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The Siphoviridae family of bacteriophages is the largest viral family on earth and comprises
members infecting both bacteria and archaea. Lactococcal siphophages infect the Gram-
positive bacterium Lactococcus lactis, which is widely used for industrial milk fermentation
processes (e.g., cheese production). As a result, lactococcal phages have become one of
the most thoroughly characterized class of phages from a genomic standpoint. They exhibit
amazing and intriguing characteristics. First, each phage has a strict specificity toward a
unique or a handful of L. lactis host strains. Second, most lactococcal phages possess a
large organelle at their tail tip (termed the baseplate), bearing the receptor binding proteins
(RBPs) and mediating host adsorption. The recent accumulation of structural and functional
data revealed the modular structure of their building blocks, their different mechanisms of
activation and the fine specificity of their RBPs. These results also illustrate similarities and
differences between lactococcal Siphoviridae and Gram-negative infecting Myoviridae.
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INTRODUCTION

Lactococcus lactis is a Gram-positive bacterium extensively used for
the production of fermented milk products, such as cheese pro-
duction buttermilk and sour cream. L. lactis-containing starter
cultures are therefore used world-wide in large scale industrial
processes, which create ideal ecological niches for bacteriophage
infections and development. These infections have a major eco-
nomic impact due to impairment of lactococcal fermentations
and the resulting need to close and decontaminate the production
plants. Addressing this problem has proven to be challenging as
L. lactis virulent phages are ubiquitous in plant environments and
pasteurized milk (Moineau etal., 2002).

Hundreds of L. lactis phages strains have been isolated to
date and they have been classified into 10 groups (Deveau etal.,
2006). The lactococcal phage population is largely dominated by
the Siphoviridae family, i.e., phages with a long non-contractile
tail, with groups 936, P335 and ¢2 accounting for ~80, 10, and
5% of these virions, respectively. Only two lactococcal phages
from a different family have been isolated belonging to the short-
tailed Podoviridae. No Myoviridae infecting L. lactis has been
reported.

Phages from the c2 group have been shown to recognize and
infect L. lactis using a protein receptor, the phage infection protein
(PIP; Babu etal., 1995; Mooney etal., 2006). PIP is orthologous
to the Bacillus subtilis protein YueB, a component of type VII
secretion system (Abdallah etal., 2007) and the receptor of phage
SPP1 (Sao-Jose etal., 2006; Vinga etal., 2012). In contrast, no
proteinaceous receptor could be identified for other lactococ-
cal phages, suggesting early on that they may use saccharidic
receptors for infection (Valyasevi etal., 1990; Ruud etal., 1994;
Deveau etal., 2002). A striking property of lactococcal phages is
their narrow host specificity: each of the hundreds of lactococcal
phages recognizes only one or a handful of L. lactis strains. This
observation along with the absence of identified protein recep-
tors supported the hypothesis that non-c2 phages use saccharidic
receptors, since only polysaccharides could provide a sufficient
diversity to rationalize this data.

This review focuses on the structure of lactococcal phages
p2, a lytic phage, and TP901-1, a lysogenic phage, belonging
to the predominant 936 and P335 groups, respectively. Their
complete structures have been tackled using electron microscopy
(EM), and the structure of their components involved in adhesion
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was determined by X-ray crystallography. These structural data,
together with functional studies, made it possible to reveal striking
features of lactococcal phages concerning their baseplate activa-
tion, and the specificity of their receptor binding proteins (RBPs).
Since the recent discovery of the L. lactis phospho-polysaccharide
“pellicle,” understanding lactococcal phages specificity at molec-
ular levels begins to unravel (Andre etal., 2010; Chapot-Chartier
etal., 2010).

OVERALL PHAGE STRUCTURE

Knowledge on phage structures has to date primarily relied on
the structures of Myoviridae or Podoviridae, since the flexible tail
of Siphoviridae has prevented the application of single-particle
reconstruction in a straightforward manner (Figures 1A,B).
Lactococcal phages TP901-1 and p2 EM structures could be deter-
mined by dissecting the phages in smaller parts: capsid, connector,
tail segments, and tail tip. The EM single-particle reconstruction
was performed individually and the structures of these parts were
reassembled on a scaffold obtained from analysis of a few straight
tailed phages (Bebeacua etal., 2013a,b; Sassi etal., 2013). Both
phages possess a T = 7 laevo icosahedral capsid, and the major
capsid protein (MCP) hexamer from phage HK97 (Wikoff etal.,
2000) fits in the EM map with a satisfying correlation coefficient.
No protruding decorations are present on the capsid surface in
contrast with what has been reported for some other coliphages,
such as T4 (Olson etal., 2001; Fokine etal., 2005). The connec-
tor structures of p2 and TP901-1 are similar to that of SPPI,
comprising a dodecameric portal (Dube etal.,, 1993) and the

