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The purpose of present study was the simulation of an oil spill accompanied by burial of
significant amount of petroleum hydrocarbons (PHs) in coastal sediments. Approximately
1000 kg of sediments collected in Messina harbor were spiked with Bunker C furnace
fuel oil (6500 ppm). The rapid consumption of oxygen by aerobic heterotrophs created
highly reduced conditions in the sediments with subsequent recession of biodegradation
rates. As follows, after 3 months of ageing, the anaerobic sediments did not exhibit
any significant levels of biodegradation and more than 80% of added Bunker C fuel
oil remained buried. Anaerobic microbial community exhibited a strong enrichment in
sulfate-reducing PHs-degrading and PHs-associated Deltaproteobacteria. As an effective
bioremediation strategy to clean up these contaminated sediments, we applied a Modular
Slurry System (MSS) allowing the containment of sediments and their physical–chemical
treatment, e.g., aeration. Aeration for 3 months has increased the removal of main PHs
contaminants up to 98%. As revealed by CARD-FISH, qPCR, and 16S rRNA gene clone
library analyses, addition of Bunker C fuel oil initially affected the activity of autochthonous
aerobic obligate marine hydrocarbonoclastic bacteria (OMHCB), and after 1 month more
than the third of microbial population was represented by Alcanivorax-, Cycloclasticus-, and
Marinobacter -related organisms. In the end of the experiment, the microbial community
composition has returned to a status typically observed in pristine marine ecosystems with
no detectable OMHCB present. Eco-toxicological bioassay revealed that the toxicity of
sediments after treatment was substantially decreased. Thus, our studies demonstrated
that petroleum-contaminated anaerobic marine sediments could efficiently be cleaned
through an in situ oxygenation which stimulates their self-cleaning potential due to
reawakening of allochtonous aerobic OMHCB.

Keywords: marine anoxic sediments, crude oil pollution, hydrocarbonoclastic bacteria, in situ bioremediation,

aerated slurry system

INTRODUCTION
The worldwide production of crude oil and natural gas is at
the peak, with an estimated worldwide production of 89 mil-
lion barrels per day in 2011 (International Energy Agency, http://
omrpublic.iea.org/). Approximately, a half of this amount is
transported by the sea (Gertler et al., 2010). As follows, world-
wide marine coastal areas are exposed to the oil spills occurring as
a result of accidents or illegal practices (Psarros et al., 2010). The
release of thousands of tons of petroleum hydrocarbons (PHs)
affects the marine environment and causes severe ecological and
economical damage. For example, only the pollution resulting
from the tanker washing or ballast water has been estimated to
contribute about 2 million tons per year worldwide (Ferraro et al.,
2007; Gertler et al., 2010). The recent spillage of 780,000 m3 of

oil into the Gulf of Mexico proved again that human activities
might cause a contamination without precedents. This accident
presented a huge challenge to existing oil spill treatment meth-
ods, and current technologies were not able to cope with the size
and nature of the Deepwater Horizon oil spill. Therefore, there is
an urgent demand for development and optimization of bioreme-
diation techniques that can play a central role in marine oil spill
response contingency plans.

One of the most important issues in bioremediation is the
application (or stimulation) of autochthonous hydrocarbon-
degrading microbial populations. Some marine gammapro-
teobacteria have a high affinity toward PHs. Species such as
Alcanivorax borkumensis (Yakimov et al., 1998), Cycloclasticus
pugetii (Dyksterhouse et al., 1995), Oleispira antarctica (Yakimov
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et al., 2003), Oleiphilus messinensis (Golyshin et al., 2002), and
Thalassolituus oleivorans (Yakimov et al., 2004) constitute a dis-
tinct group of obligate marine hydrocarbon-degrading bacteria
(OMHCB). Following a sudden oil spill event, these organisms
outcompete most of the naturally occurring oligotrophic marine
microorganisms (Hara et al., 2003; Yakimov et al., 2007). Growing
on PHs, aerobic OMHCB use oxygen not only as the terminal
electron acceptor for respiratory energy conservation, but also
as an indispensable reactant in the PHs activation mechanism.
Thus, the stimulation of the OMHCBs degradation activity in
the contaminated site can significantly improve the self-cleaning
potential. Unfortunately, due to metabolic requirements of the
OMHCBs, this type of bioremediation is restricted to either
seawater column or superficial sediments. Due to a high bio-
logical oxygen demand and its slow diffusion into marine sedi-
ments, these compartments below the surface are typically highly
reduced (Engelen and Cypionka, 2009). The realization that acti-
vated oxygen is used to overcome the chemical sluggishness of
hydrocarbons has for some decades favored the view that hydro-
carbons are not biodegradable under anoxic conditions (Widdel
and Rabus, 2001). Although recently, a number of strictly anaer-
obic microorganisms have been shown to utilize PHs as growth
substrates, this process is extremely slow compared to aerobic
degradation and can not be considered as rapid bioremediation
scenario.

