Escherichia coli) and observed MIC50 increased in both
mutant strains. They also observed a reduction in the lag phase
after subsequent growth in pexiganan presence. The contribu-
tion of these resistance mechanisms in bacterial pathogenesis may
be confirmed by studies with mutants. It is accepted that such
prospective investigations are of extreme relevance, since these
potential AMPs are thought to be an alternative to well established
antibiotics used in chemotherapy against multiresistant bacteria
(Nizet, 2006; Brogden and Brodgen, 2011; Maróti et al., 2011).
Mechanisms such as peptidases production, down regulation of
host AMP production, and cellular filamentation have also been
related (Nizet, 2006; Maróti et al., 2011).

AMPs may interact with intracellular targets, binding to DNA,
RNA and protein, or even interfering with the characterized FtsZ
gene, responsible for bacterial cell division septum or with pro-
tein synthesis such as DNA gyrase and DnaK (Brogden, 2005;
Chauhan et al., 2006; Handler et al., 2008; Maróti et al., 2011).
Genetic markers related to the defensins and cathelicidin medi-
ated AMPs resistance include kasB in Mycobacterium marinum
(Gao et al., 2003), sak in S. aureus (Jin et al., 2004)—for defensins;
and emm1 in Group A Streptococcus (Lauth et al., 2009).

Additionally, some AMPs have non-protein targets such as the
peptidoglycan precursor lipid II and ATP (Hilpert et al., 2010;
Sass et al., 2010). Modifications on cell surface have also been cor-
related with the AMPs resistance and several genetic markers have
already been described, such as mprF/lysS in S. aureus (Peschel
et al., 2001; Nishi et al., 2004), dlt operon in Group B Streptococcus
and Listeria monocytogenes (Abachin et al., 2002; Poyart et al.,
2003), htrP in Haemophilus influenzae (Starner et al., 2002), pmr
in Pseudomonas aeruginosa (Moskowitz et al., 2004).

The active efflux of AMPs has already been observed and might
be related to different genetic markers in various bacteria species,
such as mtr in Neisseria gonorrhoeae (Jerse et al., 2003), sap/sapA
operon in S. enterica and H. influenzae (Parra-Lopez et al., 1994;
Mason et al., 2005) and qacA in S. aureus (Kupferwasser et al.,
1999).

Moreover, the degradation of AMPs has being correlated to
several genetic markers: lasB in P. aeruginosa (Schmidtchen et al.,
2002), gelE in Enterococcus faecalis (Schmidtchen et al., 2002),
zapA in Proteus mirabilis (Schmidtchen et al., 2002), speB/ideS
in Group A Streptococcus (Schmidtchen et al., 2002), aur gene
in S. aureus (Sieprawska-Lupa et al., 2004), degP in Escherichia
coli (Ulvatne et al., 2002), and rgpA/B in Porphyromonas gingivalis
(Devine et al., 1999).

The use of AMPs as pharmaceuticals will promote selective
pressure for bacterial strains that are resistant also to the reper-
toire of host-defense peptides in the human body (Bell and
Gouyon, 2003; Nizet, 2006). In this context, the bacterial resis-
tome must also consider endogenous housekeeping genes which
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may interact with the AMPs. To select genetic markers related to
the bacterial resistome in this holistic point of view remains as
an important challenge (Islam et al., 2001; Taggart et al., 2003;
Wright, 2007). To illustrate the role of the housekeeping genes
in the AMPs resistance, several authors have reported the impor-
tance of regulatory genes such as phoP/phoQ in S. enterica and
P. aeruginosa, pmrB in P. aeruginosa, and rpoE in S. enterica
(MacFarlane et al., 2000; Ernst et al., 2001; McPhee et al., 2003;
Crouch et al., 2005).

Considering different organisms, such as fungi, a lot is known
about the mechanism of resistance to antimicrobial drugs, but
there are few reports on AMPs resistance. So far, AMPs in these
organisms include modification of erg11/mdr1 gene and pdr5
locus, over expression of specific drug efflux pumps, alteration
in sterol biosynthesis and alteration in AMP target, AMP inacti-
vation and reduction in the intracellular concentration of target
enzymes (Ghannoum and Rice, 1999; Balkis et al., 2002; Gulshan
and Moye-Rowley, 2007). As observed for bacteria, antifungal
drug resistance is quickly becoming a major problem, especially
considering the expanding population of immunocompromised
patients who have contributed to an increased incidence of
opportunistic and systemic fungal infections.