two head-to-tail junction proteins (Lhuillier etal., 2009). The tail
structures of phages TP901-1 and p2 are of comparable length,
and the major tail protein (MTP) hexamers are of similar thick-
ness, while their helical pitch is significantly different (Bebeacua
etal,, 2013a,b; Figures 1C,D). A striking difference between the
two tails is the presence of decorations on the tail of phage p2.
Sequence analysis of phage p2 MTP revealed that its N-terminus
shares similarity with other MTPs from other phages, such as SPP1
and Lambda (Pell etal., 2009). At the C-terminus it possesses an
adhesin fold which appears as decorations on the surface of the
tail. In the cases of phages SPP1 (Auzat etal., 2008) and Lambda
(Fraser etal., 2006; Pell et al., 2010), it has been suggested that such
C-terminal domains help the primary adhesion of phages to their
host. Such decorations have also been evidenced in the mycobacte-
rial phage, Araucaria (Sassi etal., 2013). Large baseplate structures
are present at the distal tail extremity, which can vary signifi-
cantly in size and shape, and form the control center for infectivity
(Bebeacuaetal.,2010; Sciaraet al.,2010). In contrast, phages Arau-
caria (Sassi etal., 2013), SPP1 (Plisson etal., 2007), T5 (Breyton
etal., 2013), and Lambda (Davidson etal., 2012; Tam etal., 2013)
exhibit a simplified tail tip, in agreement with the fact that these
phages have been shown to recognize and attach to a host protein
receptor.

GENOMIC COMPARISONS

Phages p2 and TP901-1 have similar structural genomic modules
resembling that of phage SPP1 (Chai etal., 1993; Brondsted et al.,
2001; Bebeacua etal., 2013b; Figure 2). A prominent feature of

FIGURE 1 | The TP901-1 and p2 phages assembled structures.

(A,B) Electron microscopy images of phages TP901-1 (A) and p2 (B).
(C,D) The structures of phage TP901-1 (C) and p2 (D) were generated by
assembling the reconstructions of the capsid (top), connector and tail
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(middle), and the tail-tip (bottom) on low-resolution maps of the full phages. In
the capsid map, pentons are identified by red arrows/points and hexons by
green arrows/points. Dimensions are given in A and the angle of rotation
between MTP hexamers is given in degrees.
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FIGURE 2 | Schematic representation and assignment of the
structural gene module of phages SPP1, p2, and TP901-1. Genes
coding for non-structural ORFs are in light gray. Sfd, scaffolding;
MCP major capsid protein; MTE major tail protein; TMP tail tape
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these modules is the long tape measure protein (TMP), which
determines the length of the tail (Pedersen etal., 2000) and par-
ticipates in the infection mechanism (Boulanger etal., 2008).
Upstream, the genes of tail chaperones (Siponen etal., 2009a;
Pell etal.,, 2013), MTP, capsid, and connector proteins are eas-
ily identified. Downstream, the first gene encountered is that of
the distal tail protein (Dit) conserved in the three phages (Sciara
etal., 2010; Veesler etal., 2010, 2012), but also in all Siphoviri-
dae, including those infecting Gram-negative bacteria such as
T5 (Flayhan etal., 2014). The X-ray structures of Dit have been
determined and are presented below. Downstream the Dit orf, Tal
genes exhibit varying lengths among phages, comprised between
~400 and more than 1000 residues. HHpred (Soding etal., 2005)
analysis revealed that the N-terminus (~400 residues) of Tal pro-
teins share a common fold, similar to that of T4 phage gp27
(Kanamaru etal., 2002), and to the type 6 secretion system (T6SS)
VgrG module (Leiman etal., 2009). Downstream the Tal orf, large
differences occur between the genes of the different phages in this
region, reflecting the diverging structure of tail tips. In the case
of phage p2, it has been demonstrated that the RBP open reading
frame (OREF) is the last gene encoding for a structural protein and
is located directly upstream the holin and lysin ORFs (Figure 2;
Ledeboer etal., 2002; De Haard etal., 2005). Considering the
sequence similarity between the p2 RBP (ORF18) and the TP901-
1 RBP (ORF49), the same can be assumed for the latter phage.
These two proteins were subjected to structural and biophysical
studies.

While no peptidoglycan-digesting enzyme could be identified
within the p2 structural cassette, the C-terminal moiety of the
TP901-1 Tal has been shown to possess such an activity. Recent
data demonstrated that TP901-1 mutated virions with Tal depleted
of the peptidoglycan digesting enzyme domain could still infect
their host during the L. lactis exponential phase growth, when

the cell wall is either not or is less cross-linked to enable rapid
cell division. In contrast, TP901-1 native phages possessing the
peptidoglycan digesting Tal domain are able to infect the cell, even
during the stationary phase (Stockdale etal., 2013).

RECEPTOR BINDING PROTEIN STRUCTURES

PHAGE p2

Llama immunization with p2 virions allowed to isolate single-
domain llama antibody fragments (named VHH or nanobodies;
Hamers-Casterman etal., 1993; Muyldermans et al., 2001) recog-
nizing and neutralizing the p2 RBP. Such a nanobody (VHHS5)
was located at the distal part of the phage tail using immuno-
gold labeling. Addition of this nanobody to a bacterial culture
suppressed phage infection (Ledeboer etal., 2002; De Haard et al.,
2005). Furthermore, it was demonstrated that VHHS5 was an excel-
lent binder of ORF18 (Kd value of ~1.4 nM), identifying it as
the RBP.

