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Traditionally, culture-based methods have been used to enumerate microbial populations in
dairy products. Recent developments in molecular methods now enable faster and more
sensitive analyses than classical microbiology procedures. These molecular tools allow a
detailed characterization of cell physiological states and bacterial fitness and thus, offer
new perspectives to integration of microbial physiology monitoring to improve industrial
processes.This review summarizes the methods described to enumerate and characterize
physiological states of technological microbiota in dairy products, and discusses the current
deficiencies in relation to the industry’s needs. Recent studies show that Polymerase
chain reaction-based methods can successfully be applied to quantify fermenting microbes
and probiotics in dairy products. Flow cytometry and omics technologies also show
interesting analytical potentialities. However, they still suffer from a lack of validation and
standardization for quality control analyses, as reflected by the absence of performance
studies and official international standards.
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INTRODUCTION
Fermenting microorganisms play a pivotal role in the develop-
ment of physicochemical and sensory properties of food products.
They also contribute to product safety by limiting the growth of
pathogenic and spoilage microorganisms (Caplice and Fitzgerald,
1999). Therefore, evaluation of cell viability is of great importance
for the fermented food industry in general, and more specifically
for the dairy sector. As fermenting microbes are responsible for
organoleptic properties, it is essential to be able to characterize not
only cells able to divide but also metabolic activities and bacterial
fitness, in order to improve quality controls and end products.
For probiotic products, it is important to ensure the presence of
sufficient numbers of viable cells that will bring about beneficial
health effects (Karimi et al., 2012).

The number of food products that involve microbial activities
during at least one step of their production is substantial. As a con-
sequence, numerous methods have been described to characterize
microbial populations participating in fermentation processes.
Traditionally, descriptive culture methods have been used, and
remain the most employed to determine the presence/absence
of colonies (i.e., cultivable cells) and their numbers. However,
these straightforward methods provide a very simplistic, often
biased, view of the physiological state of microbial populations
in which several subpopulations characterized by various levels of
“viability” and metabolic activity may coexist (Davey, 2011). The
emergence of molecular techniques has opened new opportunities
to characterize the numerous intermediate states of microbial cells,
so much so that the well-being, fitness, and metabolic activities
are now being targeted through the quantification of biomark-
ers, rather than just growth/no growth quantifications (Sieuwerts

et al., 2008; de Vos, 2011). A biomarker is defined by the National
Institutes of Health as “a characteristic that is objectively mea-
sured and evaluated as an indicator of normal biological processes,
pathogenic processes, or pharmacologic responses to a therapeutic
intervention” (Atkinson et al., 2001). We propose an adaptation
of this definition to food processes as “a characteristic that is
objectively measured and evaluated as an indicator of normal
biological processes, pathogenic processes, or cellular responses
to food processes.” Molecular methods encompass fluorescent in
situ hybridization (FISH), flow cytometry (FC),“omics,” and Poly-
merase chain reaction (PCR)-based technologies. Some of these,
such as FC, have been described for a few decades and were suc-
cessfully used for very diverse research purposes (Díaz et al., 2010),
but their routine application to dairy industry analyses is just being
seriously considered (Figure 1). More recently developed, omics
technologies are very promising to better understand microbial
communities and to identify biomarkers, but until now they have
not been applied to quality control purposes. PCR-based tech-
niques are now being routinely used for the analysis of pathogens
and the characterization of technological microbiota in fermented
products (Postollec et al., 2011).

What about their standard application to quantify fitness
biomarkers? What is the gap between all the described meth-
ods and the specific needs of the dairy industry for fast, efficient,
reliable, and standardized methods? This article will review the
existing methods described to enumerate technological micro-
biota and characterize their physiological status that contribute
to quality control of processes and end-products.

In addition to global Internet search, a total of four interna-
tional databases were screened for journal articles, books, patents,
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FIGURE 1 | Evolution of analytical methods, and the gaps between routine controls depending on the targeted microbiota. IEA, immuno-enzymatic
assay; FC, flow cytometry; FISH, fluorescent in situ hybridization; PCR, polymerase chain reaction.

conferences, and symposia proceedings in the field of food science,
food industry, life science, and biomedical information (FSTA®,
BIOSIS® Preview, Medline®, Foodline®). As this article aims at
providing basis for discussion about the real use of these methods
by dairy industry laboratories, current lacks, and future possi-
bilities to facilitate the transfer from research knowledge to food
industry applications, only references published between 2000 and
2013 were considered. Only representative publications for each
technique and type of application were retained, and priority was
given to reviews discussing about specific techniques and their
applications. Methods for strain identification or characterization
were excluded.