With regards to the antifungal drug resistance mechanisms, the
genetic markers codifying for multidrug efflux pumps and their
upregulation have been highlighted (Balkis et al., 2002; Gulshan
and Moye-Rowley, 2007). Jabra-Rizk et al. (2004) described two
different types of efflux pumps in C. albicans and C. dublinien-
sis: adenosine triphosphate–binding cassette (ABC) transporters
encoded by the cdr genes (CDR1 and CDR2) and major facilita-
tors encoded by the mdr genes.

Overall, it is accepted that further prospective studies on
antimicrobial resistance are needed to enable a better understand-
ing of the microbial genetic diversity that underlies resistance.
Such knowledge will help and guide our efforts to develop new
potential drugs to overcome the resistance phenomenon (Wright,
2007).

NEXT GENERATION SEQUENCING AND AMP PREDICTION
The next generation sequencing technologies have opened the
opportunity to access genomes and transcriptomes at high
throughput level allowing the researchers to understand a wide
variety of physiological response of various types of organism.
As a consequence new tools are available for antimicrobial dis-
covery and design (Figure 1). The knowledge of host resistance
mechanisms vs. susceptibility is important to the development
of new approaches to prevent and/or treat human infectious dis-
eases (Teles et al., 2013). The innate immune response in different
organisms has the potential to reveal new and/or novel molecules
for antimicrobial purpose. During transcriptome analysis of the
oral chicken Salmonella infection four steps were observed and
none of the genes was directly involved in bacterial infection, but
associated with inflammatory response (Matulova et al., 2013).
On the other hand persistence of Salmonella in several other
niches is observed by resistance to AMPs and its sensibility is
increased by adrenaline, down regulating the promoter of the
pmr operon that controls resistance genes to AMPs (Karavolos
et al., 2008). The combination of transcriptome and proteomic

FIGURE 1 | Schematic antimicrobial peptides prospecting from the in

silico analysis of sequences obtained by next generation sequencing.

The demand for new antimicrobials to prevent microbial resistance from
multifunctional action encourages the search for AMPs through prediction
for next-generation sequencing followed by analysis of bioinformatics and
computational modeling in order to produce effective peptides after
antimicrobial trials. PDB IDs 3GP6; 1THQ; 2JSO; 3HUM; 2L24; 2KUS;
2LB7; 2NY8.

strategies were used to study the Australian scorpion, revealing
that the molecular weight found for proteomics analysis was not
completely adjusted to amino acid sequence deduced from cDNA
cloned genes. Some reasons are pointed out by the authors: the
level of gene expression is not necessarily the same informa-
tion obtained from the cDNA, posttranslational modifications,
or sample preparation (Luna-Ramírez et al., 2013). Regardless of
problems encountered, some potential therapeutically peptides
were identified in those samples. In ladybird Harmonia axyridis
the successful invasive behavior was revealed by 454 sequencing.
The two layer innate immune system is composed of a chemi-
cal weapon, mediated by the secondary metabolite harmonine,
associated with a wide range of AMPs resulting from multi-
ple gene duplication and divergence events (Vilcinskas et al.,
2013). In the scorpion Hetermetrus petersii its venon showed
four families of antimicrobial and cytolyc peptides identified
by 454 sequencing platform (Ma et al., 2010). In Spodoptera
exigua larvae upon AcMNPV infection the 454 analysis demon-
strated that some genes, including genes encoding for AMPs, are
down regulated (Choi et al., 2012). Summarizing, the associa-
tion of transcriptome and proteomics technologies offers new
points of view for AMP mode of action in different organisms,
showing different potential and different strategies for prospec-
tion. In the bivalve mollusk Ruditapes philippinarum, for example
the use of 454 platforms allowed the identification of 36 AMP
sequences (Moreira et al., 2012). The analysis of transcriptome
of the American dog tick infected with different microorganisms
allowed the researcher to identify a novel elicited defensin in the
Arachnids immune system response transcripts (Jaworski et al.,
2010). Facing up to the high diversity of organisms, various tis-
sues and physiological approaches, the number of novel and new
AMPs derived from biodiversity is a vast field for research.
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PREDICTION OF ANTIMICROBIAL PEPTIDE FROM DNA/RNA
LIBRARY
ANTIMICROBIAL PEPTIDES SEARCH TOOLS
The antimicrobial peptides are directly related to the innate and
acquired immune response of organisms, and their potential to
kill microorganisms resistant to many antibiotics has attracted
the interest of the pharmaceutical industry. In this aspect tools
to find and produce antimicrobial peptides have created a revo-
lution in research for new drugs. According to Belarmino et al.
(2010), the development of bioinformatics tools for predicting
patterns in biological sequences has already allowed a routine
search in databases of ESTs (Expressed Sequence Tags) of plants
by defensins and a subsequent validation by antimicrobial testing.