With in view to determine the receptor binding site of the
p2 RBP, its crystal structure was determined alone and in com-
plex with VHH5 (Spinelli etal., 2006b; Tremblay etal., 2006).
The phage p2 RBP is an assembly of three chains of 264 amino
acids forming a homotrimer. Noteworthy, a similar trimeric
arrangement has also been observed in RBPs of mammalian aden-
oviruses and reoviruses (van Raaij et al., 1999; Chappell et al., 2002;
Burmeister et al., 2004) as well as in the phage T4 gp12 protein (van
Raaij etal., 2001). As observed in the phage T4 gp12 trimer (van
Raaij etal., 2001), the p2 RBP is organized into three domains:
shoulder, interlaced neck and head (Figures 3A,B). The shoulder
domain (residues 1-141) has a B-sandwich fold assembling two
4-stranded anti-parallel B-sheets. A long helix contributed by each
domain allows the three shoulder moieties to associate tightly.
Immediately following the shoulder domains, the neck domain
forms a triple-stranded B-helix of three segments organized into
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FIGURE 3 | Structures of the receptor binding proteins (RBPs) of
phages p2 and TP901-1. (A,D) Ribbon view of the p2 RBP trimer

(A) and of the TP901-1 RBP trimer (D). Monomers are colored green,
blue, and pink. (B,E) Surface representation of the p2 RBP trimer (B) and
of the TP901-1 RBP trimer (E). Bound glycerol molecules are represented

by spheres (carbon, white; oxygen, red). (C,F) Close-up view of glycerol
in the receptor binding site of the RBPs of phages p2 (C) and TP901-1
(F). The glycerol molecule and the side-chains of the residues
participating to binding are represented as sticks (carbon, white; oxygen,
red; nitrogen, blue).

four B-strands along the threefold symmetry axis (B-prism). This
very rigid neck structure has already been observed in the gp12
short tail fiber of Escherichia coli phage T4 (Myoviridae family),
in which it plays a similar role, linking the N-terminal domain
and the receptor binding head (van Raaij etal., 2001). The phage
T4 puncturing device also contains a similar structure, but of
a much larger diameter (Kanamaru etal.,, 2002). The RBP head
domain follows the neck and forms a B-barrel comprising seven
anti-parallel B-strands. Each p-barrel in the trimer is parallel to
the threefold axis and interacts with the other two, yielding a very
compact structure (Figures 3A,B). It exhibits low but significant
similarity to RBPs of other viruses: the reovirus attachment pro-
tein o1 trimer (Chappell etal., 2002) and the head domain of the
adenovirus fiber (van Raaij etal., 1999).

PHAGE TP901-1
The phage TP901-1 RBP trimer structure was determined by X-ray
diffraction (Spinelli etal., 2006a; Bebeacua etal., 2010). Its N-
terminal segment is composed of elongated chains (residues 1-10),
p-turns, and a three-helix-bundle assembled through non-polar
side chain contacts (Figures 3D,E). This “stem” domain is much
smaller than the corresponding shoulder domain in the phage p2
RBP (Figures 3A,B). However, in the p2 RBP, the three parallel
helices (residues 19-32) located close to the threefold axis, are in
a similar location to those of the TP901-1 RBP (Figures 3A,D).
Following the helix bundle domain, a short linker structure
(residues 31-39) connects the o-helical domain (17-30) and

the B-prism (40-63; Figures 3D,E). The B-prism neck domain
interlaces three segments of each subunit, and each of its three faces
is made of four B-strands from the three monomers, constituting
a domain comparable to that of the RBP of phage p2 (Spinelli
etal., 2006b) and to a streptococcal lyase (Smith et al., 2005). The
amino acid sequence of the TP901-1 RBP neck region exhibits a six
residue long, regular and repeating motif, not observed in phage
T4 gp12 nor in the RBP neck of phage p2. Each segment ends with
a polar residue, except the last one where it is replaced by a proline,
which redirects the peptide chain upward, similar to the p2 RBP
(Spinelli etal., 2006b).

The RBP head domain of TP901-1 (residues 64—163;
Figure 3D) is a B-barrel formed of anti-parallel B-strands. This
domain is the only part that shares sequence similarity with the
RBP of p2 (28% sequence identity), and they exhibit very similar
structures (Figures 3A,D). Noteworthy, the crystal structure of
the RBP head domain from phage bIL170 (936 group) displays
the same fold as in phages p2 and TP901-1 (Ricagno etal., 2006).
The modular nature and interchangeability of RBP domains has
been demonstrated by producing a chimeric RBP in which the
N-terminal and linker RBP domains (stem and neck) of phage
TP901-1 were fused to the C-terminal RBP head domain of phage
p2 (Siponen etal., 2009b). The structure of this chimera has been
determined by X-ray crystallography and it exhibits a stable con-
formation that closely resembles the parental structures, while a
slight displacement of the linker improves the domains junction.
Indeed, the receptor-binding site is structurally indistinguishable
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from that of native p2 RBP and the chimera binds glycerol with
equal affinity (see below).

