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One of the major environmental concerns of the Deepwater Horizon oil spill in the
Gulf of Mexico was the ecological impact of the oil that reached shorelines of the
Gulf Coast. Here we investigated the impact of the oil on the microbial composition
in beach samples collected in June 2010 along a heavily impacted shoreline near
Grand Isle, Louisiana. Successional changes in the microbial community structure due
to the oil contamination were determined by deep sequencing of 16S rRNA genes.
Metatranscriptomics was used to determine expression of functional genes involved in
hydrocarbon degradation processes. In addition, potential hydrocarbon-degrading Bacteria
were obtained in culture. The 16S data revealed that highly contaminated samples
had higher abundances of Alpha- and Gammaproteobacteria sequences. Successional
changes in these classes were observed over time, during which the oil was partially
degraded. The metatranscriptome data revealed that PAH, n-alkane, and toluene
degradation genes were expressed in the contaminated samples, with high homology
to genes from Alteromonadales, Rhodobacterales, and Pseudomonales. Notably,
Marinobacter (Gammaproteobacteria) had the highest representation of expressed genes
in the samples. A Marinobacter isolated from this beach was shown to have potential
for transformation of hydrocarbons in incubation experiments with oil obtained from the
Mississippi Canyon Block 252 (MC252) well; collected during the Deepwater Horizon
spill. The combined data revealed a response of the beach microbial community to oil
contaminants, including prevalence of Bacteria endowed with the functional capacity to
degrade oil.
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INTRODUCTION
The Deepwater Horizon oil spill was the largest accidental marine
oil spill in the history of the oil industry, spewing an estimated
4.1 million barrels of crude oil into the Gulf of Mexico (Zukunft,
2010). In addition, 1.84 million gallons of chemical dispersants
were applied to assist in oil dispersal (The Federal Intragency
Solutions Group: Oil Budget Calculator Science and Engineering
Team, 2010). Physical barriers, direct collection from the well-
head, skimming, and burning were also implemented in order to
mitigate the effects of the spill. Despite significant efforts to pro-
tect hundreds of miles of beaches, wetlands, and estuaries from
oil, it began washing up on the Gulf Coast by early May 2010
(OSAT-2, 2011). Most recent estimates indicate that up to 22%
of the 4.1 million barrels of oil was either trapped under the
surface of the water as sheen, carried on the water surface as con-
glomerated tar (Lubchenco et al., 2010; Kimes et al., 2013), or
deposited onto surface sediments (US Coast Guard, USGS, and
NOAA, 2010; Mason et al., 2014). Some of the oil washed ashore

where it was either collected or became entrained in sand and
sediments. The contamination of beach ecosystems raised consid-
erable concern due to the potential for detrimental environmental
and economic impacts in the Gulf region (McCrea-Strub et al.,
2011; Sumaila et al., 2012).

Initial research studies of the Gulf oil spill mainly focused on
the fate of the oil in the water column. These studies highlighted
the significant contribution of microorganisms toward the degra-
dation of oil in a deep-sea hydrocarbon plume (Camilli et al.,
2010; Hazen et al., 2010; Valentine et al., 2010, 2012; Redmond and
Valentine, 2011; Baelum et al., 2012; Mason et al., 2012), and in par-
ticular a rapid response of members of the Gammaproteobacteria
to hydrocarbon inputs. Specifically, there was an initial increase
in relative abundance of members of the Oceanospirillales (Hazen
et al., 2010; Redmond and Valentine, 2011; Mason et al., 2012),
followed by members of the genera Colwellia and Cycloclasticus
during later sampling periods (Redmond and Valentine, 2011;
Valentine et al., 2012; Dubinsky et al., 2013).
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Comparably less is known about the fate of the oil that
reached the shore during the Deepwater Horizon spill. One
study by Kostka et al. (2011) investigated the impact of the
oil on beach samples collected several months after the spill
occurred (July and September 2010) at municipal Pensacola
Beach, Florida. By 16S rRNA gene sequencing, the authors
found that the spill had a significant impact on the abun-
dance and community composition of indigenous bacteria in
beach sand with increases in many members of the Alpha- and
Gammaproteobacteria, including some well-known hydrocarbon
degraders (Alcanivorax and Marinobacter) (Yakimov et al., 1998;
Alonso-Gutiérrez et al., 2009). In the same study, several pro-
teobacterial isolates, capable of growth on oil as their sole carbon
source, were obtained from the contaminated samples (Kostka
et al., 2011).

Here we aimed to determine the response of indigenous beach
microbial communities to the oil that washed ashore early in the
spill history. We focused our efforts on Elmers’s Beach, Grand
Isle, LA. This location was one of the most heavily oiled beaches
in the Gulf, where oil began washing up onto the beach in early
May 2010 (OSAT-2, 2011). A total of 153 oil contaminated and
uncontaminated samples were collected at three time points in
June 2010, while the oil continued to accumulate on the beach.
The well was finally capped on July 15, 2010 and declared sealed
on September 19, 2010.

We performed targeted 16S rRNA gene sequencing and total
RNA sequencing (metatranscriptomics) to determine the com-
position of the microbial community, as well as to elucidate
which members were actively degrading hydrocarbons in oiled
samples. In addition, we isolated putative MC252 oil degrad-
ing microorganisms and studied their potential for hydrocarbon
degradation. This study revealed a succession in the microbial
community structure on the beach during early time points in
the Deepwater Horizon oil spill. This study also represents the
first use of metatranscriptome data to highlight the expression
of genes involved in hydrocarbon transformations in a coastline
community.