The APD2 (Antimicrobial Peptide Database Second Version)
is one of the main databases of antimicrobial peptides, allow-
ing users to search for families of peptides, post translational
modified peptides, among other options (Wang et al., 2009).
APD provides an option to calculate and to predict AMPs in
order to extract important information about peptides such
as total charge, hydrophobic rate, in addition to providing an
alignment with deposited sequences (http://aps.unmc.edu/AP/
main.php). The information provided can be linked to the data
on the hydrophobic moment calculated by the web-program
HydroMcalc (Tossi et al., 2002) available at http://www.bbcm.

univ.trieste.it/~tossi/HydroCalc/HydroMCalc.html, allowing the
prediction of antimicrobial peptides.

In addition to the APD, another database of AMPs is
the CAMP (Collection of Antimicrobial Peptides) available
at http://www.bicnirrh.res.in/antimicrobial. Such tools provide
information related to the sequence, definition of protein
biological activity, taxonomy of the source organism, target
organisms—indicating the MIC (minimum inhibitory concen-
tration), hemolytic activity of the peptide and links to exter-
nal databases such as SwissProt, PDB, PubMed and the NCBI
Taxonomy (Thomas et al., 2010). The iAMP-2L, available at
http://www.jci-bioinfo.cn/iAMP-2L, is a web-server used for
the prediction of uncharacterized sequences as antimicrobial.
Once the subject sequence is identified as an antimicrobial, the
server indicates to which class (antibacterial, anticancer, antifun-
gal, anti-HIV and anti-viral) the peptide belongs. Peptides are
promiscuous molecules (Franco, 2011) and are invariably clas-
sified in more than one class and family (Xiao et al., 2013). All
of these characteristics reinforce how these new technologies can
make available an unlimited source for new drugs and biologi-
cally active molecules. Tools of bioinformatics for modeling are
fundamental for development of this research area.

TYPES OF MODELING AND PREDICTING STRUCTURES APPLIED TO
ANTIMICROBIAL PEPTIDE
In the following steps we present a summary of a method to
develop such peptides that can predict the structure of peptides
and proteins in two ways: experimentally, through methods such
as nuclear magnetic resonance (NMR), X-ray diffraction and
crystallography, and theoretically, by computational modeling
methods, which involve comparative modeling, threading (folding)
modeling and ab initio (de novo). Experimental methods of pep-
tide prediction and modeling have typical difficulties. The lack

of structural conformation of plant bactericidal peptides prevents
more detailed classification of AMPs (Porto and Franco, 2013).
The use of computational tools and methods has become an
important strategy in the search for bioactive peptides. However,
there are still some limitations in this prediction method, such as
the difficulty of developing a general method for predicting the
nature and activity of antimicrobial peptides, due to low homol-
ogy sequences that can occur (Lata et al., 2007; Torrent et al.,
2012).