The aim of this study was to monitor both immediate and
long-term responses of indigenous microbial consortia to a sim-
ulated oil spill and during bioremediation treatment. Keeping in
mind that the decontamination of PHs-polluted anoxic sediments
is a very sluggish process, the stimulation of indigenous aero-
bic OMHCBs was performed by the in situ aeration of sediments
within a modular slurry system (MSS) to avoid the contamination
of the surrounding aquifer. The succession of microbial commu-
nity and efficacy of petroleum biodegradation in both untreated

(anoxic) external and aerated internal sediments was monitored
during 3 months after contamination. Additionally, the toxic-
ity of sediments was controlled by application of Microtox® and
amphipods Corophium orientale eco-toxicological bioassays.

MATERIALS AND METHODS
EXPERIMENTAL MESOCOSM
The experiment was carried out in rectangular tank of 3.75 m3

capacity (166 cm long, 150 cm deep, 150 cm wide). This reser-
voir was filled with ca. 2000 l of seawater taken directly from
the harbor of Messina (38◦11′42.58′′N 15◦34′25.19′′E). Prior to
use, the seawater was filtered through a 200 μm nylon mesh to
remove large metazoans and detritus. Approximately 1000 kg of
sandy sediments were collected at the same place and artificially
contaminated with Bunker C furnace fuel oil (6500 ppm) to sim-
ulate the oil spill accident. Temperature inside the mesocosm
was maintained about 20 ± 1◦C for all experimental period.
Mesocosm has continuously received seawater at the flow rate
of 1 l min−1. The MSS used in mesocosm experiment is shown
on Figure 1. The MSS was developed especially for in situ aer-
ation (20 l min−1) of polluted sediments without their removal
from contaminated side to avoid the re-contamination of adja-
cent aquifer. The reactor was inserted into the sediment. Sediment
directly beneath the MSS were treated by the reactor, and those
sediments outside of it were undisturbed and served as a control.
All experimentations have been conducted for 3 months. To mon-
itor the succession of microbial population and the efficiency of
petroleum degradation, 1.5–2.0 kg of sediments (up to 10 kg in
total) were sampled on fixed days (T0, T1, T29, and T90) at six
different points inside and outside the MSS. Additionally, mea-
surements of the biochemical oxygen demand (BOD5), reduc-
tion potential (Eh), and eco-toxicological assays (Microtox® and
Corophium orientale mortality test) were monitored. The Eh of
sediment was measured by a Waterproof CyberScan PCD 650

FIGURE 1 | (A,B) Schematic representation (A) and detail (B) of “Modular
Slurry System” used throughout this study. Abbreviation used: A,
Modular Slurry System; B, temperature controller; C, external air pump;

D, steel plate with needles to supply an oxygen into deep sediments; E,
exhaust tube; F, seawater inlet; G, seawater outlet; H, contaminated
sediments; I, overflow regulation system.
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multiparameter (Eutech Instruments) according to the manufac-
turer’s instructions at aforementioned time intervals. BOD5 was
measured using a BOD sensor (VELP Scientifica) after 5 days of
incubation in accordance with the manufacturer’s instructions.