THE RECEPTOR-BINDING SITE

PHAGE p2

The high-resolution structure of the p2 RBP (1.7 A resolution)
revealed the presence of three glycerol molecules (originating from
the cryoprotectant liquor) bound at the interface between the head
domains (Tremblay et al., 2006). The glycerol molecules are tightly
bound (B-factors of 17.8 A?) via three hydrogen bonds established
between the His 232 and Asp 234 side-chains and the glycerol
O1 atom, and between the Arg 256 (from the other monomer)
guanidyl group and the glycerol O2 atom (Figure 3C). Further-
more, the hydrophobic face of glycerol packs against Trp 244
side-chain, as often observed with sugar complexes (Bourne etal.,
1990). Considering the close vicinity of Trp residues to glycerol
molecules (Trp 244 and Trp 43), fluorescence quenching experi-
ments made it possible to measure the affinity of the RBP glycerol
binding site with glycerol and four different saccharides, and their
Kd values ranged from 0.26 to 0.13 pM (Tremblay et al., 2006).

The structure of the complex between p2 RBP and VHH5 was
also determined by X-ray crystallography and revealed that the
nanobody covers a large area of the head domain (Tremblay et al.,
2006; Figures 4A,B). A specific interaction is observed between Tyr
55 of the nanobody, penetrating deeply in the glycerol-binding
site (Figure 4C), at the exact position occupied by the latter in
the isolated RBP structure, and establishing interactions with Trp
244a and Arg 256b on either side. The OH group from Tyr 55
superimposes with the OH1 of glycerol and establishes similar
hydrogen bonds with His 232 and Asp 234.

PHAGE TP901-1

Glycerol molecules were also observed bound at the interface
between head domains in the crystal structure of the phage TP901-
1 RBPat 1.6 A resolution (Spinelli et al., 2006a). Glycerol molecules
(Figure 3F) are stacked against Phe 145 and establish hydrogen
bonds with His 133, Asp 135, and Arg 155. As inferred from
sequence alignments, three of these residues in the TP901 RBP
are identical to those in the RBP of phage p2, while the fourth one
corresponds to a substitution of Phe 145 by Trp 244. Two hydroxyl

FIGURE 4 | Structures of the receptor binding proteins (RBPs) of
phages p2 and TP901-1 in complex with VHHs/nanobodies.

(A) Surface representation of the p2 RBP trimer in complex with the
neutralizing VHH5 (nano5), and 90° rotated view. (B) Surface footprint of
VHH5 on the RBP trimer surface (white). Mutated residues leading to
neutralization escape are indicated in red. (C) View of the superposition
of the VHH5 Tyr 55 with glycerol. The RBP surface is colored beige, the

glycerol carbon atoms are yellow, while those of VHH5 are white.
Oxygen atoms are red and nitrogen atoms are blue. (D) Ribbon view of
the TP901-1 RBP trimer in complex with the neutralizing nanobody 11
and surface view at 90° (right). (E) Ribbon view of the TP901-1 RBP
trimer in complex with the non-neutralizing nanobody 17. Panels

(B,C) taken from Tremblay etal. (2006). Copyright © American Society for
Microbiology.
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groups from the glycerol molecule are therefore strongly bound
to the RBP head. In contrast, the third hydroxyl group is free and
points to the bulk solvent in both structures (Figure 3F). This
orientation strongly suggests that the saccharidic binding site har-
bors the terminal residue of the receptor polymer, the free hydroxyl
group pointing in the direction of the rest of the receptor polymer
attached to the host.

The superposition of the binding network of glycerol in both
RBPs shows their striking similarity (Figures 3C,F). Differences
in amino acid residues are only observed in the second binding
sphere, which modulates the binding crevice surface and volume
and, hence, may influence the saccharidic specificity observed
between different phages and bacterial strains. The absence of
tryptophan residue in the vicinity of the glycerol-binding site in
the phage TP901-1 RBP prevented us to directly perform binding
studies using tryptophan fluorescence quenching. A Phel45Trp
point mutant was therefore designed and characterized the affinity
of the complexes formed with glycerol, phospho-glycerol, N-acetyl
muramic acid, muramyl-dipeptide, and galactose. The obtained
affinity constants were roughly comparable to those measured for
the p2 RBP (Spinelli etal., 2006a).

The structures of the TP901-1 RBP in complex with nanobod-
ies (Desmyter etal., 2013) and designed ankyrin repeat proteins
(DARPins; Veesler et al., 2009) were also obtained. In the first case,
the, TP901-1 baseplate (see below) was used for llama immuniza-
tion. Among the different binders characterized, three of them
targeted the RBP: nanobodies 2, 11, and 17. Functional studies
demonstrated that nanobodies 2 and 11 could neutralize phage
infection, while nanobody 17 could not (Desmyter etal., 2013).
Indeed, the binding sites of nanobodies 2 and 11 were localized
at the interface between head domains, occupying the glycerol
binding site (Figure 4D). In contrast, nanobody 17 binds the
stem domain and does not interfere with the receptor binding
site (Figure 4E; Desmyter etal., 2013). In the second case, DARPin
binders were generated against a subcomplex of the TP901-1 base-
plate (i.e., the BppU/RBP tripod complex). We isolated three
binders and demonstrated they targeted the RBP and in turn neu-
tralized phage infection (Veesler etal., 2009). The structure of one
of them in complex with RBP was obtained revealing a totally dif-
ferent binding mode compared to the VHH/nanobody complexes.
A unique DARPin binds at the tip of the RBP head domain, leav-
ing the receptor binding site free, but probably blocking the direct
interaction with the host (see below the baseplate section; Veesler
etal., 2009).