CULTURE METHODS, OUTDATED OR ESSENTIAL?
The growth of colonies on nutrient agar is routinely used in all
microbiology laboratories and is the simplest way to detect and
quantify viable microbes. Protocols based on culture methods and
colony counting are validated as reference or alternative methods
according to the European and International Standard Organi-
zation (EN ISO) standards, to detect and enumerate food-borne
pathogens, total microbiota and hygiene indicator microbes. A
few ISO methods are also available to quantify probiotics and
fermenting microbes employed in the dairy industry (Boyer and
Combrisson, 2013).

The main limitations of these enumeration methods are the
lack of discrimination between the targeted microbes and the
endogenous microbiota, the time-to-result, false positive counts,
matrix-dependent efficiency, and last but not least, the impossi-
bility to recover viable but non-cultivable (VBNC) cells, which are
seen as dead. The concept of viability of microorganisms was for
long considered as the ability to multiply on an optimal medium
(Postgate et al., 1961). Then, in the 80s, the concept of VBNC was
developed (Roszak et al., 1984; Roszak and Colwell, 1987), with the
application of additional methods such as Live/Dead detection
staining kits or reverse transcription (RT)-PCR, to differentiate
cells able to divide, VBNC and dead ones. It is now universally
recognized that many intermediate states exist between live and
dead bacteria (Kell et al., 1998; Nebe-von-Caron et al., 2000; Díaz

et al., 2010) and that colonies recovered by application of a culture
method correspond to the cells (or groups of cells) that are able to
replicate under the provided growth conditions.

In spite of the evolution of the viability concept, of the increased
knowledge relating to the physiological states of microbial cells
and of the development of molecular methods that do not dis-
play some of the above mentioned limitations, there is still a great
interest in culture methods as reflected by the regularly published
studies. Various agar plate media were described for selective enu-
meration of probiotic and non-probiotic lactic acid bacteria (LAB)
and Bifidobacterium species in yogurt, cheese, or in pure cultures
(Tharmaraj and Shah, 2003; Van de Casteele et al., 2006; De Car-
valho Lima et al., 2009; Ashraf and Shah, 2011; Saccaro et al., 2011;
Karimi et al., 2012). Probiotic survival in commercial products
including powders, frozen material, micro-encapsulated cultures,
capsules, foods, and drinks was evaluated using various agar plate
media (Corcoran et al., 2004; Phillips et al., 2006; Antunes et al.,
2007; Magariños et al., 2007; Champagne et al., 2010, 2011; do
Espírito Santo et al., 2011; Forssten et al., 2011; Oberg et al., 2011).
Probiotic shelf-life during which the minimal content in viable
cells has to be guaranteed was determined. The parameters influ-
encing probiotic survival in yogurt and cheese were also studied
(Donkor et al., 2007; Karimi et al., 2011). To improve the efficiency
of LAB selective media, many variations of the basic agar formu-
las and culture conditions were proposed, including the use of
antibiotics, different incubation temperatures, NaCl concentra-
tions, pH or carbon sources (Van de Casteele et al., 2006; Antunes
et al., 2007; Saccaro et al., 2011). However, the limitations already
present with older media remain. For microbiologically complex
products, the autochthonous microbiota is often undistinguish-
able from the technological microbiota (Phillips et al., 2006; Ashraf
and Shah, 2011). In addition, most culture methods allow discrim-
inating bacteria at the genus level only, and at best at the species
level (Tharmaraj and Shah, 2003; Ashraf and Shah, 2011; Saccaro
et al., 2011). Matrix effect is another important aspect to consider
when applying a culture method. Indeed, protocols developed to
enumerate microbes in a given food product may not be reliable
with another food product, as exemplified in many studies where
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variable bacterial counts were found depending on the matrix used
(Van de Casteele et al., 2006; do Espírito Santo et al., 2011; Forssten
et al., 2011). This underlines the need to develop specific methods,
but also the lack of quality controls. Indeed, a majority of the devel-
oped methods focus on feasibility aspects but do not demonstrate
to what extent the method is accurate, reliable, biased, and do not
establish the detection limits. Similarly to the matrix effect, a strain
effect may also occur (Van de Casteele et al., 2006), and again, the
lack of quality controls to evaluate whether a given method can be
accurately extrapolated to other strains is blatant. Considering the
currently available cultural tools, it is generally recommended to
use an additional identification method (preferably molecular), to
ensure the accuracy and reliability of the results. This is especially
important with probiotic bacteria enumeration, because minimal
viable numbers have to be present in the product to guarantee
health effects. Therefore, the need for clear recommendations
is obvious. The set-up and validation of methods according to
official standards would highly benefit the dairy industry. Recom-
mendations for each analytical step of the viability assessment of
probiotics in food products, beverages, dry or frozen preparations
have been recently proposed (Champagne et al., 2011). Although
specific for probiotics, most of these recommendations can be
applied to the analysis of fermented products.

