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Metal resistance or tolerance? Acidophiles confront high
metal loads via both abiotic and biotic mechanisms
Mark Dopson1*, Francisco J. Ossandon 2, Lars Lövgren 3 and David S. Holmes 2

1 Department of Biology and Environmental Sciences and Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University,
Kalmar, Sweden

2 Center for Bioinformatics and Genome Biology, Fundacion Ciencia y Vida and Departamento Ciencias Biologicas, Facultad de Ciencias Biológicas, Universidad
Andrés Bello, Santiago, Chile

3 Department of Chemistry, Umeå University, Umeå, Sweden

Edited by:

Axel Schippers, Federal Institute for
Geosciences and Natural Resources,
Germany

Reviewed by:

Johannes Gescher, Karlsruhe Institute
of Technology, Germany
Sabrina Hedrich, Federal Institute for
Geosciences and Natural Resources,
Germany

*Correspondence:

Mark Dopson, Department of Biology
and Environmental Sciences and
Centre for Ecology and Evolution in
Microbial Model Systems, Linnaeus
University, Landgången 3, 391 82
Kalmar, Sweden
e-mail: mark.dopson@lnu.se

All metals are toxic at high concentrations and consequently their intracellular concentra-
tions must be regulated. Extremely acidophilic microorganisms have an optimum growth of
pH <3 and proliferate in natural and anthropogenic low pH environments. Some acidophiles
are involved in the catalysis of sulfide mineral dissolution, resulting in high concentrations of
metals in solution. Acidophiles are often described as highly metal resistant via mechanisms
such as multiple and/or more efficient active resistance systems than are present in
neutrophiles. However, this is not the case for all acidophiles and we contend that
their growth in high metal concentrations is partially due to an intrinsic tolerance as a
consequence of the environment in which they live. In this perspective, we highlight
metal tolerance via complexation of free metals by sulfate ions and passive tolerance to
metal influx via an internal positive cytoplasmic transmembrane potential. These tolerance
mechanisms have been largely ignored in past studies of acidophile growth in the presence
of metals and should be taken into account.
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INTRODUCTION
Microorganisms utilize metals as structural components of
biomolecules, as cofactors in reversible oxidation/reduction reac-
tions and in electron transfer chains during energy conservation.
However, metals can become toxic if their intracellular concen-
trations are too high. Therefore, metal (and metalloid) home-
ostasis and resistance systems are required to maintain optimal
intracellular metal concentrations (Nies and Silver, 2007).

Acidophilic microorganisms (optimal growth pH <3) often
grow in metal rich environments such as acid sulfate soils con-
taining iron sulfides (Wu et al., 2013) and milieus associated with
metal sulfide mining (Dopson and Johnson, 2012). As many met-
als are more soluble at acidic pH, acidophiles are typically exposed
to high metal concentrations and can survive in ≤1000-fold higher
amounts than neutrophilic microorganisms (Dopson et al., 2003).
As a consequence, they are often described as highly metal resistant
and that they have multiple and/or more efficient active resis-
tance systems than are present in neutrophiles. However, some
acidophiles do not appear to have more metal resistance genes
and we contend that their growth in high metal concentrations
is partially due to an intrinsic tolerance as a consequence of the
environment in which they live.

ACIDOPHILE METAL RESISTANCE OR TOLERANCE?
Acidophile metal resistance strategies do not fully explain why
they are able to grow in solution with very high concentrations
of metals. Below we describe largely ignored acidophile metal
tolerance systems such as complexation of free metals by sulfate

ions and passive tolerance to metal influx via an internal positive
cytoplasmic transmembrane potential.