ANALYSIS OF PETROLEUM HYDROCARBONS
Efficiency of petroleum degradation was estimated by the anal-
ysis of total extracted and resolved hydrocarbons (TERHC). At
the fixed time points, TERCH were extracted from sediments
following the 3550C EPA (Environmental Protection Agency)
procedure. Briefly, 500 ml mixture of CH2Cl2: CH3COCH3 (1: 1,
vol/vol) was added to 1000 g of pooled and dried either internal or
external sediments, collected from six different sites (see above).
Mixture was sonicated for 2 min in ultrasound bath (Branson
1200 Ultrasonic Cleaner, Branson USA). Samples were further
shaken at 150 rpm for 30 min, centrifuged for 10 min at 5000× g
and supernatant was passed through a ceramic column filled with
anhydrous Na2SO4 (Sigma-Aldrich, Milan). Same treatment of
pooled and dried sediments was repeated with 500 ml of CH2Cl2
and the obtained extracts were combined and volatilized to the
dryness. Residues were re-suspended in CH2Cl2 prior the gas
chromatography (GC) analysis (Rocchetti et al., 2011). All mea-
sures were performed using a Master GC DANI Instruments
(Development ANalytical Instruments), equipped with SSL injec-
tor and FID detector. Sample (1 μl) was injected in splitless mode
at 330◦C. The analytical column was a Restek Rxi-5 Sil MS with
Integra-Guard, 30 m × 0.25 mm (ID × 0.25 μm film thickness).
Helium carrier gas was maintained at a constant flow of 1.5 ml
min−1. TERCH were calculated using the mean response factors
of n-alkanes, i.e., individual n-alkane concentrations from n-C15

to n-C40, pristane and phytane were calculated for each sample.
To estimate the biodegradation of aliphatic fraction, the evalu-
ation indices n-C17/pristane and n-C18/phytane were selected for
this study. The amount of analyzed TERCH was expressed as ppm
(part per million) or mg kg−1.

ECOTOXICOLOGICAL ASSAYS
The Microtox® luminescence assay was performed on sediment
pore water. Sub-samples of sediment were centrifuged (5000×
g for 45 min, 4◦C) and filtered (0.45 μm nitrate cellulose mem-
brane) to remove the fine suspended particles and maintained at
4◦C until used in assays. Microtox® toxicity tests were conducted
according to the standard procedures EN12457 with the following
modifications. As far as the Solid Phase Test deals with fine par-
ticles that affected the bioluminescence of bacteria (Bulich et al.,
1992; Benton et al., 1995; Ringwood et al., 1997), each experi-
mental sediment sample was compared with a reference sediment
sample with the same granulometry, collected from a pristine
site. Toxicities were reported as effective concentration of toxi-
cant resulting in a 50% decrease in bioluminescence (EC50). EC50

with 95% of confidence intervals were calculated following the
procedures outlined in the Microtox® System Operating Manual
(Microtox, 1982). Amphipods Corophium orientale were delivered
from CIBM (Livorno, Italy). The animals were used following
the procedure reported by Onorati et al. (1999). Briefly, the
juveniles and young adults, which passed through 1000 μm and
retained by 710 μm mesh sieve, were selected for ecotoxicology

experiments. The test was carried out inside 2.5-l glass flasks con-
taining approximately 2 cm layer of sediments and filled with
1000 ml of filtered seawater. The seawater was aerated and kept
at a constant temperature (16 ± 2◦C). Flasks were illuminated
during 12 h daily by a lamp system consisted of six tubes (36W,
120 cm). One hundred amphipods were randomly selected and
introduced into each flask. No food was added to the test and
control chambers. At the end of exposition (10 days), amount
of survived organisms were counted. Missing amphipods were
assumed as dead animals. The sensitivity of the populations
was estimated as a fraction of dead organisms to the initial
amount of added amphipods. All the experiments were replicated
twice.