Strikingly, the use of chromogenic media has been developed
for the analysis of pathogenic and spoilage bacteria and validated
and normalized methods are available, but nothing of the kind was
set up for technological microbiota. Indeed, colonies of Listeria,
Salmonella, Bacillus cereus, Escherichia coli, and other enterobac-
teria can now be easily distinguished by a large range of colors.
Chromogenic media are user-friendly culture methods, and can be
used without knowledge in molecular biology. Such media would
undoubtedly be very useful for microbiological controls in the
dairy industry, and their development would contribute to fill in
the lack of specific methods.

MICROSCOPY, FLOW CYTOMETRY, AND OTHER
FLUORESCENT LABELING-BASED METHODS: APPLICABILITY
FOR THE FOOD INDUSTRY?
Fluorescent in situ hybridization was a popular technique in
research laboratories in the 90s. It is based on the identification of
cells containing specific nucleic acid sequences. Oligomer probes
conjugated to fluorescent molecules hybridize to their target DNA
or RNA, and fluorescence is detected by microscopic observation
(Bottari et al., 2006). In the last years, a few publications have
described the use of FISH to enumerate dairy microbes. Propi-
onibacteria were detected and enumerated in cheese with good
correlations with bacterial counts (Babot et al., 2011). García-
Hernández et al. (2012) have combined a direct viable count
method with FISH to enumerate viable yogurt strains inoculated
in feces. FISH allows highly specific bacterial detection and, unlike
other molecular techniques, provides information about spacial
distribution of bacteria in their environment due to the use of
imaging. In spite of these advantages, FISH remains difficult to set
up, has low repeatability and artifacts and interferences with the
food matrix often occur. Therefore its application for routine anal-
yses is difficult to implement. The use of other fluorescent labeling
techniques, sometimes combined with FISH, is also described

(Moreno et al., 2006; Zotta et al., 2012). Fluorescent labeling is
always associated with microscopy technologies. While the perfor-
mances of methods based on fluorescent labeling and microscopic
detection are usually very good (Auty et al., 2001; Bernardeau et al.,
2001), a routine use of epifluorescence and/or confocal microscopy
for food industry quality controls is hardly conceivable.