Comparative modeling
Comparative homology modeling is a method based on the struc-
tures similarity, i.e., similar amino acid sequences tend to have
a very similar secondary structure. Thus, it is possible to use as
a template structures solved by experimental means, in order to
predict the 3D conformation of peptides and proteins using com-
putational algorithms. In comparative modeling, the alignment
of the sequence to be predicted and the template must present an
identity of at least 30% (Baker and Sali, 2001), a large number of
cases with alignments with low identity between target and tem-
plate can lead to better models of 3D structure (Rayan, 2009). In
fact the identity of the alignment can be put aside when we are
in a situation of functionality. For example, imagine a protein A
having 90% identity to another protein B, but a different func-
tion, and also a protein C that has 70% identity and the same
function as B. In this case protein C would be the best template
and B is not the shape desired. The alignment score should also
be considered when working with whole proteins, since in certain
programs, such as BLAST, alignments may appear above 30%, but
still low coverage.

The in silico prediction method by homology modeling is
divided into four main steps: (1) identification of structures and
selection of templates, (2) alignment of the target sequence with
the chosen model structure, (3) generation of models for the
target structure, using information about the structure of the
template; (4) validation of the models generated for the target
(Martí-Renom et al., 2000). It can also be interesting to imple-
ment a fifth step which is the model of refinement by energy
minimization, which is important in the context that during the
production of the geometric errors can occur in regions of the
main chain (Vyas et al., 2012).

The first two steps to create and predict a three-dimensional
model of a protein or peptide involve query of database struc-
tures experimentally determined by crystallography techniques,
X-ray diffraction or nuclear magnetic resonance (Kiefer, 2012).
First, research tools in the databases such as BLAST (Basic Local
Alignments Search Tool) that allow local alignment. Searching
sequence of regions similar to other regions of sequence is
an essential step to find sequence templates. The BLAST min-
imizes the time spent on research, discarding alignments in
which regions between the query and subject sequences have few
chances to exceed a pre-determined score (Altschul et al., 1990).
During the search for similar sequences in databases, attention
should be given to the best method, i.e., one that is both sensi-
tive (able to identify sequences related bit) and selective (relations
between the query and subject sequences are true). At this point it
is worth mentioning one of the most used tools in the search for
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similar sequences, PSI-BLAST (Position-Specific Iterated Basic
Local Alignment Tool) from NCBI, which differs from conven-
tional BLAST due to its higher accuracy and greater statistical
sensitivity (Li et al., 2011).

After choosing sequences of templates that will be used in
the second stage, the optimal alignment between this sequence
and the target is required to build three-dimensional models
(Centeno et al., 2005). The main strategies used are: progres-
sive alignment between the sequences using the software Clustal
W (Larkin et al., 2007), the sequence-profile alignment, HMM-
based method (HIDDEN MARKOV MODEL) between query and
profile of families of templates, using up the database profiles
Pfam (Finn et al., 2010) and HMMER web server (Finn et al.,
2011) one can still perform profile-profile alignment, from build-
ing a profile for the target and matching with the profile templates
in a database of profiles (Centeno et al., 2005; Ramachandran and
Dokholyan, 2012; Venclovas, 2012).

The models are generated based on the structural information
provided by the template and the sequence alignment between
them and predicted (Kiefer, 2012). Currently there are several
programs and web servers that can be used to build models of
proteins and peptides, the main one is Modeler, developed by
Sali and Blundell (1993). The Modeler is used to compare the
target structure by satisfaction of spatial constraints involving
restrictions on atomic distances, angles dihedral, and stereochem-
istry. The information modeler generated is also combined with
the statistical calculation preferences of constraints derived from
the sequence template homology (Eswar et al., 2003; Vyas et al.,
2012). Another tool also used in model building by homology is
SwissModel, which unlike the modeler searches in a homologous
target database with the BLAST protein and then determines a
three dimensional model, finding the core backbone and model-
ing loops and chain laterals (Schwede et al., 2003).