METAL SPECIATION AND ACIDOPHILES
In modern ecotoxicology, it is acknowledged that the distribution
of metals between different chemical species (the speciation) must
be accounted for when their ecotoxic effects are assessed (Chris-
tiansen et al., 2011) and that the free ion is the most toxic form of
the metal (Di Toro et al., 2001). Acidophilic microorganisms often
grow in environments containing high concentrations of sulfate
ions that can complex metal cations at acidic pH. Therefore, the
concentrations of free ions that can enter the cytoplasm and con-
sequently challenge acidophiles are significantly lower than the
total concentration of the metal. As a consequence, it is possible
that extreme metal tolerance in acidophiles is partially a func-
tion of free metal ion complexation by sulfate that precludes the
metal ion entry into the cell. The percentages of free metal ion for
Cu2+, Ni2+, and Zn2+ were between 60 to 70% of the 200 mM
metal ion calculated for each case (i.e., 60 to 80 mM of the metals
were bound as sulfate ions and could not enter the cell; Figure 1).
This was correct for a pH range from 1.0 to 3.5 that is typical for
acidophilic microorganisms. When higher metal concentrations
are present, the sulfate concentration would also likely be higher
(metal sulfide dissolution also generates sulfate ions from oxida-
tion of the sulfur moiety). An example calculated for an extreme
acid mine drainage stream is at Iron Mountain, California that has
5 mM Cu, <1 mM Ni, 31 mM Zn, 324 mM Fe2+, and 39 mM
Fe3+ that may be complexed by 1229 mM sulfate (Nordstrom
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FIGURE 1 |The fraction of total free metal ion (Fi) for each of the

metals. The amount of free metal ion (Fi) of Zn2+ (solid line), Cu2+ (long
dashes), and Ni2+ (short dashes) denoted as a fraction (100% free ion
defined as 1.0) of total metal ion present in each of the species. The metal
concentrations are calculated for systems with 200 mM of the respective
metals, 285 mM SO4

2−, and 50 mM Fe2+. The calculations are made
using the computer code WinSGW (Karlsson and Lindgren, 2006) based on
the speciation code Solgaswater (Eriksson, 1979). Equilibrium constants
are collected from the equilibrium database Hydra/Medusa (Puigdomenech,
2004).

and Alpers, 1999). Modeling of the metal speciation for this case
showed >98% of all the metals other than Fe2+ were complexed by
sulfate (Figure 2). Complexation of free metal by sulfate highlights
the necessity of taking the speciation into account when metal tol-
erance is examined for acidophiles. This has been shown for Zn2+
toxicity to Acidithiobacillus caldus, Acidimicrobium ferrooxidans,
and Ferroplasma acidarmanus (Mangold et al., 2012).

METAL TOLERANCE CONFERRED BY pH HOMEOSTASIS AND pH
OPTIMA
Cytoplasmic membranes have three electrostatic potentials: the
transmembrane potential, the dipole potential, and the surface
potential (Wang, 2012). Acidophiles have an inside positive cyto-
plasmic transmembrane potential (neutrophiles have an inside
negative potential) that is reinforced by the dipole potential.
This helps to maintain pH homeostasis as H+ must travel “up-
hill” against a chemiosmotic gradient to enter the cytoplasm
(Baker-Austin and Dopson, 2007; Slonczewski et al., 2009). The
transmembrane and dipole potentials also provide a hindrance to
metal cation influx. If this barrier is sufficiently strong then only
a portion of the available free metal ion will penetrate the cell and
cause a toxicity response. This potential method of intrinsic metal
tolerance may have conferred the ability to withstand high metal
concentrations before the evolution of more complex pumps.

A further effect of acidophile optimum growth pH is increased
competition between cations and protons for cell surface binding
sites (Heijerick et al., 2002). This is supported by growth exper-
iments with At. caldus where Zn toxicity decreased at lower pH
values (Stefanie Mangold, Ph.D. thesis, Umeå University), poten-
tially as less metal enters the cytoplasm at acidic pH. The possibility
that only a small fraction of extracellular metals cross the cell
membrane is supported by the small increase in intracellular Zn

FIGURE 2 |The aqueous metal speciation in Iron Mountain, California.

The concentrations of free metal ions and metal speciation by sulfate are
calculated assuming the composition of sample 90WA103 from the
Richmond Mine, Iron Mountain (Nordstrom and Alpers, 1999) at pH 0.48. A
temperature of 25◦C is assumed in the calculations and other metal
concentrations are considered to be zero.

observed in resting cells of At. caldus, Ac. ferrooxidans, and F. aci-
darmanus and a lack of a general stress response when these species
are cultured with external concentrations up to 200 mM Zn (Man-
gold et al., 2012). However, it is not supported by the detection of
stress proteins in the presence of more toxic metals such as Cu
in F. acidarmanus (Baker-Austin et al., 2005) and Metallosphaera
sedula (Maezato et al., 2012); Cu and Cd in Sulfolobus metallicus
(Orell et al., 2013); Fe2+ in F. acidarmanus (Dopson et al., 2005);
and in the natural Iron Mountain acid mine drainage community
that is challenged by very high metal concentrations (Ram et al.,
2005).