THE SACCHARIDIC RECEPTORS AND THEIR INTERACTIONS
WITH THE RBPs

The affinity of glycerol and phospho-glycerol for the RBPs sug-
gested that lipoteichoic acids (LTA) could act as receptors for
lactococcal phages. Conversely, the observation that many sug-
ars bind equally well to the RBPs and the fact that the structure
of LTAs is too simple to explain the different specificities of
hundreds of lactoccocal phages constituted arguments against
this hypothesis. A recent report by Chapot-Chartier etal. (2010)
revealed that the surface of the L. lactis cell wall is covered by
a “pellicle,” constituted of hexasaccharide phosphate repeating
units that are distinct from any other bacterial polysaccharides,

F D E B A
MG1363 [-6-[S-GlcNAc-3-u-Rha-3-|3-GIcNAc-2-|5-Galf-6-a-GIc-P-]n

ls
C a-Glc

FIGURE 5 | The “pellicle” phospho-polysaccharide from L. lactis
MG1363 (Chapot-Chartier etal., 2010). This phospho-polysaccharide is
the receptor of lactococcal phages sk1 and p2.

which appears as a strong candidate to allow phage adsorption
(Figure 5). Indeed, L. lactis mutants lacking this “pellicle” could
notbe infected by their specific phage and genomic studies demon-
strated the presence of L. lactis strain-specific “pellicle” cassettes
coding for glycosyl-transferases and other enzymes involved in
polysaccharide phosphate synthesis (Mahony et al., 2013). Finally,
the diversity induced by ~6-mer saccharides is fully compatible
with the fine specificity of lactococcal phages.

Preliminary experiments using surface plasmon resonance
(SPR) explained the specificity mechanism of phage p2 RBP for L.
lactis strain MG1363 (Bebeacua et al., 2013b). The purified pellicle
of this L. lactis strain was biotinylated and attached to a SPR chip
(ligand) while either the RBP of phage p2 or of phage TP901-1
was injected (analyte) to monitor interactions. While a typical sat-
uration curve was obtained for the p2 RBP, yielding a Kd value
of 230 £ 40 nM, it was not possible to reach saturation with
the TP901-1 RBP. More significantly, the dissociation time of the
TP901-1 RBP with the L. lactis MG1363 pellicle is extremely short
as compared to that of the p2 RBP. As a result, phage TP901-1
would remain in contact for a very short time with the specific
host of phage p2, which would be insufficient for adhesion and
further infection (Bebeacua etal., 2013b).

BASEPLATE STRUCTURES AND MECHANISMS OF
ACTIVATION

THE PHAGE p2 BASEPLATE

Based on their genomic location, we hypothesized that orfs 15
(Dit), 16 (Tal), 17, and 18 (RBP) encoded baseplate-related pro-
teins (Table 1). The contiguous cluster of four genes was cloned,
expressed in E. coli and purified, yielding a macromolecular com-
plex of ~1.0 MDa containing ORFs 15, 16, and 18 (Campanacci
etal.,, 2010). ORF17 could not be detected in this assembly, in
agreement with its absence in mature virions. Although crys-
tals of the complex were obtained readily, they did not diffract
beyond 8 A resolution. In contrast, after mixing with an excess
of VHH5, a new complex was obtained that crystallized and
diffracted to 2.6 A resolution (Sciara etal., 2010). The baseplate-
VHH5 (BP-VHH) structure is 230 A wide and 160 A high, displays
a quasi hexagonal symmetry, and is formed from bottom to top
by three ORF16, six ORF15, and six trimers of ORF18, as well as
18 VHHS5 (Figures 6A,B).

ORF15 (Dit) is composed of two domains. The N-terminal
domain (“ring domain” 1-132) shows a split barrel-like fold simi-
lar to that found in phage Lambda gpV (Pell et al., 2009) and Hep, a
T6SS protein (Jobichen etal., 2010; Veesler and Cambillau, 2011).
A long kinked extension (the “belt”) of four B-strands embraces
the next ORF15 molecule in the hexameric ring (Figure 7A). The
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Table 1| List of the components of the baseplates from lactococcal phages mentioned in this review.

Protein\ phage Abbreviations p2 TP901-1 Tuc2009
Tape measure protein TMP ORF14 ORF45 ORF48
Distal tail protein Dit ORF15 ORF46 ORF49
Tail associated lysozyme Tal ORF16 ORF47 ORF50
Baseplate protein (upper) BppU n/a ORF48 ORF51
Baseplate protein A BppA n/a n/a ORF52
Receptor binding proteinBaseplate protein (lower) RBP(BppL) ORF18 ORF49 ORF53

FIGURE 6 | The crystal structures of the baseplates of phages p2 and
TP901-1. (A) Side-view of the phage p2 baseplate rest form in complex with
the llama VHH5 (ORF15/Dit, green; ORF16/Tal, red; ORF18/RBR, blue; VHH5,
gray). (B) Top-view of the phage p2 baseplate rest form (same colors are in
A, but the VHH5 has been removed from the view). (C) Side-view of the

phage p2 baseplate Sr2+/CaZ+ activated form (same colors as in A).
(D) Top-view of the phage p2 baseplate Sr2+/Ca2* activated form.
(E) Side-view of the phage TP901-1 baseplate (ORF46/Dit, green;
ORF48/BppU, orange; ORF49/RBP violet). (F) Side-view of the phage
TP901-1 baseplate (same colors as in E).