MATERIALS AND METHODS
SAMPLE COLLECTION
Beach sand cores were collected on Elmer’s Beach
(29.1782853, −90.0684072) at three time points on 03/06/2010
(n = 7), 21/06/2010 (n = 7), and 29/06/2010 (n = 3). Sand cores
(10–20 cm deep) were taken by manual insertion of 40 cm long
polybutyrate plastic liners into the sand. The cores were taken
from locations submerged in the water close to the waterline, at
the waterline, and inland. To circumvent potential contamination
from the polybutyrate liners, each sand core was sub-cored
using a 25 mm diameter sterile copper pipe, and sectioned into
3 cm depth intervals. Additionally, tar-like samples found on the
surface of the beach (n = 24) were collected at each sampling
period by aseptically scraping approximately 2–10 g into sterile
50 mL conical tubes. All samples were kept on ice in the field
and were maintained at 4◦C until further processing. Detailed
information about all the samples, relating to location, date,
core depth, and hydrocarbon composition can be found in
Supplemental Table S1.

ACRIDINE ORANGE DIRECT COUNTS
Approximately 1 g of each sample was homogenized and diluted
in 1X PBS. Samples were filtered through a 0.2 µm pore size
black polycarbonate membrane (Whatman International Ltd.,
Piscataway, NJ). Filtered cells were stained with 25 mg/mL acri-
dine orange for 2 min in the dark. Unbound acridine orange was
filtered through the membrane with 10 mL filter sterilized 1X PBS
(Sigma Aldrich Corp., St. Louis, MI) and the rinsed membrane
was mounted on a slide for microscopy. Cells were imaged with a
FITC filter on a Zeiss Axioskop (Carl Zeiss, Inc., Germany).

PETROLEUM HYDROCARBON CONCENTRATIONS
Total petroleum hydrocarbon (TPH) concentrations were deter-
mined using previously published procedures (Hazen et al., 2010)
with the following modifications: 500 µL of chloroform were
added to 500 mg of sample and then vortexed thoroughly, shaken
for 2 min and sonicated for 2 min. The samples were incubated at
room temperature for 1 h, centrifuged at 2,000 rpm for 5 min, and
50 µL of the extract was removed for analysis on an Agilent 6890N
GC/FID (Santa Clara, CA). The GC was operated with an injec-
tor temperature of 250◦C and detector temperature of 300◦C,
following a temperature program of 50◦C for 2 min, ramped by
5◦C/min until reaching 300◦C and subsequently held for 15 min.
TPH were quantified by integrating all the peaks from 20 to
60 min and comparing to oil standards (0–200 mg/L) obtained
from the Macondo source well during the Deepwater Horizon
spill.

PAH and alkane compound analysis was completed on the
Agilent 6890N equipped with a 5972 mass selective detector and
operated in SIM/SCAN mode. The injection temperature was
250◦C, detector temperature was 300◦C, and column used was
60 m Agilent HP-1 MS with a flow rate of 2 mL/min. The oven
temperature program included a 50◦C hold for 3 min ramped to
300◦C at 4◦C/min with a final 10 min hold at 300◦C. Compound
identification was determined from selective ion monitoring cou-
pled with comparison to known standards and compound spectra
in the NIST 08 MS library. Biomarker profiles were obtained by
running the same samples in SIM mode targeting ions 191 for
hopanes and 217 for steranes. Monitoring these ions has been
widely used for oil source identification and degree of biodegra-
dation (Venosa et al., 1997; Volkman et al., 1983; Greenwood and
Georges, 1999; Hauser et al., 1999; Rosenbauer et al., 2010) and
was utilized here to compare oil biomarker fingerprint to oil from
the MC 252 source oil (Macondo crude). A proxy for biodegrada-
tion within the samples was calculated using the depletion of C25

with respect to C17 and the ratio of branched to aliphatic alkanes.

DNA EXTRACTION
Samples were extracted in duplicate using a modified Miller DNA
extraction method (Miller et al., 1999). Approximately 0.5 g of
each sample was placed into an FT500-ND Pulse Tube (Pressure
BioSciences, Inc., USA). 300 µL of Miller phosphate buffer and
300 µL of Miller SDS lysis buffer were added and mixed. 600 µL
phenol:chloroform:isoamyl alcohol (25:24:1) were then added,
and the tubes were subjected to 25 cycles of 35,000 psi for 10 s
and ambient pressure for 10 s, to improve cell lysis. The mix-
ture was transferred to a Lysing Matrix E tube (MP Biomedicals,
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Solon, OH) and subjected to bead-beating at 5.5 m/s for 45 s in
a FastPrep (MP Biomedicals, Solon, OH) instrument. The tubes
were centrifuged at 16,000 × g for 5 min at 4◦C and 540 µL
of supernatant was transferred to a 2 mL tube with addition of
an equal volume of chloroform. Tubes were mixed and then
centrifuged at 10,000 × g for 5 min, after which 400 µL of the
aqueous phase was transferred to another tube and 2 volumes
of Solution S3 (MoBio, Carlsbad, CA) were added and mixed by
inversion. The subsequent clean-up methods were based on the
MoBio Soil DNA extraction kit according to the manufacturer’s
instructions. Samples were recovered in 60 µL 10 mM Tris and
stored at −20◦C.

COMMUNITY PROFILING AND STATISTICAL METHODS
Small subunit (SSU) rRNA gene sequences were amplified from
duplicate DNA extractions using the primer pair 926f/1392r as
previously described (Kunin et al., 2010). The reverse primer
included a 5 bp barcode for multiplexing of samples during
sequencing. Emulsion PCR and sequencing of the PCR ampli-
cons was performed at DOE’s Joint Genome Institute following
manufacturer’s instructions for the Roche 454 GS FLX Titanium
technology, with the exception that the final dilution was 1e-8
(Allgaier et al., 2010).