TOTAL RNA EXTRACTION, REVERSE TRANSCRIPTION-PCR (RT-PCR)
AND 16S rRNA CLONE LIBRARIES
Total RNA was extracted from sediment sample (5 g) using
the FastRNA® Pro soil direct Kit (MP Biomedicals™) as previ-
ously described (Roussel et al., 2009). Extracted RNA from three
different samples was pooled and further converted to cDNA
using First-Strand cDNA Synthesis SuperScript™ II Reverse
Transcriptase (Life Technologies). RT reaction mixtures (20 μl)
contained 1 μl the random hexamer primer mix (Bioline), 30 ng
of RNA, 1 μl 10 mM dNTPs (Gibco, Invitrogen Co., Carlsbad,
CA) and sterile distilled water (14 μl). After heating to 65◦C for
5 min, and incubate on ice for 1 min, the mixture was supple-
mented with 4 μl of 5 × First-Strand Buffer, 1 μl of DTT and
1 μl of SuperScript™. The mixture was shaken and incubated at
50◦C for 30 min. Finally, SuperScript™ enzyme was inactivated by
heating at 70◦C for 15 min. 16S rRNA genes were amplified from
total cDNA using the universal primes (530F [5′-GTGCCAGCM
GCCGCGG-3′] and 1492R [5′-TACGGYTACCTTGTTACGACT-
3′]) (Lane, 1991). The PCR was performed in 50 μl mixture (total
volume) containing 1× solution Q (Qiagen), 1× Qiagen reac-
tion buffer, 1 μM of each forward and reverse primer, 10 μM
dNTPs (Gibco, Invitrogen Co.), 2.0 ml (50–100 ng) of template
and 2.0 U of Qiagen Taq Polymerase (Qiagen). The reaction
(3 min hot-start at 95◦C; 1 min at 94◦C, 1 min at 50◦C, 2 min at
72◦C, 30 cycles; final extension 10 min at 72◦C) was performed
with GeneAmp 5700 (PE Applied Biosystems). The quality of
amplification products was checked by agarose electrophoresis
and purified using Qiaquick Gel Extraction kit (Qiagen). Purified
16S crDNA amplicons were further cloned into the pGEM T-
easy Vector II (Promega), transformed into E. coli DH10β cells
and subsequently amplified with primers, specific for the pGEM
T-easy vector (M13F (5′-TGTAAAACGACGGCCAGT-3′) and
M13R (5′-TCACACAGGAAACAGCTATGAC-3′). Positive prod-
ucts were purified and sequenced by Macrogen (Amsterdam, The
Netherlands). Sequences were checked for possible chimeric ori-
gin using Pintail 1.1 software (Ashelford et al., 2005). For the 16S
rRNA gene sequences, initial alignment of amplified sequences
and close relatives identified with BLAST (Altschul et al., 1997)
were performed using the SILVA alignment tool (Pruesse et al.,
2007) and manually aligned with ARB (Ludwig et al., 2004). After
alignment, the neighbor-joining algorithm of ARB package was
used to generate the phylogenetic trees based on distance anal-
ysis for 16S rRNA genes. The robustness of inferred topologies
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was verified by bootstrap re-sampling analysis, using the same
distance model (1000 replicates).

ENUMERATION OF CELLS BY CARD-FISH
The catalyzed reporter deposition fluorescence in situ hybridiza-
tion (CARD-FISH) was performed using the protocol of
Pernthaler et al. (2002) with some modifications. Briefly, 5 g of
pooled sediments samples were fixed with formaldehyde (2% v/v
final concentrations) and left for 12 h at 4◦C. Fixed sediment sam-
ples were further incubated for at least 15 min with Tween 80
(final concentration, 1 mg l−1) and than sonicated during 20 min
in an Ultrasonic cleaner (Branson 1200, Milan) for the bacterial
dispersion (Kuwae and Hosokawa, 1999). Supernatant samples
were then filtered onto polycarbonate membrane filters (type
GTTP; pore size, 0.2 μm; diameter, 2.5 cm; Sartorius, Göttingen,
Germany). Filters for CARD-FISH counts were embedded in low-
melting point agarose (0.1% wt/vol, Sigma-Aldrich, Milan), dried
at 37◦C for 20 min, and dehydrated with 95% ethanol. Embedded
cells were permeabilized by 1 h of exposition with solution A
(10 mg ml−1 of lysozyme (Sigma-Aldrich, Milan); 0.5 M EDTA,
0.1 M Tris-HCl [pH 8.0]) followed by the 30 min-long incubation
with achromopeptidase (60 U ml−1; 0.01 M NaCl, 0.01 M Tris-
HCl [pH 8.0]) at 37◦C. Filters were cut in sections and hybridized
with 5′-horseradish peroxydase (HRP)-labeled oligonucleotide
probes as described by Pernthaler et al. (2002). Probes used in
this work are listed in Table 1. After the hybridization and ampli-
fication steps, slides were examined using a epifluorescence with
Axioplan 2 Imaging (Zeiss; Carl Zeiss Inc., Thornwood, NY)
microscope. All results were expressed as number of cells per gram
of sediment.