N-terminal domains form a tight ring with two layers of B-strands.
This ring delineates a 40 A-wide channel to allow the transit of
the dsDNA genome during infection. The C-terminal domains
(residues 137-275) are located at the ring periphery, and do not
contact each other (Figure 7A). They display a galectin fold supple-
mented by a long extension (the “arm,” residues 147—188) having a
critical role in baseplate assembly via the formation of a three-digit
hand that anchors the N-terminal domain of the RBP (ORF18, see
below; Figure 7A).

ORF16 (Tal) is a 398 residue-long protein harboring four
domains (Figures 7B,C) and its fold is similar to gp27 of myophage
T4 (Kanamaru etal., 2002). In contrast to gp27, the ORF16 trimer
forms a dome at the distal extremity of the baseplate, thereby
closing its central channel (Figures 6B and 7C).

The structure of ORF18 (RBP) is similar to that of ORF18 crys-
tallized alone, with one exception: the N-terminal residues 2—17
of ORF18 in the baseplate structure are ordered and visible in
the electron density. This is due to a tight interaction with the
three-digit hand from the ORF15 galectin domain (Figure 7A).
Furthermore, residues 2—-7 of ORF18 protrude from each subunit,
forming the first strand of the shoulder domain of the next sub-
unit by domain-swapping (Sciara et al., 2010). As with the isolated
protein, each ORF18 trimer is coordinated by three VHH5. The 18
VHHS5 molecules together with the head domains of ORF18 build
a large complex assembled through tight protein—protein con-
tacts that stabilize the ORF18 position and that likely led to better
diffracting crystals. Each ORF16 contacts two ORF15, which in
turn attach two ORF18 trimers. There are no contacts between
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p2 ORF15

TP901-1 ORF46

FIGURE 7 | Crystal structures of components of phages baseplates.

(A) Superimposition of the Dit hexamers structures from phages TP901-1
(ORF46, green), p2 (ORF15, purple), and SPP1 (gp19.1, gold). (B) Ribbon
view of the crystal structure of ORF16/Tal from the p2 baseplate in the rest
form (rainbow coloring, from blue to red). (C) Surface view of the closed

ORF16/Tal trimer from the p2 baseplate in the rest form. (D) Crystal
structure of ORF16/Tal from the p2 baseplate in the Sr2+/Ca2*+ activated
form. Domain 4 has moved away from the rest of the molecule. (E) Surface
view of the open ORF16/Tal trimer from the p2 baseplate in the Sr2+/CaZ+
activated form.

ORF16 and ORF18, and therefore, ORF15 hexamer plays the
role of a central hub to which ORF16 and ORF18 are attached
(Figures 6A,B).

The structure of the baseplate reported above exhibited an
unexpected conformation. Indeed, one would have expected the
head domains of the RBPs (ORF18), which harbor the receptor-
binding sites, to point “downward,” i.e., in the direction of the
host cell surface. Instead, the RBPs were observed in a “heads-up”
conformation, a position not compatible with optimal adhesion.
However, the baseplate crystal structure fitted without rearrange-
mentin the baseplate region of the p2 virion reconstruction (Sciara
etal., 2010).

Since it was noticed that in some cases lactococcal phages infec-
tion required Ca’*, attempts were made to obtain crystals in
the presence of Ca?* or Sr2* without VHHS5. New crystal forms
were obtained readily with both cations, and their structure deter-
mined. Both structures were found to be identical, although the
Sr?+ complex diffracted to higher resolution (Sciara etal., 2010).
The complex comprised six ORF15, three ORF16, and six ORF18
trimers (Figures 6C,D). The most striking feature was that the
RBPs have rotated by ~200°, to orient their receptor-binding sites
toward the distal phage extremity, leading to a “heads down”
conformation (Figures 8 and 9A,B). The ring formed by the
N-terminal domain of ORF15 superposed well between the Sr**-
free and Sr’*-bound structures, but the galectin, arm and hand
domains had moved significantly (Sciara et al.,2010). The Sr>* ion
(or Ca2t jon) is located at the interface between the N-terminal
and the galectin domains of ORF15, and is coordinated by side
chains of residues Asnl10, Asp12, Asn241, Asp246, and the main-
chain carbonyl of Leull (Sciara etal., 2010). The arm domains
have rotated so that they are oriented in opposite direction com-
pared to the “heads-up” structure. The ORF16 trimer was strongly
affected, resulting in the opening of the dome with the concomi-
tant formation of a channel of ~32 A diameter (Figures 6D,
7D,E, and 9A,B), large enough for dsDNA passage. This opening
results from a outward rotation of ORF16 cores with respect to the

channel axis, and the opening of a crevice between domains 1, 2, 4,
and 3 in an iris-like movement (Figures 7D,E). Domain 3 remains
in close contact with the next ORF16 in the trimer (Figure 7E).
In the activated baseplate structure, extensive interactions are
established between ORF16s and ORF18s whereas these protein
components were not in contact in the BP-VHH structure. In fact,
these contacts lock the ORF18s in their “heads-down” conforma-
tion, giving to ORF16 the role played by the VHH5 molecules in
the BP-VHH complex. Remarkably, the head domains are also
maintained by the arm extensions belonging to the proximal Dit
domains in the virion before being released when activation occurs
(Figure 8).