Sequence reads were submitted to the PyroTagger computa-
tional pipeline (Kunin and Hugenholtz, 2010) where the reads
were quality filtered, trimmed, dereplicated and clustered at 97%
sequence identity. OTU tables generated from Pyrotagger were
then imported into the QIIME pipeline (Caporaso et al., 2010)
for further analyses. The number of sequence reads in each sam-
ple varied, therefore, the dataset was rarified. Alpha diversity
calculations were performed on rarified data.

Multivariate community analysis was performed within
PCORD 5 software (McCune et al., 2002) using normalized OTU
data (family-level and OTU level). OTUs found in less than two
samples were removed. Outliers were removed from the dataset
using PCORD 5 with a cutoff of two standard deviations. The
Bray-Curtis distance measure was used for non-metric multidi-
mensional scaling (nMDS). Pearson correlation coefficients were
calculated for metadata variables and each axis of the nMDS.

RNA EXTRACTION, AMPLIFICATION, AND SEQUENCING
Total RNA was extracted from three of the oil contaminated
samples as previously described (Kasai et al., 2001) and ampli-
fied using the Message Amp II-Bacteria Kit (Ambion, Austin,
TX) following the manufacturer’s instructions. First strand syn-
thesis of cDNA from the resulting antisense RNA was car-
ried out with the SuperScript III First Strand Synthesis System
(Invitrogen, Carlsbad, CA). The SuperScript Double-Stranded
cDNA Synthesis Kit (Invitrogen, Carlsbad, CA) was used to
synthesize double stranded cDNA. cDNA was purified using
a QIAquick PCR purification kit (Qiagen, Valencia, CA) and
poly(A) tails were removed by digesting purified DNA with BpmI
for 3 h at 37◦C. Digested cDNA was purified with QIAquick PCR
purification kit (Qiagen, Valencia, CA). RNA was prepared for
sequencing using the Illumina Truseq kit following the manufac-
turer’s guidelines. Each library was sequenced on one lane of the
Illumina HiSeq platform using the 150 bp Paired-end technology

resulting in a total of 57 Gb of sequence data for all three
samples.

METATRANSCRIPTOMICS DATA ANALYSIS
Raw Illumina sequence reads from each of three surface-
contaminated samples (one from each sampling date) were
trimmed using the CLC Genomics Workbench v5.0.1 with a qual-
ity score limit of 0.05. Phred quality scores (Q) were imported
into the genomics workbench, where they were converted to error
probabilities, using perror = 10Q/−10 and were trimmed using a
limit of 0.05 as described in the CLC Workbench Manual (http://
www.clcbio.com).

Sequences shorter than 50 bp in length and all adapter
sequences were removed. To characterize the active microbial
community members, unassembled reads were searched against
the Greengenes (DeSantis et al., 2006) database of 16S rRNA
genes using BLASTn with a bit score cutoff of >100.

Transcript profiles from each sample were determined by first
subjecting trimmed unassembled reads from each sample to ORF
calling using Prodigal (Hyatt et al., 2010). Resulting ORFs were
compared to a translated in-house hydrocarbon gene database
using BLASTp. This database was constructed using all KEGG
genes involved in hydrocarbon degradation from the KEGG
database (Kanehisa and Goto, 2000). For the resulting BLAST
outputs, the highest bit score was selected (min bit score >40).
Metatranscriptome data from each sample were normalized to
RecA expression levels. A pairwise statistical comparison of the
BLAST analyses was carried out using STAMP (Parks and Beiko,
2010) using a two-sided Chi-square test (with Yates correction)
statistic with the DP: Asymptotic-CC confidence interval method
and the Bonferroni multiple test correction. A p-value of < 0.05
was used with a double effect size filter (difference between pro-
portions effect size < 1.00 and a ratio of proportions effect
size < 2.00. The metatranscriptome from the June 29 sampling
date yielded an insufficient number of transcripts after quality fil-
tering, thus subsequent analyses of the metatranscriptome data
focused on the June 3 and June 21 samples.

Paired-end Illumina reads from each of the June 3 and June
21 samples were assembled using the De Novo Assembly Tool
within the CLC Genomics Workbench at a word size of 20 and
a bubble size of 50. Reads were scaffolded onto the contigs, which
were submitted to MG-RAST (Meyer et al., 2008) for annotation.
In MG-RAST, functional tables were generated for each sample
against the KO annotation database, using default parameters
(1e-5 maximum e-value cutoff, 60% minimum sequence identity,
and 15 bp of minimum alignment length). To determine which
organisms express genes involved in hydrocarbon degradation,
contigs for each enzyme mapping to a xenobiotic pathway were
annotated against the M5NR database for best-hit organismal
classification using the default parameters. Using default param-
eters for the best-hit classification tool in MG-RAST, contigs
were annotated against the Greengenes database to further assess
presence of microbial community members through 16S rRNA
transcripts. Recruitment plots were generated using a maximum
e-value cutoff of 1e-3 and a log2 abundance scale. Contigs map-
ping to xenobiotic pathways were rarefied to a depth of 20,000
annotated contigs each. Xenobiotic degradation maps annotated
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using Kegg Orthology (KO) were downloaded from the KEGG
server in KGML format and manually colored using the KGML
editor (Klukas and Schreiber, 2007). Charts were generated from
the Krona template (Ondov et al., 2011).

Assembled data are publicly available in the MG-RAST
database under project ID 7309. Raw reads were submitted to
NCBI’s sequence read archive under project ID SUB442498.