DETERMINATION OF CELL NUMBERS BY QUANTITATIVE PCR (qPCR)
qPCR method was employed to determine the relative cell densi-
ties of Alcanivorax, Marinobacter, and Cycloclasticus in the sed-
iment samples. Primers used through this study are listed in

the Table 2. Primers were based on the sequences of Alcanivorax
alkane hydroxylase gene (alkB2), Marinobacter alkane hydroxy-
lase gene (alkB), and Cycloclasticus aromatic ring-hydroxylating
dioxygenase (phnA) gene. Primers for alKB2 and phnA genes were
previously designed and validated for qPCR elsewhere (McKew
et al., 2007; Gray et al., 2011). The primers specific for the alkB
gene of Marinobacter were designed through this study using
Primer Express software Primer Express software, version 2.0
(Applied Biosystems, Foster City, Calif.) with reference to the
Marinobacter hydrocarbonoclasticus (FO203363).

Total DNA was extracted from 2.0 g of sediment samples col-
lected at selected time scales from three different points inside
the MSS by using a Bio101 FastDNA SPIN kit as described by
the manufacturer (Bio101, Inc., Vista, Calif.). Extracted DNA was
dissolved in 50 μl of TE buffer (10 mM Tris-HCl, 1 mM EDTA
[pH 7.5]) and quantified using a NanoDrop ND-1000 spec-
trophotometer (Celbio). The quality of the extracted DNA was
analyzed by electrophoresis on a 1.0% agarose gel. The qPCR
was performed with absolute quantification method in an ABI
Prism 7300 Real-time PCR System (Applied Biosystems) in a
total volume of 25 μl, consisting 12.5 μl of SYBR green mas-
ter mix, 200 nM of each primers, and 50 ng of template DNA.
The volume of each reaction was adjusted to 25 μl by adding
DNase-free water. The cycling parameters for the qPCR ampli-
fication were as follows: an initial denaturation step at 95◦C for
10 min, followed by 45 cycles of denaturation at 95◦C for 15 s
and annealing/elongation at 60◦C for 60 s. A dissociation step was
added to check for primer-dimer formation. A tenfold serial dilu-
tion series of genomic DNA ranging from 10 to 108 copies per
reaction was used in triplicate to create the standard curve for
quantification. Serial dilutions were prepared once for each tar-
get and used for real-time quantification. From the slope of each
curve, PCR amplification efficiency was calculated as it described
elsewhere (Rasmussen, 2001). Obtained slope values, (−3.17 for
alkB2, −3.29 for alkB, and −3.37 for phnA) fell within the optimal

Table 1 | CARD-FISH specific probes used in the present study.

Probe Sequence (5′ to 3′) of probe FA (%) Source

Eub338 GCTGCCTCCCGTAGGAGT 35 Amann et al., 1990

Marinobacter sp. ATGCTTAGGAATCTGCCCAGTAGTG 20 Karner and Fuhrman, 1997

Cycloclasticus sp. GGAAACCCGCCCAACAGT 20 Karner and Fuhrman, 1997

Alcanivorax sp. CGACGCGAGCTCATCCATCA 20 Karner and Fuhrman, 1997

FA: percentage of formamide in hybridization buffer.