THE PHAGE TP901-1 BASEPLATE
Following the same strategy employed for phage p2, attempts were
made to express the phage TP901-1 baseplate by cloning a segment
encompassing the orfs located between the dit and the rbp genes
(orfs 46—49). Although this strategy was unsuccessful, a complex
comprising only ORFs 46, 48, and 49 (without Tal, ORF47), could
be expressed and purified, and its crystal structure determined at
3.8 A resolution (Campanacci etal., 2010; Shepherd etal., 2011;
Veesler etal,, 2012). The TP901-1 baseplate is 320 A wide and
160 A high, exhibiting an overall sixfold symmetry, and a mass
of 1.76 MDa (Figures 6E,F). From the proximal to distal end, it
is formed by a Dit hexamer (ORF46) surrounded by 18 copies of
BppU (ORF48) holding 54 RBPs (ORF49) organized as 18 trimers
(Figures 10A-D). All together, it forms a complex of 78 proteins
and 54 possible receptor binding sites, organized in six tripods
each containing three BppU and three trimeric RBPs (Figure 9C;
Veesler etal., 2012). Noteworthy, immunization of llamas with
this baseplate complex led to tens of nanobody binders, among
which only two proved to definitively neutralize phage infection
(Desmyter etal., 2013).

The Dit forms a hexameric circular-shaped core with a
80 A diameter, which delineates a 37 A wide central channel
(Figures 6E,F ). Six domains are appended to this core without
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220°

FIGURE 8 | A composite X-ray/EM reconstruction of the p2
baseplate. (A) A 20 A electron density map (blue; ribbon structure
inside) of the rest form (free virion) of the p2 baseplate crystal
structure was calculated and subtracted from the baseplate experimental
EM map. The resulting difference map (yellow) corresponds to a Dit

Ca

—
mechanical
stress

rotation

(ORF15) hexamer. (B) A 20 A electron density map (blue; ribbon

structure inside) of the activated form of the p2 baseplate crystal
structure was calculated and appended to the upper Dit EM map
(yellow). Figure adapted from Bebeacua etal. (2013b). Copyright ©
American Society for Microbiology.

FIGURE 9 | Perspective views of the reconstructions of the p2 phage.
(A) The baseplate rest form and (B) the Ca™* activated form, showing in
forefront the baseplate structure, closed and opened, respectively. (C) The
TP901-1 baseplate. The red dots are located at the RBP saccharides

binding sites in the activated phage p2 and in the phage TP901-1
representations. Red arrow identifies the open channel of phage p2
activated baseplate. Panels (A,B) adapted from Bebeacua etal. (2013b).
Copyright © American Society for Microbiology.

forming contact with each other (Figure 7A). Each monomer is
formed from a N-terminal domain (residues 1-145) with a p-
sandwich, an a-helix, and a B-hairpin, followed by a C-terminal
domain (residues 146-255) folded as a galectin-like B-sandwich
(Sciara etal., 20105 Veesler et al., 2010; Figure 7A). This Dit struc-
ture is similar to that of phages SPP1 (Veesler etal., 2010) and
p2 (Sciara etal., 2010), demonstrating that this module forms the
adsorption apparatus hub in phages of Gram-positive bacteria
(Veesler and Cambillau, 2011) and beyond (Flayhan etal., 2014).
The 18 BppU assemble as six asymmetric trimers connecting
the Dit central core and the RBPs (Figures 6E,F and 10A,B).
Each monomer is composed of a N-terminal globular domain
(1-122; Figure 10C), a linker (123-134), two helices joined by a
kink (135/139-194) and a globular C-terminal domain (195-299;
Veesler etal.,2012). The C-terminal domains fold as -sandwiches

and assemble as a threefold symmetric triangular-shaped trimer
held via two types of antiparallel pairing (Figure 10D). This
structure binds to the three stem domains of three RBP trimers
(Figure 6F). Each BppU C-terminal domain deeply projects a
loop (residues 217-234) in the crevice formed at the top of the
RBP trimer to anchor it to the baseplate via electrostatic interac-
tions (Figure 10E). Moreover, three aliphatic/aromatic residues
belonging to BppU (Ile 219, Phe 226, and Phe 232) fill the center
of the RBP crevice. The conservation of the residues involved in
the BppU/RBP interactions suggests that common architectural
themes are found among P335-phages (Veesler etal., 2012).

The RBP structure is identical to the structure of its isolated
form, with the three domains forming a trimer (Bebeacua etal.,
2010). The three RBPs within each tripod are separated by at least
20 A whereas extensive inter-tripod contacts involving the 12 most
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FIGURE 10 | Structures of components of phage TP901-1 baseplate.