Another technology that has greatly evolved together with the
development of fluorescent dyes is FC. It allows characterizing
individual cells within a cell population, and to discriminate
between various VBNC and physiological states (Sheehan et al.,
2005; Lahtinen et al.,2006; Papadimitriou et al.,2006,2007; Quiros
et al., 2007; Sunny-Roberts and Knorr, 2008; El Arbi et al., 2011;
Zotta et al., 2012), which is a major advantage over culture-based
methods. The excellent review from Díaz et al. (2010) describes
the principle of FC, a range of fluorescent probes associated with
various cellular functions and applications to industrial microbial
bioprocesses including dairy industry applications. Nowadays, FC
appears as the most promising labeling technology (Tracy et al.,
2010; Davey, 2011) and many publications describe its use in
food microbiology. A large choice of dyes is available to tar-
get cell components (nucleic acids, proteins, lipids), intracellular
pH, membrane integrity, intracellular ions, viability markers, and
membrane energization (Maecker et al., 2004; Sheehan et al., 2005;
Papadimitriou et al., 2006; Berney et al., 2007; Quiros et al., 2007;
Comas-Riu and Rius, 2009; Díaz et al., 2010; Doherty et al., 2010;
El Arbi et al., 2011; Zotta et al., 2012). A fine characterization of
the cellular status is possible by combining several dyes (Chen
et al., 2011). The effects of acid, oxidative, osmotic, or cold stresses
encountered during food production or storage on the cellular
status were studied (Ananta et al., 2005; Lahtinen et al., 2006;
Moreno et al., 2006; Papadimitriou et al., 2007; Sunny-Roberts
and Knorr, 2008; Kramer et al., 2009; El Arbi et al., 2011; Zotta
et al., 2012). Population dynamics in batch cultures can also be
characterized (Quiros et al., 2007; Comas-Riu and Rius, 2009;
Lopes Da Silva et al., 2009), as well as early detection of bacte-
riophage infection (Michelsen et al., 2007), membrane changes at
various cheese cooking temperatures (Sheehan et al., 2005), and
antibacterial effects of bacteriocins (Budde and Rasch, 2001). FC
has also been proposed as a means to enumerate viable probiotic
populations in commercial products (Maukonen et al., 2006). Cor-
relations between FC enumerations and plate counts are often very
good during exponential growth and when cells are not submitted
to stress (Bunthof and Abee, 2002; El Arbi et al., 2011). In other sit-
uations FC counts generally outnumber the plate counts by 0.3–1
log of CFU/g (Gunasekera et al., 2000; Quiros et al., 2007; Sunny-
Roberts and Knorr, 2008). Among the other advantages of FC over
traditional culture methods, one should mention the shorter anal-
ysis time and possible automation (Maukonen et al., 2006; Díaz
et al., 2010; Davey, 2011). However, while a whole population cel-
lular activity can be characterized, distinction between near genera
or species remains difficult because specific nucleic acid and anti-
gen probes have not yet been extensively used. In addition, the
quantification – and sometimes detection – limit is relatively high,
for instance 103–104 cells/ml in milk (Gunasekera et al., 2000;
Maecker et al., 2004). Protocol development and data analyses
also require some experience (Davey, 2011). Indeed, depending
on their composition some samples need additional preparation,
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such as a reduction of protein amounts (Gunasekera et al., 2000;
Doherty et al., 2010). False-positives or data dispersion may be
observed with some dyes (Maecker et al., 2004).

In spite of the few limitations, FC appears as a very promis-
ing tool for the food industry (Díaz et al., 2010; Tracy et al.,
2010; Davey, 2011). Beyond the simple enumeration of cells,
FC can provide higher knowledge about microbial fitness and
metabolic activities during bioprocesses. Therefore, this will
improve optimization of technological processes involving dairy
bacteria, prediction of microbial performances along the whole
process and the presence/absence of activity during storage. Such
application would, for instance, benefit the quality control of pro-
biotic products during their shelf life, and inclusion of FC as a
validated technology for this purpose is supported by some authors
(Lahtinen et al., 2006). Today, existing kits and automated systems
are rather dedicated to the detection of industrial and environ-
mental contaminants (Díaz et al., 2010). But FC is currently used
for milk quality control, and an ISO standardized method is being
set-up under coordination of the International Dairy Federation,
for enumeration of LAB in starter cultures and their applications
(International Dairy Federation, 2012). An automated system is
being commercialized by AES-Chemunex to enumerate viable
bacteria in industrial products (http://www.aeschemunex.com).
An important step is still to overcome for FC routine analy-
sis, and developed applications require thorough calibration and
validation of their performances and limitations.