Table 2 | qPCR primers used in the present study.

Gene Forward Reverse Organism Amplification Source

efficiency (E)

alkB2 CGCCGTGTGAATGACAAGGG
CGACGCTTGGCGTAAGCATG

Alcanivorax 99.6% McKew et al., 2007

alkB TCCTTTGGTATGGCGCAGTT
ACGATCCTGTTCAAGCCGAG

Marinobacter 97.3% This study

phnA CGTTGTGCGCATAAAGGTGCGG
CTTGCCCTTTCATACCCCGCC

Cycloclasticus 96.2% McKew et al., 2007
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range corresponding to an efficiency of 99.6, 97.3, and 96.2%,
respectively. Amplicon numbers were quantified against the stan-
dard curve using automatic analysis settings for the Ct values and
baseline settings. Detected target genes were converted to cell den-
sity in sediments (cells gram−1) assuming that all three genes
present as a single copy per genome.

STATISTICAL ANALYSIS
For statistical analyses, clones from each 16S crDNA library were
separately considered to define phylotypes, or operational taxo-
nomic units (OTUs) at cutoff of either 95 or 97% of sequence
identity (Kemp and Aller, 2004). Clustering of sequences was per-
formed using Dotur program (Schloss and Handelsman, 2005).
Various parameters for each clone library, such as diversity index,
rarefaction analysis, taxa, total clones, singletons, Shannon dom-
inance, equitability, Simpson and chao2 were calculated by PAST
version 2.17c (http://folk.uio.no/ohammer/past; Hammer et al.,
2001). Coverage values given as C = 1 − (n1/N), where n1 is
the number of clones which occurred only once in the library of
N clones (Good, 1953), were calculated to determine how effi-
cient clone libraries described the complexity of original bacterial
community. The Primer 6 ecological software package devel-
oped by the Plymouth Marine Laboratory (Clarke and Gorley,
2006) was employed to perform the Hierarchical Cluster Analysis
(HCA) (Clarke, 1993). We applied HCA on microbial biodiver-
sity and Bray-Curtis similarity on relative abundance matrix of
the OTUs detected at different sampling time. Significant differ-
ence of the microbial assemblages derived from both treated and
control samples at the different sampling times was detected via
the P-test significance and principal coordinates analysis (PCoA)
using UniFrac program (http://bmf.colorado.edu/unifrac/index.
psp, last access: 24 July 2008) (Lozupone et al., 2007). Differences
in cell number per gram of sediment detected by DAPI, CARD,
and qPCR between different samples was examined by analysis
of variance (ANOVA) on ranks (Holm_Sindak method). Relative
importance of each treatment group was investigated by Multiple
Comparisons vs. Control Group comparison test. Calculations
were carried out using SigmaStat software for Windows, ver.

3.1 (Copyright 1992–1995; Jandel Corporation). Differences were
considered significant at P < 0.05.

NUCLEOTIDE SEQUENCE ACCESSION NUMBERS
To avoid the submission of identical sequences obtained among
411 analyzed clones, only 98 distinguishing 16S rRNA gene
sequences have been deposited in the DDBJ/EMBL/GenBank
databases under accession numbers KF896304-KF896401.

RESULTS
GEOCHEMICAL PROPERTIES OF THE SEDIMENTS
Oxygen consumption in the external superficial sediments (0–
5 cm) was monitored during all 3 months of experimentation.
These values were compared with BOD in the internal MSS sed-
iments taken at the beginning (T0), after 1 day (T1), 1 month
(T29), and after 3 months (T90) of experimentation (Figure 2).
Sediments outside of the MSS exhibited constant BOD rates of
approximately 2.5 mg O2 day−1 kg−1 during all period of exper-
imentation, whereas the aerated sediments inside of the MSS
demonstrated a progressive increment of oxygen consumption.
Maximum of oxygen demand (16.0 mg O2 day−1 kg−1) was
obtained at T29 and afterwards the BOD values trended to dimin-
ish, reaching 10.0 mg O2 day−1 kg−1 at the end of experiment.
Outside the MSS, the amendment of the Bunker C furnace fuel oil
turned initially oxygenated (T0, Eh = 77 ± 4 mV) sediments into
highly reduced ones (Figure 3). The external sediments below
5 cm became oxygen-depleted already within 1 day after spiking,
obviously due to the active respiration of aerobic heterotrophic
microorganisms. The reduction potential of external sediments
decreased continuously during the experiment and after 3 months
reached the Eh values of −345 mV in the deepest layers. In con-
trary, inside the MSS the sediments remained aerobic during all
period of bioremediation effort.