(A) Lateral ribbon view of the ORF48 trimer (salmon, yellow, and violet, for
monomers 1, 2, and 3, respectively). (B) View 90° from (A) (top view) of
ORF48 trimer. The N- and C-terminal domains are labeled, 1, 2, 3,
respectively. (C) The ribbon view (rainbow colored) of the N-terminal domain
of ORF48. (D) The ribbon view (rainbow colored) of a trimer of the

C-terminal domain of ORF48. (E) Left to right: Close-up view of the
electrostatic surface potential of the interacting regions from BppU and the
RBP highlighting their high charge and surface complementarity. Each RBP
trimer (beige) is anchored to the baseplate via a loop extending from each
BppU C-terminal domain (pink) that penetrates the cup formed at the top of
this former protein.

internal RBPs are observed (Figure 6F). The six most peripheral
RBPs do not establish any contact and appear to be highly mobile
(Bebeacua etal., 2010; Veesler etal., 2012).

This baseplate structure is most probably shared, more or
less closely, by several phages from the P355 group and beyond.
EM studies have demonstrated the structural resemblance of the
P335 phage Tuc2009 baseplate with that of TP901-1 (Sciara et al.,
2008; Collins etal., 2013). The major difference between these
two baseplates is the presence of an extra protein termed BppA
in the Tuc2009 baseplate whose gene is located between bppU
and bppL. It was shown that this protein increases the bind-
ing specificity and/or affinity of the Tuc2009 tripod to its host
receptor (Collins et al., 2013). Although the overall sequence iden-
tity between Tuc2009 and TP901-1 phage genomes is higher
than 95%, the RBPs differ significantly: the stem and neck
domains display high sequence identity, while the head domain

displays no identity at all. Indeed, both phages target differ-
ent L. lactis strains (UC509.9 and 3107, respectively), which
likely harbor different pellicles in terms of composition and
structure.

ADHESION MECHANISMS OF LACTOCOCCAL PHAGES

Comparison of the structures of the p2 and TP901-1 baseplates
revealed that the latter is already in a “ready to adsorb” con-
formation without requiring any conformational change. This
observation could be correlated with functional data as p2-like
phages are non-infectious in the absence of Ca?* whereas TP901-
1-like phages do not require Ca?* for infection (Veesler etal.,
2012). These results could be explained by the presence of a con-
served Ca?*-bindingloop in the Dit of p2-like phages that is absent
in TP901-1-like phages, allowing to rationalize the different acti-
vation mechanisms exhibited by these different lactococcal phage
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FIGURE 11 | Putative infection mechanism of L. lactis MG1363 by phage
p2. (A) The phages in the vicinity of the host. (B) Weak interactions are
established between the tail adhesins and putatively the pellicle. (C) Strain-
specific lateral interactions may occur between the phage RBPs of the resting

baseplate $ rest form @ activated form

| dsDNA

baseplate and the specific pellicle, leading, in the presence of Cat+ to

(D) baseplate activation, RBPs rotation, and strong binding involving several
of the 18 saccharide binding sites. Figure taken from Bebeacua etal. (2013b).
Copyright © American Society for Microbiology.

families. Furthermore, before specific interactions elicited by the
baseplate/pellicle binding occur, a specific binding should main-
tain the phage long enough in the vicinity of its host in order to
scout the cell wall for the proper receptor. In siphophages SPP1
(Auzat etal., 2008) and Lambda (Fraser etal., 2006; Pell etal.,
2010) affinity modules have been described in the tail that exert
this role. Whereas phage TP901-1 is devoid of these modules,
phage p2 possess a tail decorated with such modules (Bebeacua
etal.,, 2013b). This observation leads to suggest a more com-
plete and realistic mechanism for phage p2 adhesion to its host
(Figure 11).

CONCLUDING REMARKS AND PERSPECTIVES

The fine specificity of lactococcal phages for their L. lactis
host strains can now be rationalized considering the diversity
allowed by the chemical structure of the “pellicle” phospho-
polysaccharide forming the most external layer surrounding these
cells. Interactions between phage RBPs and the pellicle appear
to be characterized by a moderate affinity but with long enough
adhesion times (thanks to low ke ) to allow initiating infection.
Progresses are being made to decipher the RBP/pellicle recogni-
tion mechanisms in different phages, aiming to understand the
molecular determinants of this specificity.

According to the literature, a large number of phages exhibit a
baseplate, beyond those infecting L. lactis. This probably reflects
the fact that many phages use sugars as receptors. The nominal
weaker affinity for polysaccharides as compared to protein/protein
interactions (e.g., phage T5 pb5 binds to FhuA receptor with
sub-nanomolar affinity; Flayhan etal., 2012) is compensated by
a large number of receptor binding sites (18 for p2, 54 for
TP901-1), although we do not know if all of them are avail-
able for binding (Desmyter etal., 2013). However, due to avidity,
binding of only a few receptors should be sufficient to yield a
sub-nanomolar Kd. The activation mechanism probably acts as
a safety switch allowing promotion of an infection-competent
metastable conformation of the virions only when the physico-
chemical conditions correspond to those of the host ecosystem.
The more stable rest state might be well adapted to dissemination
of the virions as aerosols. This mechanism, shared by Myoviridae,
may encompass a wider range of Siphoviridae beyond lactococcal
phages.
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