In homology modeling each step is directly linked to the previ-
ous, so in the event of accidental errors, these can be propagated.
Thus, it becomes necessary to validate the final model and inter-
pretation of the target. The generated model can be validated as a
whole or for individual regions (Martí-Renom et al., 2000), the
basic need is for a good model built on good stereochemistry
(Hillisch et al., 2004). The main tools for analysis and valida-
tion of models generated by comparative modeling are: Procheck
(Laskowski, 1993) and Molprobity (Chen et al., 2009), both for
quality analysis stereochemistry; Whatchek (Hooft et al., 1996)
and Qmean (Benkert et al., 2009) used to evaluate the quality of
the model, and the ProsaWeb (Wiederstein and Sippl, 2007) used
in the analysis of interaction energy between the model residuals.
According to Martí-Renom et al. (2000), the most common errors
that may occur during modeling are positioning errors of side
chain distortions in regions aligned, regions with an inefficient
mold alignment and wrong choice of template.

The refinement of the model in general uses methods of
molecular dynamics calculations of force fields, the most com-
mon being the CHARMM (Brooks et al., 1983) and GROMOS
(Schuler et al., 2001). A refinement process can be defined as
walking on the surface of covalent and hydrogen bonds in the
model, the search for a better minimum energy than the energy
of departure, therefore, a difficult task (Gront et al., 2012). The

energy minimization can promote excessive deviation of the
model structure, compared to the original, which actually is
not ideal; therefore, you should keep the number of cycles of
minimization to a minimum, which is sufficient for improved
stereochemistry of the model (Peitsch, 2002).

b-Threading modeling
The modeling threading or by folding pattern recognition is a
method of predicting three dimensional structures by looking
for folding patterns, applying the combination-linear alignments
profile and adjusting the profile structure of the target reference
frames (obtained from folding profile libraries).

The LOMENTS is a meta-server which includes nine major
servers threading (PPA-I, SP3, PPA-II, sparks2, PROSPECT2,
FUGUE, HHSEARCH, PAINT, SAM-T02), allowing the selection
of models through research for 30 models for each of the indi-
vidual servers, excluding short alignments, and defining models
of greater structural similarity (Wu and Zhang, 2007). It is an
important tool for the study of structures in modeling template
folding. Among commonly used tools in modeling protein fold-
ing are the ROSETTA (Kaufmann et al., 2010) and I-TASSER (Wu
et al., 2007; Roy et al., 2010). Such tools have their operation
based on either amino acid sequence of the target and informa-
tion about structures in the template experimentally resolved, or
using predictors of secondary structure and folding as mentioned
above, with libraries of fragments.

c-Ab initio modeling
This method of predicting three-dimensional structures ignores
in principle the use of reference structures solved experimentally.
Prediction ab initio (de novo) makes use of the energy minimized
functions and research of spatial conformations that the target
can take, and this is important for the use of force fields and meth-
ods of molecular dynamics and Monte Carlo simulations (Lee
et al., 2009). According to Helles (2008), the three factors that
make ab initio interesting for homology modeling, are that this
does not provide accurate information about how a given pro-
tein or peptide acquires structure, many proteins and peptides
do not have sufficient (> 30%) experimentally solved homol-
ogy molecules, and even if the target presents high similarity with
templates, it does not mean they will present the same structural
profile.

ab initio Software such as ROSETTA and I-Tasser, cited above,
have been used as de novo prediction programs (Wu et al., 2007;
Kaufmann et al., 2010). However, by considering information
frames of reference they are not actually ab initio techniques. A
tool that is completely is LINUS (Local Independently Nucleated
Units of Structure), which does not make use of structures or ref-
erence sequences, initiating the construction of the target from
the extended chain as a result. The simulation performed by the
software promotes the disruption of conformations of three ran-
domly chosen residues, and evaluates the energy, using Monte
Carlo procedure to validate the favorable conformation predicted
(Srinivasan and Rose, 2002). Another tool also used currently is
the QUARK (http://zhanglab.ccmb.med.umich.edu/QUARK/), a
tool that builds models from small fragments (residues 1–20)
using Monte Carlo simulations (Xu and Zhang, 2012).
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The intensive growth of research of AMPs and development
of robust databases the discovering of novel and new biological
active peptides (Amaral et al., 2012). The development of antimi-
crobial peptides from genomic and transcriptome databases can
be an alternative strategy to the studies with research and devel-
opment of AMPs.