ENRICHMENTS AND ISOLATIONS
Bacteria were isolated from sand cores and contaminated beach
samples after incubation under aerobic conditions with 100 ppm
Macondo oil (MC 252) in either Marine broth medium (Difco),
Minimal marine medium (Baelum et al., 2012) or Synthetic min-
imal marine medium. Synthetic Minimal marine medium was
prepared as follows: For 1 L, autoclaved separately 850 mL of
20 g NaCl, 0.67 g KCl, 10 mL each of mineral and vitamin mixes
(Coates et al., 1995), 100 mL of 30 mM phosphate buffer (pH 7.5),
and added to 50 mL of 10.1 MgCl2.6H2O + 1.52 g CaCl2. 2 H2O.
Enrichments that resulted in an increase in turbidity, in addi-
tion to an increase in cell number by microscopic observations,
were transferred periodically into fresh media. After 3–4 transfers,
colonies were obtained by plating on the respective agar plates
and were incubated for 1 week. Isolates were obtained from single
colonies and incubated aerobically in modified Synthetic Seawater
medium with 100 ppm MC252 oil as the sole carbon source.
Within a few days, the oil initially observed as a thin layer floating
on top disappeared with a concurrent increase in cell number. At
this point, DNA was extracted from the cultures using the MoBio
UltraClean Microbial DNA Isolation Kit (MoBio Inc, Carlsbad,
CA). PCR amplification was conducted using universal bacterial
16S rRNA gene primers 27F and 1492R in 50 ul reactions, with a
final concentration of 0.025 unit/µl Taq, 0.2 mM dNTPs, 15 ng of
DNA template, and 0.04 µM primer. Initial denaturation was at
95◦C for 180 s, followed by 25 cycles of melting at 95◦C for 30 s,
annealing at 54◦C for 30 s, extension at 72◦C for 60 s. This was
followed by a final extension of 10 min at 72◦C and samples were
held at 4◦C on completion of amplification. Verified 16S ampli-
cons were purified using the procedure provided in the MoBio
Ultraclean PCR Clean-up kit (MoBio, Carlsbad, CA). Samples
were sequenced using the Applied Biosystems ABI 3730XL DNA
Analyzers with the BigDye Terminator V3.1 Cycle Sequencing Kit
(Applied Biosystems, Carlsbad, CA), according to the manufac-
turer’s instructions.

OIL DEGRADATION WITH ISOLATES
Different selective minimal media were prepared to test individual
isolates for their ability to degrade oil, since the isolates belonged
to different genera and had different nutritional requirements.
Marinobacter isolate 33 was grown in MC252 oil amended with
minimal marine media. Roseobacter isolate 36 was grown in mod-
ified Sistrom’s Minimal Medium (Sistrom, 1962). Oil degradation
experiments were set up in 30 mL of respective media amended
with 20 ppm MC252 oil and 0.1 ppm COREXIT 9500, inoculated
with the respective bacterial cultures, and incubated at room tem-
perature in the dark. The inoculant was grown in the respective
minimal medium amended with 0.1% Yeast extract to promote
biomass. Prior to inoculation, cells were pelleted and washed in

phosphate buffer (pH 7.5) to remove any carry over of media
constituents. Heat killed cells (autoclaved) were used as negative
controls, by 10% inoculation into experimental bottles containing
oil and media.

At periodic intervals during the incubations, experimental
bottles were sacrificed for hydrocarbon analyses to determine the
extent of oil degradation. All glassware used in extraction and
analyses was muffled at 500◦C for 4 h prior to use. To extract
hydrocarbons, the entire culture volume (30 ml) was transferred
from the experimental bottles to a 50 mL glass culture tube with
a Teflon-lined lid. The empty bottles were extracted three times
with 2 mL of chloroform (BDH, ACS grade) to assay hydrocar-
bons sorbed to the glass and the rinses were added to the 50 mL
tube. This mixture was vortexed for 1 min and extracted for 1 h,
after which they were re-vortexed and centrifuged at 2000 rpm
for 15 min to aid the separation of the chloroform from the aque-
ous media layer. The chloroform layer was removed with a glass
pipette into a GC vial and analyzed as described above.

RESULTS
STATE OF THE SAMPLING SITE
On June 3, 2010, the sampling site was almost completely cov-
ered to the tidal berm with viscous oil. Seawater washing up on
the shore contained large, amorphous globules of oil. On June 21,
2010, the beach no longer contained visible globules of oil and the
surface of the sampling site was no longer covered in oil. Instead,
the oil present was in the form of small dried globules, less than
2 cm in diameter. By June 29, 2010, oil and oil mixed with foam
were evident at the sampling site. The beach surface was rust in
color and a light sheen of oil was noted on the seawater surface.

CHEMICAL ANALYSIS
The hydrocarbon profiles of the beached oil and contaminated
sand core samples showed a clear correspondence to the MC252
oil (Supplemental Figure. S1). Total petroleum hydrocarbons
(TPH) ranged from 0 mg/kg to 2072 mg/kg. Several components
in the oil decreased over time and were significantly depleted
by June 21 and June 29 sampling dates. Specifically, there was
a depletion of shorter alkanes (C17–C20) and a correspond-
ing higher relative amount of longer chain alkanes (>C20) and
branched alkanes. Cluster analysis of hydrocarbons revealed a
clustering of the samples according to the level of hydrocarbon
contamination (Supplemental Figure. S2). PAHs were detected
in more than one third of the contaminated samples. Three-ring
PAHs including, fluorene, anthracene, and phenanthracene and
four-ring PAHs, including chrysene and pyrene, were highest in
concentration of the measured PAH compounds, while naph-
thalene and other two-ring compounds were present in lower
amounts and were nearly completely depleted in the less con-
taminated and uncontaminated samples from all time points
(Supplemental Figure S2).