OMIC METHODS: RESEARCH TOOLS ONLY?
The number of sequenced lactobacilli and lactococci genomes has
greatly increased during the last decade (Liu et al., 2005; Makarova
et al., 2006; de Vos, 2011). High throughput functional genomics
and comparative metagenomic studies have also known a strong
expansion and many recent articles describe research applica-
tions of omics technologies in the field of food fermentations
and associated microbes. Transcriptomics and proteomics studies
have enabled analyzing the response of LAB to various condi-
tions of culture, stresses and industrial processes (de Vos, 2011).
For instance, several articles reported the use of omics to char-
acterize gene expression and protein synthesis during growth in
milk or cheese and bacterial adaptation during commercial prepa-
ration (Gitton et al., 2005; Raynaud et al., 2005; Herve-Jimenez
et al., 2008; Azcarate-Peril et al., 2009; Cretenet et al., 2011; Taibi
et al., 2011; Thevenard et al., 2011). Transcriptomic, proteomic,
and metabolic responses of LAB and bifidobacteria to tempera-
ture, acidic or oxidative conditions, bile, osmotic stress, limited
carbon sources, or basic pH were described (De Dea Lindner
et al., 2007; Cretenet et al., 2011; Lee et al., 2011; Li et al., 2011).
The behavior of LAB in mixed cultures in milk, yogurt, cheese
or probiotic products was also evaluated (Herve-Jimenez et al.,
2008; Sieuwerts et al., 2008, 2010; Ruiz et al., 2009; Thevenard
et al., 2011). Moreover, Omics technologies were applied to study
genome evolution and biodiversity in various ecological niches
(Siezen et al., 2004, 2008; Makarova et al., 2006; Rasmussen et al.,
2008; O’Sullivan et al., 2009; Pastink et al., 2009; Taibi et al.,
2011). One of the goals of these omics studies is to identify key
biomarkers that could be used for the screening of new probi-
otic or technologically interesting strains and for the evaluation of

their physiological states in order to improve functionality dur-
ing industrial processes (Reid et al., 2002; Ventura et al., 2007;
Rasmussen et al., 2008; Izquierdo et al., 2009; Sieuwerts et al.,
2010; Thierry et al., 2011). The wealth of data generated by
omics approaches also necessitates powerful tools to analyze and
interpret them. It is interesting to mention the method devel-
oped by Segata et al. (2011) available as an online interface, to
quickly select for candidate biomarkers by screening metagenomic
data.

Usefulness of omics technologies to understand microbial
behaviors and cellular pathways with the aim to optimize indus-
trial processes is obvious. By contrast, applications of these
high throughput tools to improve analytical methods have been
neglected. However, identification of biomarkers that could help
developing new simple and fast analytical methods for quality
controls deserves attention.

THE POPULAR PCR AND PCR-BASED METHODS: READY FOR
ROUTINE ANALYSES?
Since its development in the 80s, PCR has become fundamental
to biological and medical research laboratories (Bartlett and Stir-
ling, 2003). Widely employed for descriptive purposes such as the
detection of microbes and analyses of ecosystems composition in
combination with other technologies, it is now routinely used for
the detection of pathogenic and spoilage microbes in food prod-
ucts (Postollec et al., 2011). Detection of food-borne pathogens by
PCR is recognized by the ISO and standardized through several
guidelines (ISO, 2005a,b, 2006a,b, 2011a,b). PCR is also used to
confirm characteristic colonies from agar plates, as specified by
ISO (ISO, 2007). In the last decade, this amplification technique
has strongly evolved toward quantitative PCR (qPCR; Masco et al.,
2007; Malorny et al., 2008; Le Dréan et al., 2010), and ISO guide-
lines describing the use of qPCR for the detection of food-borne
pathogens in foodstuff have also been developed (ISO, 2012, 2013).
The last 10 years have witnessed a large number of research arti-
cles and reviews describing PCR-based applications for probiotics
and microbes involved in fermentation processes. Arisen from
comparative genomics analyses, these methods aim at specifically
quantifying microbial populations (Friedrich and Lenke, 2006;
Masco et al., 2007; Randazzo et al., 2009; Sheu et al., 2009, 2010;
Abdulamir et al., 2010; Reimann et al., 2010; Sohier et al., 2012), at
assessing the role of microbes in dairy products processes (Col-
lado et al., 2006; Ben Amor et al., 2007; Randazzo et al., 2009;
Masoud et al., 2011), or at allowing simultaneous identification
of dairy and probiotic bacteria containing multiple strains (Wong
and Medrano, 2005; Sul et al., 2007; Senan et al., 2008; Smith and
Osborn, 2009).