HIGHER FREQUENCY OF KNOWN METAL RESISTANCE SYSTEMS
A further method by which acidophiles are more metal resistant
is that their genomes contain genes encoding for more metal
resistance systems than in neutrophiles. An example of a mul-
tiple metal resistance systems is the ATPase and Cus systems
encoded on a gene island in Acidithiobacillus ferrooxidans ATCC
53993 that is not present on the type strain that may explain its
higher Cu resistance (Orellana and Jerez, 2011). To test if aci-
dophiles have a higher frequency of metal resistance systems,
the percentage of genes related to Zn and Cu resistance within
the total number of genes encoded in the respected genomes
were separately calculated for 23 neutrophile and 21 acidophile
genomes. The genomes were chosen based on three criteria: (1)
the genome sequences were publicly available at the time that
the analysis was initiated; (2) they were derived from differ-
ent branches of the phylogenetic tree and include Bacteria and
Archaea; and (3) the sequences were derived from organisms
in which the associated metadata was available (e.g., phylogeny,
temperature, and pH optima). The results for both Zn and
Cu showed no significant difference calculated as the average
percentage of genes ±SD for the acidophiles compared to the
neutrophiles (0.28% ± 0.28 compared to 0.17% ± 0.14, respec-
tively, for the zinc resistance gene analysis and 0.25% ± 0.23
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compared to 0.15% ± 0.12, respectively, for copper resistance).
A further pairwise t-test comparing Zn and Cu resistance genes
between acidophiles and neutrophiles based upon the phylogeny
of the species also showed no significant difference for both Zn
(p = 0.49) and Cu (p = 0.37). Although the difference between
the acidophiles and neutrophiles is insignificant, it is interest-
ing that the 7 acidophile genomes with the highest percentage of
Zn resistance genes include all of the analyzed Acidithiobacillus
spp. and Leptospirillum ferriphilum that are commonly identi-
fied in biomining environments and therefore challenged by high
metal concentrations (Okibe et al., 2003; Dopson and Lindström,
2004). However, not all common biomining microorganisms have
higher levels of Zn resistance genes as the highly metal resis-
tant species; F. acidarmanus (Dopson et al., 2004) only contains
0.05% of genes annotated as related to Zn resistance. A possibil-
ity is that species capable of growth at higher pH values, such
as the Acidithiobacillus spp. (Mielke et al., 2003), have a lower
competition between protons and cations for binding sites (dis-
cussed above) that is compensated for by more resistance genes.
In support of this explanation is that the archaea, and in par-
ticular those species capable of growth close to pH 0, tend to
have lower percentages of Zn resistance genes than bacteria. The
higher number of acidophile genes related to Cu resistance may
be due to its higher availability as a free ion at acidic pH com-
pared to neutral conditions. It is not known if these trends also
hold for other metals than Zn and Cu and further studies are
needed.

OXYANIONS, AN EXCEPTION TO THE RULE?
Arsenic is predominantly present in biomining environments as
the metalloids, arsenate (AsO4

3−) and arsenite (AsO3
3− at neutral

pH and AsOH3 at acidic pH). Therefore, the intrinsic acidophile
cation tolerance systems described in this review would not aid
in arsenic resistance. This may at least partially explain why
acidophiles are <100-fold more resistant to arsenic than neu-
trophiles when they are up to 1000-fold more resistant than
neutrophiles to metal cations (Dopson et al., 2003). This would
also be true for other oxyanions, such as for molybdenum and
vanadium.

CONCLUSION
It is very difficult to compare resistance between microbial
species as metal toxicity is dependent on its biological avail-
ability (free ion toxicity), the solution chemistry, and the
variable toxicity of metal ions to specific cellular functions.
Acidophiles have a variety of intrinsic and active metal resis-
tance systems that likely combine to permit their growth in
very high metal concentrations. Also, it cannot be ruled out
that novel, previously undetected resistance systems are present
that contribute to active acidophile metal resistance. The poten-
tial contribution of abiotic factors such as metal speciation
combined with metal tolerance afforded by the internal posi-
tive transmembrane and dipole potentials, and competition for
binding sites to acidophile metal resistance has been largely
overlooked. In the future, these factors should also be taken
into account when assessing acidophile growth in high metal
loads.
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