MICROBIAL COMMUNITY ANALYSES
Cell counts ranged from 105 cells g−1 in uncontaminated sam-
ples to more than 107 cells g−1 in highly contaminated, beached
oil samples and this difference was significant (t-test; p = 2.97 ×
10−5). Therefore, there was a significant increase in microbial cell
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density as a result of the hydrocarbon influx on the beach, as
previously reported by (Kostka et al., 2011).

We retrieved >1.6 million non-chimeric, quality filtered 16S
rRNA gene sequences from a total of 153 oiled and uncon-
taminated samples, yielding more than 11,000 sequences per
sample. The sequence data were dominated by OTUs cor-
responding to Alpha- and Gammaproteobacteria (Figure 1).
Several OTUs that were abundant in the oil-contaminated sam-
ples corresponded to taxa with members known to degrade
hydrocarbons, including Rhodobacteraceae, Alteromondaceae,
Pseudomonadaceae, Chromatiaceae, Alcanivoraceae, and other
families within the Oceanospiralles. Samples with the highest con-
centrations of hydrocarbons had higher relative abundances of
Alphaproteobacteria (Figure 1).

Non-metric multidimensional scaling (nMDS) analysis
revealed a pronounced response of the microbial community
to oil contamination (Figure 2). Samples with high TPH con-
centrations clustered separately from less contaminated samples
(Pearson correlation to Axis 1; r = 0.971). In addition, the TPH
concentration was inversely related to several alpha diversity
measures (Figure 2 and Supplemental Figure S3). Co-inertia
analyses revealed that the microbial communities differed
significantly between the two types of contaminated samples:
beached oil and oil-contaminated sand (p-value < 0.001). The
beached-oil samples also clustered separately by time (Pearson
correlation to Axis 1; r = 0.869), suggesting temporal shifts in
the microbial community as a response to the oil spill (Figure 2B
and Supplemental Table S2). The depletion in TPH was also
positively correlated with time of sampling for all of the con-
taminated samples. Shifts in the microbial community aligned
with continuous disappearance of hydrocarbons during the
sampling period (Supplemental Table S2 and Table S3). Several
PAHs and aliphatic hydrocarbon components were among the
highest factors that correlated to Axis 2 on the nMDS plots
(Figure 2C and Supplemental Table S3). Pearson correlations

revealed that Rhodobacteraceae and Alteromonadaceae were
most highly correlated with hydrocarbon concentrations in the
contaminated samples (Supplemental Table S4) with genus and
species-specific differences within sand and beached oil matrices.
For example, sequences with closest homology to Rhodobacter
sp., Jannachia sp., and Marinobacter lutaoensis had the highest
correlation to beached oil samples (Supplemental Table S5),
while Ruegeria sp., Jannachia sp., Alishewanella baltica, and
Pseudomonas pachastrellae correlated with contaminated sand
samples (Supplemental Table S6). Of these highest correlating
OTUs, the Marinobacter and Pseudomonas genera were the most
prevalent and abundant OTUs in the dataset, comprising up to
7 and 4% of the total community, respectively. It should also be
noted, that microbial community composition and hydrocarbon
profiles were highly correlated (Mantel test; t > 0, p = 0.00000,
r = 0.6104).

METATRANSCRIPTOMICS OF OIL CONTAMINATED SAMPLES
In order to assess which hydrocarbon degradation genes were
expressed, we studied the metatranscriptomic profiles of repre-
sentative heavily oiled samples. Approximately 380 million paired
end sequences (57 Gb) were retrieved from three beached oil sam-
ples, one from each sampling date (June 3, June 21, June 29).
Our goal was to determine what types of genes were expressed
in the beach community as a whole in response to heavy oil
contamination. We found that 40–67% of the quality filtered
reads contained ribosomal RNA genes, which was not surpris-
ing considering rRNA depletion was not applied to these samples
prior to sequencing, given the low RNA yields. When analyz-
ing which taxa were most prevalent in the rRNA from the
metatranscriptomes, we saw similar trends to the 16S rRNA
microbial community analysis. Metatranscriptome data match-
ing the Greengenes SSU database were dominated by the pro-
teobacteria (74%), more specifically the Alteromonadales (30%),
Oceanospirillales (11%), and the Rhodobacterales (8%). Further,

FIGURE 1 | Percent abundance of the 13 most abundant bacterial classes using 16S rRNA gene sequences. Samples are ordered from highest to lowest
TPH concentration, left to right.
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FIGURE 2 | (A) Non-metric multidimensional scaling ordination of beached oil
and sand samples based on the relative abundance pyrotag sequences
assigned to family-level taxonomy. The ordination plot was rotated to
maximize the degree of correlation with the total petroleum hydrocarbon
variable. A two dimensional solution was found and the final stress was
0.023. (B) Non-metric multidimensional scaling ordinations of beached oil
based on the relative abundance pyrotag sequences assigned to family-level

taxonomy. The ordination plot was rotated to maximize the degree of
correlation with the time variable. A two dimensional solution was found and
the final stress was 0.039. (C) Non-metric multidimensional scaling
ordinations of sand samples based on the relative abundance pyrotag
sequences assigned to family-level taxonomy. The ordination plot was rotated
to maximize the degree of correlation with the time variable. A two
dimensional solution was found and the final stress was 0.086.

we found that when the metatrascriptome data were compared to
the SSU Greengenes database, 19.2% of sequences annotated at
the genus level matched to Marinobacter.