MODIFICATION MEDICINES
As long as antimicrobials were made available in the 1940s, there
were no concerns related to the antimicrobial resistance mech-
anisms. However, the discovery of other antimicrobial agents
and even the modification of those already described were not
able to stop microbial evolution, such as the rapid emergence of
β-lactamase-producing Staphylococcus aureus strains (Spellberg,
2009; Theuretzbacher, 2009; Choffnes et al., 2010).

The accelerated increase and global expansion of bacterial
resistance made it necessary the search for new fighting agents
(Spellberg, 2009; Choffnes et al., 2010). One of the main factors
associated with this increasing antimicrobial resistance was the
misuse of antimicrobials (Gwynn et al., 2010).

Driven by high profitability, the pharmaceutical industry has
focused its production on blockbuster drugs (or global FMCG)–
such as those used in the treatment of chronic diseases such as
cancer or sexual dysfunction, for example—rather than the devel-
opment of antimicrobial drugs used for short term treatment of
acute infectious diseases (Theuretzbacher, 2009).

The economic advantages offered by blockbuster drugs cou-
pled with the high cost of production and the low economical
income related to the antimicrobial production, if compared to
the profitability of other drug production, led to a lack of invest-
ment in the development of new antimicrobial agents in the 1990s
(Spellberg, 2009; Theuretzbacher, 2009). In this regard, the pro-
duction of new antibiotics becomes, now, very expensive due to
the rationale and steps of manufacturing and preclinical testing
and clinical trials, up to their insertion in the market. The searches
for new agents has to overcome the mechanisms of bacterial resis-
tance, and therefore, are based on the search for new routes of
administration, new targets or mechanisms of action toward the
same target, which ends up limiting the production of effective
potential agents (Gwynn et al., 2010). Add to that the availabil-
ity of generic formulations and the development of drugs kept to
treat only severe diseases to avoid quick bacteria resistance devel-
opment, further also contributed to the economical failure related
to new antimicrobial releases (Spellberg, 2009). In this point of
view the in silico prediction of antimicrobial peptides becomes an
advantage for industry due to low cost and time consumption.

Furthermore, the wide use of broad-spectrum antimicrobials
has contributed to the need for new drugs given the emergence
of the so called multi-drug resistant bacteria (MDR) (Choffnes
et al., 2010; Gwynn et al., 2010). The decline in production of new
agents was compounded by the loss of effectiveness of existing
antimicrobials without a concomitant replacement by new ther-
apeutic options. In a study by Shlaes and Moellering (2002), the
medical community was alerted to the lack in new drug discovery,
and the authors concluded that the development of new antibac-
terial agents was even lower than that related to hyperactivity
disorder and male erectile dysfunction (Spellberg, 2009).

Within the current scenario of increasing bacterial resistance,
however, it becomes necessary to resume production of new
antimicrobial agents, or discussion of new strategies for the
use of the available drugs. This discussion has motivated and
encouraged scientific research on the subject, in order to decrease
the cost of production within large pharmaceutical companies
(Spellberg, 2009). For example, while other drugs require 15 can-
didates to yield one FDA-approved product, antibiotics require
72 candidates to yield an FDA-approved product, which currently
costs 400–$ 800 million per approved agent (Spellberg et al., 2008;
Forsyth, 2013; IDSA, 2013). The production of antimicrobials is
not profitable also because: the drugs are used for a short period
of time (7–14 days), sold for low price and prescription con-
trolled market (Forsyth, 2013). As a result, it is estimated that
about two million Americans per year develop hospital infections,
mostly caused by multidrug-resistant bacteria pathogens, which
increases treatment costs in about U$ 21 million to U$ 34 bil-
lion, compared to antibiotic-susceptible pathogens (Roberts et al.,
2009; Spellberg et al., 2011). Nosocomial infections such as pneu-
monia and sepsis, killed about 50,000 Americans in 2006 and cost
to the US health care system more than U$ 8 billion (Eber et al.,
2010).