Polymerase chain reaction techniques were also used to eval-
uate physiological states and viability of microorganisms during
products processes (Lahtinen et al., 2008; Marco and Kleerebezem,
2008; García-Cayuela et al., 2009; Randazzo et al., 2009; Matijašić
et al., 2010; Meng et al., 2010; Bove et al., 2011). One way to distin-
guish between viable and dead bacteria is to use RT-qPCR which
targets RNA instead of DNA (Matsuda et al., 2009; Falentin et al.,
2010; Reimann et al., 2010). However, due to the short and vari-
able half-life of RNA molecules and difficulties to extract high
quality RNA from complex matrices, the reliable use of RT-qPCR
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remains delicate and necessitates thorough quality controls and
standardizations (Postollec et al., 2011). Other alternatives have
been proposed, among which is the viability PCR approach (Fitti-
paldi et al., 2012). DNA intercalating agents such as propidium
monoazide (PMA) and ethidium monoazide (EMA) are used.
They penetrate only into dead cells with compromised membranes
and subsequently prevent amplification of DNA by PCR. Quan-
tification of viable cells in probiotic products or viable LAB in
fermented milk was proposed using EMA-PCR and PMA-PCR,
and showed good correlations with plate counts (García-Cayuela
et al., 2009; Matijašić et al., 2010; Meng et al., 2010). RT-qPCR
is a method of choice to study physiological states. However, in
spite of the increasing availability of omics data, and due to the
above mentioned difficulties to work with RNA molecules, val-
idated methods to quantify bacterial fitness biomarkers still lag
behind.

Compared to standard plate counts, the reduced time-to-results
and higher specificity of PCR-based methods make them very
appropriate for dairy industry needs (Boyer and Combrisson,
2013). However, a big step leading to routine use for dairy qual-
ity controls is still present because many studies do not take into
account these specific needs. Indeed, robustness, accuracy and
limits of the developed methods are rarely characterized, and
validations on final products are not always performed.

A drawback of the high sensitivity of PCR and RT-qPCR is
that these methods are also very sensitive to small variations
in sample preparation, amplification and mode of data expres-
sion, which may have a major impact on the results. The lack
of consensus on how best to perform experiments and inter-
pret PCR data is regularly pointed out (Bustin, 2009; Boyer
and Combrisson, 2013). MIQE guidelines were published in
order to ensure reproducibility and comparability of data (Bustin
et al., 2009). Recently, a dMIQE checklist proposing the min-
imum information for publication of digital PCR (dPCR; see
below) requirements was set up (Huggett et al., 2013). Based
on the current lack and knowledge we previously proposed a
list of recommendations for better use of qPCR in food indus-
try analyses (Postollec et al., 2011). An ISO standard defines the
minimal requirements for the detection of food-borne pathogens
in foodstuffs by qPCR (ISO, 2011b) but no similar standard is
available for fermenting or probiotic microbes. All these rec-
ommendations should help designing qPCR-based methods as
alternative methods for quantification of dairy microorganisms
that would be further validated according to EN ISO 16140 (ISO,
2003a).

Digital PCR or droplet digital PCR (ddPCR) that uses the
well-known principle of the most probable number (MPN)
employed in microbiology appears as an interesting alterna-
tive to qPCR (Baker, 2012). It is based on amplification of
single target DNA molecules, and thus provides absolute quan-
tification without the need to set up a standard curve, which
would be more accurate than qPCR and should facilitate com-
parability of data (White et al., 2009). As for standard qPCR,
dPCR can also be multiplexed, thus reducing the bias com-
ing from the competition between targets (Ottesen et al., 2006;
Hua et al., 2010; Zhong et al., 2011). Applications of dPCR for
the detection or quantification of microbes in food have not

yet been described. Clinical microbiology studies have reported
good performances of the method and good correlations with
qPCR (Hayden et al., 2013). Other interesting clinical and envi-
ronmental applications [for instance, Devonshire et al., 2013;
Heredia et al., 2013; Kelley et al., 2013; Song et al., 2013] suggest a
promising future for dPCR that could easily be extended to food
microbiology.

EXISTING PATENTS AND STANDARDS
Very few patents targeting nucleic acid sequences of LAB were
deposited. They relate to nucleic acid sequences of L. aci-
dophilus encoding cell-surface protein homologues and stress-
related proteins and their uses (Klaenhammer et al., 2004, 2005),
L. rhamnosus polynucleotides, probes, primers, genetic con-
structs, polypeptides, and methods for using them (Dekker et al.,
2002, 2004; Glenn et al., 2004), Lactobacillus nucleic acids and
proteins involved in stress response and recombinant expres-
sion vectors and host cells (Klaenhammer et al., 2006, 2010).
A patent describing a method to detect live microbiological
contaminants in food, by detecting a mRNA coding for an
elongation factor synthesized by the contaminants, is also avail-
able (Gendre and Brignon, 1998). The nucleic acid molecules
and metabolic products described in these patents could be
used as biomarkers to characterize bacterial activity and fit-
ness.