Even though the samples were dominated by ribosomal genes,
more than 100 million of the quality filtered reads were avail-
able for functional gene annotation. Nearly 17 million of these
reads matched to the hydrocarbon gene database. A total of 3553

different matches to the hydrocarbon database were retrieved
from the metatranscriptomics data with an average of 2357 reads
mapping to each hit. Comparison of the unassembled data to
the hydrocarbon gene database revealed that enzymes involved in
degradation of a variety of hydrocarbons, including PAHs were
expressed; including a variety of monoxygenases and dioxyge-
nases, and those involved in converting PAHs to dihydrodiols
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(Supplemental Table S7). Genes involved in the pathway for gen-
tisate and substituted gentisate degradation were also expressed.
Gentisate is a central metabolite in the aerobic biodegradation of
both simple and complex aromatic hydrocarbons.

Two of the metatranscriptomes were assembled (those from
the June 3 and June 21 sampling dates) yielding approxi-
mately 350,000 and 150,000 contigs (>150 bp), respectively,
(Supplemental Table S8) and the assemblies were also screened
for hydrocarbon degradation genes. When the metatranscrip-
tomes were searched for matches to reference genomes in
the MG-RAST database, Marinobacter aquaeolei strain VT8
was the closest match (94% average identity) (Figure 3).
The most abundant xenobiotic degradation transcripts and
overall functional transcripts matching to this strain were
cyclohexanone monooxygenase, naphthyl-2-methylsuccinyl-CoA
dehydrogenase, naphthyl-2-methylsuccinyl-CoA dehydrogenase,
3-hydroxyacyl-CoA dehydrogenase/ enoyl-CoA hydratase, and a
succinate dehydrogenase complex (Table 1). Genes involved in
motility were amongst the most abundant features of all contigs
mapping to M. aquaeolei and included the CheA signal trans-
duction histidine kinase involved in chemotaxis signaling and a
flagellar hook-associated 2 domain-containing protein (Table 1).

Besides M. aquaeolei, xenobiotic degradation transcripts
mapped to several other Proteobacteria isolates in the MG-RAST
database. For example, transcripts matched to PAH (Figure 4),
n-alkane (Supplementary Figure S4A), and toluene degradation

FIGURE 3 | Recruitment of June 3 metatranscriptome to Marinobacter

aquaeolei strain VT8, the organism to which the largest number of

contigs mapped for both metatranscriptomes. The genome is
approximately 4.8 Mb in size and the leading and lagging strands are
represented by the outer most rings, separated by the blue ring, which
indicates the position within the genome. Metatranscriptomic features are
depicted as bar graphs inside the genome and their hit distribution is
color-coded by e-value exponent as: blue, −3 to −5; green, −5 to −10;
yellow, −10 to −20; orange, −20 to −30; red, less than −30. Figure was
generated using the MG-RAST recruitment plot tool.

genes, matching to sequenced organisms in the Pseudomonadales,
Burkholderiales, and Alteromonadales. Additionally, PAH
(Figure 4), toluene, and benzoate pathways (Supplemental
Figure S4B) mapped to members of the Rhodobacterales and
toluene and benzoate metabolism transcripts mapped to
Rhizobiales. It should be noted, that comparing metatranscrip-
tomic data to KEGG pathways and organisms does not ascribe a
complete pathway to a particular organism.

ISOLATION OF OIL DEGRADING STRAINS FROM THE CONTAMINATED
BEACH SAMPLES
Enrichment with oil-contaminated samples from the sampling
location resulted in isolation of 18 unique bacterial strains
belonging almost entirely to the Gammaproteobacteria. 16S rRNA
gene sequencing revealed that almost half of the isolates shared
highest sequence homology to members of the Pseudomonadales,
including Pseudomonas stutzeri, Pseudomonas pachastrellae, and
Pseudomonas alcaligenes (Table 2). Three isolates belonging to
the Marinobacter genus were retrieved from the more contam-
inated samples. Isolates having >99% sequence homology to
known Alcanivorax, Vibrio, Rheinheimera, and Bacillus sp. were
also retrieved from these samples. Most of the isolates were
halophilic, Gram-negative organisms, and showed the potential
for degrading the MC252 oil.

Because of their high relative abundance in the 16S rRNA
gene data in contaminated samples, two representative isolates,
33 (Marinobacter spp.) and 36 (Roseobacter spp.) were selected
for their ability to grow using MC252 as the carbon source. Total
hydrocarbons were extracted at selected time points and straight
chain alkanes and PAHs (Figure 5) were depleted during the

Table 1 | Top xenobiotic and overall metatranscriptomic functions

mapping to Marinobacter aquaeolei.

Function Relative Relative

abundance June 3* abundance June 21*

XENOBIOTIC

Cyclohexanone
monooxygenase

0.382 0.114

Naphthyl-2-methylsuccinyl-
CoA
dehydrogenase

0.318 0.795

Glutathione S-transferase 0.255 0.000

3-hydroxyacyl-CoA
dehydrogenase / enoyl-CoA
hydratase

0.191 0.568

Succinate dehydrogenase 0.085 0.455

OVERALL

CheA signal transduction
histidine kinase

0.806 0.450

Flagellar hook-associated 2
domain-containing protein

0.467 0.340

Elongation factor Tu 0.042 1.023

Tetratricopeptide TPR_4 0.361 0.909

*Relative abundances are percentages of total reads mapping to Marinobacter

aquaelei.
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FIGURE 4 | Polycyclic aromatic hydrocarbon degradation pathway.

Assembled contigs are mapped to pathway from the KEGG
database and colored in blue for June 3, red for June 21, and purple

for presence in both time points. Pie charts indicating the
best-hit taxonomic classification for each function were generated in
Krona.

incubations for both cultures, although longer alkanes (C25 and
longer) persisted after 15 and 20 days of incubation, respectively
(Supplemental Figure S5). It should be noted that the MC252
source oil used in the incubations was already depleted in the
lighter hydrocarbons at the start of the incubation (Supplemental
Figure S6).