To encourage the production of new antimicrobials,
Government policies have been issued, such as the GAIN
(Generating Antibiotics Incentives Now) Act, which states: (i)
warranty for new approved drugs protection from competition in
the marketplace by limiting FDA approval of similar drugs during
the a certain exclusivity period; (ii) review and fast-rack approval
priority for qualified antimicrobial drugs, antibiotic applications
will be eligible for both priority review and fast-track approval
through the FDA new drug application process; and (iii) study of
incentives for Qualified Infectious Diseases Biological Products,
to encourage research, development, and marketing for qualified
infectious disease biological products (Forsyth, 2013). Besides
this, proposals have been discussed for new ways of using drugs
already known and established for the microorganisms which
have been made resistant (Spellberg, 2009).

In this regard, considering the evolution of bacterial pathogens
associated with infectious diseases today, the need to develop
new agents to control multiresistant bacteria is presumed, or
to prospect new ways of using the inefficient well-established
antimicrobial arsenal, aiming to overlap the existing limitation
in antibacterial chemotherapy (Rai et al., 2009; Spellberg, 2009;
Choffnes et al., 2010).

With regards to the AMPs and their eventual modifications as
an alternative strategy to overcome the need of new drugs, it is
important to undergo a retrospective analysis of the co-evolution
of antimicrobial peptides and bacterial resistance. Initially sev-
eral peptides had been reported in the scientific literature and
among them, cationic peptides called attention by their mecha-
nisms of action: using positively charged molecules, amphiphilic,
with affinity to bacterial membranes. However, during initial in
vitro and in preclinical trials, resistant strains have been noticed.
Overall, variations in the peptide sequences are proposed leading
to conjugate molecules (Peschel and Sahl, 2006).

Obtaining AMPs can be performed in three different ways:
direct isolation of the producer, by chemical synthesis or
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recombinant expression (Li et al., 2010; Parachin et al., 2012).
Modifications in AMP composition, structure and function are
being used to create more stable molecules. Six distinctive new
classes of AMPs have already been reported (Brogden, 2011;
Brogden and Brodgen, 2011; Tossi, 2011). The first class includes
mimetic peptides, which are non-peptidic, synthetic molecules,
which mimic the natural properties of AMPs. Its structure
requires a different composition such as peptoids, arylamides
oligomers, β-peptides, or phenylene ethynylenes (Rotem and
Mor, 2009). The second class includes hybrid peptides, AMPs
constructed of the active regions of two to three peptides, such
as cecropinA-melittin (CEME/ CEMA/ CP26/ CP29) (Piers and
Hancock, 1994). The potential benefits of each individual frag-
ment are combined to increase antimicrobial activity, reduce
antimicrobial spectrum of activity or reduce cytotoxicity for host
cells. The third class includes peptide congeners, a chemical
compound closely related to another in composition, such as con-
geners of CAP18, LL-37, SMAP28, ovispirin, and Q25. They may
contain changes in tertiary structure, change of specific amino
acids in the sequence to load change, among other characteris-
tics. The fourth class includes cyclotides and stabilized AMPs.
Cylotides are cyclopeptides with a head-to-tail cyclic backbone,
containing 30 amino acid residues with three conserved disul-
fide bonds (i. e., cyclized angiotensin and cyclic diastereomeric
lysine ring) (Ireland et al., 2010). The fifth class includes peptide
conjugates which is connected to micelles, liposomes, antibodies,
steroids or fatty acids, such as lactoferrin—lauric acid (Chu-Kung
et al., 2010), and the sixth class includes immobilized peptides
via incorporation into distinct materials or absorbed to a vari-
ety of surfaces where they still retain their ability to bind and kill
bacteria. These groups of new peptides have a variety of poten-
tial medical and industrial applications in many different areas
(medicine, veterinary, agriculture, pharmaceutical, food) (Costa
et al., 2011).

In conclusion, the misuse of anticrobials lasting recent decades
has increased the spread of mutations allowing the develop-
ment of multidrug resistant microbes. The antimicrobials were
neglected due to economic interest. Thus, for infectious diseases
the development of new antimicrobial with low cost and broad
spectrum of action becomes of great importance, because the life-
time of such molecules is very short and a wide range of molecules
is important to overcome the novel resistant pathogens. The
molecular modeling of AMPs from transcriptome has arisen in
current times as an important alternative for drug development.
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