Only a few ISO standards relating to fermenting LAB or bifi-
dobacteria in dairy products are available. Some of these standards
specify plate-count methods for the enumeration of targeted
microbiota in milk or yogurt (ISO, 1998, 2003c, 2006c, 2010b).
Some others do not refer to bacterial counts but specify the tests for
the identification of the characteristic microorganisms in yogurt
or the composition of starters (ISO, 2003b, 2010a).

CONCLUSION
Table 1 summarizes the current uses and lacks of the main ana-
lytical methods in dairy microbiology. Indeed, many databases
are now available and provide a deeper understanding of the
physiology and metabolic characteristics of strains. Still under-
exploited, they could help developing routine methods to eval-
uate LAB and probiotics physiological states. For instance, the
current biological and physiological knowledge about ferment-
ing bacteria should help developing chromogenic media based
on biochemical reactions specific for intrinsic strain proper-
ties. These chromogenic tools are very straightforward, more
specific than classical agar media, and very relevant for use
in microbiological controls performed by the dairy indus-
try.

Promising FC methods were described for analyses of mixed
cultures in milk, yogurt, and other fermented milk products. They
could be applied for quality controls during processes or during
product shelf life. Nevertheless, they would require careful opti-
mization to prevent artifacts due to the presence of milk proteins.
One must also keep in mind that the quantification limits remain
high and that current probes are not specific for a species or genus
but for a target cell component. Therefore FC would rather be
used to characterize physiological states than for specific counts.
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Table 1 | Current uses and lacks of the most employed analytical methods.

Method Use Requirements for deployment in the dairy industry

Culture-based methods Selective enumeration of LAB and bifidobacteria in pure cultures,

yogurt, cheese

Higher selectivity

Determination of the accuracy, limits and reliability

Survival of probiotics in commercial preparations Validation as alternative methods according to ISO

standardsDetermination of shelf life of probiotic products that ensure

sufficient viable cell numbers

Study of parameters influencing probiotic survival

PCR-based methods Quantification of specific populations Benchmark analytical methods

Study of the role of bacteria in processes Validated studies for the quantification of biomarkers

Multiplex identifications Determination of the accuracy, limits, and reliability

Study of physiological state and viability during processing Validation as alternative methods according to ISO

standardsDifferentiation between viable and non-viable

Flow cytometry Characterization of cellular states in stress conditions (acidic,

oxidative, osmotic, cold stress)

Determination of the accuracy, limits, and reliability

Validation as alternative methods according to ISO

standardsPopulation dynamics in batch cultures

Study of bacterial fitness to help optimizing processes

Early detection of bacteriophages

Membrane changes during cheese cooking

Antimicrobial effects of bacteriocins

Enumeration of viable probiotics in commercial preparations

OMICS data have allowed identifying many key biomarkers,
which could be quantified in order to quickly characterize physi-
ological states. PCR is already routinely used to detect food-borne
pathogens and spoilage microbes. This could easily be extended to
fermenting and probiotic bacteria, providing standardization of
nucleic acid extraction, PCR procedures, and data interpretation.
PCR (and PCR-based methods) would be a useful tool to quickly
select interesting fermenting strains, or to ensure that optimal con-
ditions are present during processes. Today, standards, patents, or
commercial kits that would allow to quickly transferring methods
to study fitness and physiological states of LAB and probiotics are
not available.

Common to all the techniques reviewed in this study, two major
gaps were identified: evaluation of the methods in agreement with
the specific needs of the dairy industry (characterization of the
robustness, accuracy, and limits) and validation according to offi-
cial standards (Table 1). Indeed, while standard methods have
been developed and validated for food-borne pathogens, LAB and
probiotics seem to be the poor relations of the diagnosis indus-
try and method standardization (Figure 1). This is surprising
when considering the amount of quality controls performed by
the dairyindustry.
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