DISCUSSION
Macondo oil from the Deepwater Horizon oil spill that reached the
shore of Elmer’s Beach caused shifts in the indigenous microbial
communities in the beach sand toward a hydrocarbon-degrading
consortium. This observation is consistent with previous studies
that have assessed the impact of oil spills on coastline microbial
communities (Kasai et al., 2001; Maruyama et al., 2003; Medina-
Bellver et al., 2005; Alonso-Gutiérrez et al., 2009; Vila et al., 2010;
Kostka et al., 2011). Kostka et al. (2011) also reported that highly
contaminated samples exhibited higher bacterial cell densities
than uncontaminated samples, and that there was a significant
reduction in bacterial diversity associated with oil contamina-
tion. Here, we found that the contaminated samples collected

from Elmer’s Beach were generally dominated by Alpha- and
Gammaproteobacteria (Figure 1) with up to 60% of the total
microbial community being members of the Alphaproteobacteria.
Other studies in the water column similarly reported a short-
term shift of microbial communities toward specific members of
the Gammaproteobacteria as an immediate response to crude oil
inputs, which were then succeeded within 1 month by members
of the Alphaproteobacteria (Abed et al., 2002; Röling et al., 2002;
Hernandez-Raquet et al., 2006; Hazen et al., 2010; Redmond and
Valentine, 2011; Valentine et al., 2012; Dubinsky et al., 2013).

Microbial community analysis revealed increases in the abun-
dance of the Rhodobacteraceae and Alteromonadaceae in both
the beached surface oil and contaminated beach sand sam-
ples. Therefore the different contaminated samples collected
from the beach shared a similar bacterial community compo-
sition at the family level and exhibited parallel temporal suc-
cessional changes in bacterial community structures driven by
hydrocarbon inputs. During the first two sampling points, mem-
bers of the Alteromonadaceae, with high sequence identity to
Marinobacter lutaoensis, were very abundant in samples with high
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Table 2 | Cultured Isolates retrieved from beached oil and contaminated beach sands.

Isolate number Sample source Phylogenetic order Closest relative in greengenes 16S rRNA gene database

(accession no)

Similarity (%)

2 Sand Vibrionales Vibrio sp. str. QY102 (AY174868.1) 99.86

3 Sand Pseudomonadales Pseudomonas sp. MOLA 58 (AM990833.1) 99.64

4 Sand Vibrionales Vibrio sp. str. QY102 (AY174868.1) 99.79

8 Sand Vibrionales Vibrio sp. str. QY102 (AY174868.1) 99.79

11 Sand Alteromondales Marinobacter sp. str. Libra (AY734434.1) or Marinobacter
hydrocarbonoclasticus str. JL795 (EF512720.1)

99.93

12 Sand Pseudomonadales Pseudomonas pachastrellae str. PTG4-14 (EU603457.1) 97.14

14 Sand Pseudomonadales Pseudomonas sp. Da2 (AY570696.1) 99.43

16 Sand Pseudomonadales Pseudomonas stutzeri str. A1501 (NC_009434.1) 100

18 Sand Bacillales Bacillus sp. str. NRRL B-14911 (AAOX01000059.1) 99.72

19 Sand Pseudomonadales Pseudomonas pseudoalcaligenes str. 14 (AB276371.1) 99.86

23 Sand Chromatiales Rheinheimera sp. 97(2010) str. 97 (HM059656.1) 99.64

25 Sand Alteromondales Marinobacter sp. str. Libra (AY734434.1) or Marinobacter
hydrocarbonoclasticus str. JL795 (EF512720.1)

99.79

26 Sand Pseudomonadales Pseudomonas pseudoalcaligenes str. 14 (AB276371.1) 98.58

31 Beached oil Oceanospirillales Alcanivorax sp. str. Abu-1 (AB053129.1) 99.64

32 Beached oil Pseudomonadales Pseudomonas sp. str. BJQ-B3 (FJ600357.1) 94.52

33 Beached oil Alteromondales Marinobacter sp. Str. NT N31 (AB166980.1) 98.32

35 Beached oil Rhodobacterales Citreicella thiooxidans str. 2PR57-8 (EU440958.1) 99.77

36 Beached oil Rhodobacterales Roseobacter sp. str. 49Xb1 (EU090129.1) 99.93

TPH concentrations. Members of the Marinobacter genus have
previously been shown to be capable of degradation of both
alkanes and PAH compounds with some isolates growing on sin-
gle PAHs as their sole carbon source (Huu et al., 1999; Cohen,
2002; Shieh et al., 2003; Nicholson and Fathepure, 2004; Gerdes
et al., 2005; Márquez and Ventosa, 2005; Brito et al., 2006; Gu
et al., 2007; Cui et al., 2008; Rosano-Hernández and Fernández-
Linares, 2009; Vila et al., 2010; Wu et al., 2010; Dos Santos
et al., 2011). Here we also successfully isolated Marinobacter
strains from contaminated beach samples, which were capable
of growth on MC252 oil as their sole carbon source. Several
previous studies have reported the role of Marinobacter in degra-
dation of oil (Gerdes et al., 2005; Vila et al., 2010; Kostka et al.,
2011).The potential biodegradation of oil by these isolates at
ambient temperature further supports their potential for natu-
ral biodegradation of oil in situ (Figure 5). However, it should be
noted that further work is needed to determine the exact nature of
the hydrocarbon transformations that occurred during the incu-
bations and whether they were mineralized or transformed to
other metabolites.

Several bacterial taxa within the Rhodobacteraceae were abun-
dant in the highly contaminated samples. The Rhodobacteraceae
are metabolically and ecologically diverse, comprised of pho-
toheterotrophs that can grow, either, photoautotropically or
chemotrophically, as well as chemoorganotrophs, fermenters, and
methylotrophs. Several members of the Rhodobacteraceae have
previously been identified in oil polluted soils and marine envi-
ronments and in fact have been shown to dominate oil polluted
environments of the North Sea (Brakstad and Lødeng, 2005)
and Southeast Asia (Harwati et al., 2008, 2009a,b). A few studies
have demonstrated that the addition of photosynthetic bacteria to

oil-polluted wastewater and soil triggers an increase in the abun-
dance of hydrocarbon-oxidizing bacteria and thus enhances the
rate of oil degradation (Martínez-Alonso et al., 2004; Llirós et al.,
2008). Additionally, our cultivation-based experiments revealed
that one representative of the Rhodobacteraceae, Roseobacter iso-
late 36, was also able to grow on MC252 as its sole carbon source.
Overall, our data suggested oil degradation on the surface of
beach sand that is exposed to light may have been promoted
naturally by increases in photosynthetic populations.

Additionally many Pseudomonas species, having highest
sequence homology to P. pachastrellae, were abundant in our
16S rRNA gene and cultivation experiments. Incidentally, simi-
lar pseudomonas strains were enriched from beach sands in the
aftermath of both the Prestige oil spill in Northwestern Spain
(Mulet et al., 2011) and other contaminated coastal sites dur-
ing the Deepwater Horizon spill (Kostka et al., 2011) and these
strains were shown to be central to the biodegradation of both
aliphatic and aromatic hydrocarbons. Additionally, members of
the Alcanivorax were abundant in the oil contaminated sam-
ples, corroborating previous 16S rRNA-based studies (Kasai et al.,
2002; Kostka et al., 2011; Chakraborty et al., 2012).

Metatranscriptome analyses revealed that members of the
Alpha- and Gammaproteobacteria were active in hydrocarbon
degradation. This is the first study to determine functional genes
involved in hydrocarbon degradation that were expressed in
beach samples during the Deepwater Horizon spill. This study
highlighted that metatranscriptomic data mapped to hydrocar-
bon degrading genes, including those involved in PAH, benzoate,
and n-alkane degradation from Alteromonadales, Pseudomonales,
and Rhodobacterales genomes. Data also mapped to other
hydrocarbon degradation genes, including monooxygenases,
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FIGURE 5 | Loss of (A) straight alkanes, (B) branched alkanes, (C) PAHs, and (D) cyclic alkanes during incubation by isolate 33 (Marinobacter spp.) and

isolate 36 (Roseobacter spp.).

dioxygenases, dehydrogenases, and hydratases, from members
of these microbial classes. While this analysis doesn’t necessar-
ily ascribe a complete pathway to a particular organism, these
results suggest that not only are these microorganisms abundant
in the beach microbial community as suggested by the 16S rRNA
gene data, but they may also play an active role in hydrocarbon
degradation.

Marinobacter aquaeolei strain VT8 was the bacterium in
the reference genome database that had the highest abundance
of expressed genes in the oil contaminated samples, includ-
ing those for cyclohexanone monooxygenase and naphthyl-2-
methylsuccinyl-CoA dehydrogenase. In addition, transcripts for
genes involved in chemotaxis and cellular motility mapped to
Marinobacter suggesting that there was an active response to the
hydrocarbon contamination in the beach communities, similar
to the response observed for Oceanospirillales that were detected
in the deep-sea plume (Mason et al., 2012). The high levels of
gene expression observed for Marinobacter in the beach meta-
transcriptome data was supported by the finding that members
of this genus were also enriched in the 16S rRNA data. In addi-
tion, we successfully isolated a representative of Marinobacter
from the contaminated beach samples and demonstrated the abil-
ity of the isolate to degrade MC252 oil. These data suggest that
Marinobacter may have played a key role in degradation of the

oil that reached the coast during the Deepwater Horizon oil
spill.

CONCLUSIONS
During the Deepwater Horizon oil spill, MC252 oil originat-
ing from the Macondo well reached the coastline and Elmer’s
Beach was heavily impacted by the oil in June 2010, during
which time we collected samples. Oil deposited on the shore
appeared to cause a shift in the community structure toward
a hydrocarbonoclastic consortia, as 16S rRNA gene sequencing
demonstrated a diverse array of known petroleum hydrocarbon
degrading microorganisms in these samples. Interestingly, sev-
eral OTUs representative of previously described oil-degrading
phototrophs were abundant in the heavily oiled samples from
the first two sampling periods and these were succeeded
by a diverse array of other potential oil-degrading bacte-
ria. Metatranscriptome profiling revealed that members of the
Alpha- and Gammaproteobacteria expressed genes for hydrocar-
bon degradation in the contaminated samples, suggesting that
they played a key role in potential degradation processes. Of
note, Marinobacter were abundant members of the community
in the oil-contaminated samples and expressed genes for degra-
dation of hydrocarbons. Compared to other oil spills that have
impacted shorelines, such as the Prestige oil spill that occurred in
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a cold pristine habitat, the disappearance of MC252 oil seemed
more rapid. This difference in microbial response could be due
to differences in temperatures between the two sites as well as
differences in other environmental variables, including previous
exposure to oil spills. Overall, this study of the microbial commu-
nity response on the Gulf shoreline may assist in the understand-
ing of microbial proxies for oil contamination in similar coastal
ecosystems.
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