HYDROCARBON ANALYSIS
Before the addition of 6500 ppm of Bunker C fuel oil into the
mesocosm, the total hydrocarbon concentration in the original
Messina harbor sediments was estimated at the level of 120 ppm.

FIGURE 2 | Dynamic of oxygen consumption (BOD values) measured in MSS external (untreated) superficial sediments (white bars) and internal

sediments (gray bars). Error bar indicates the standard deviation of triplicate measurements.
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FIGURE 3 | Reduction potential (Eh) measured in external anaerobic

sediments (AN) and in internal aerated sediments (OX) during 3

months of experimentation.

The PHs fingerprint analysis showed a clear dominance of alkyl-
aromatic derivatives (97%) over aliphatic hydrocarbons (3%)
(data not shown). Once Bunker C fuel oil was added to the sedi-
ments, the TERHC fraction mass balance was shifted toward the
dominance of aliphatic and naphthenic hydrocarbons (70%) over
aromatics (30%). The degree of the Bunker C fuel oil degradation
in both, aerated MSS and in the untreated anoxic sediments was
examined at the end of experiment (T90). The concentration of
PHs, especially aliphatic hydrocarbons was normalized using the
pristane/phytane ratio, and the values obtained in triplicate sub-
samples were averaged. In the aerated internal MSS sediments,
the total degradation of Bunker C fuel oil TERHC fraction was
97.7 ± 0.9%. In contrast, external anoxic sediments contained
more than 81.8 ± 1.2% of initially added Bunker C fuel oil.
Additionally, we performed the gravimetrical analysis of total
extracted hydrophobic fraction (TEHF) in the sediments. The
TEHF values inside the MSS accounted for 780 ± 80 mg kg−1

dry sediment weight, whereas in concordance with extremely
slow biodegradation rates under anaerobic conditions, the exter-
nal sediments contained more than 5400 ± 120 mg kg−1 of
hydrophobic material. As shown in subsequent section, TEH frac-
tion seems be primarily responsible for the observed toxicity of
Bunker C fuel oil.

ECOTOXICOLOGICAL ANALYSIS
According to standard guidelines of Italian Institute for
Environmental Protection and Research (ISPRA, 2013), eco-
toxicological analysis of hydrocarbon-contaminated sediments
were carried out using the Microtox® luminescence and
amphipod Corophium orientale bioassays. Eventual decrease in
Microtox® bioluminescence was measured on sediment pore
water, whereas the rate of amphipods mortality was tested by
direct exposition of C. orientale with the petroleum-contaminated
sediments during 10 days. Following the EN12457 protocol, we
combined the sediment pore water with sterile seawater in both
1:2 and 1:10 ratios (vol/vol) and no significant level of biolumi-
nescence decay has been observed. As it reported in EN12457
protocol, Microtox® bioluminescent assay tested on sediment
pore water typically exhibits an underestimated sensitivity against
highly hydrophobic contaminants, such as PHs. This is mainly
due to both extremely low solubility of these compounds in water
and an almost irreversible adsorption to a sedimentary matrix.
Corresponding to the standardized protocol described by Onorati
et al. (1999), the toxicological analysis of the sediments was per-
formed with amphipods C. orientale. Addition of Bunker C fuel
oil to the sediments (T0) caused the mortality in almost all organ-
isms (98 ± 2%). The petroleum-contaminated external sediments
remained highly toxic during all 3 months of experimentation
with mortality indices exceeding 90% (Figure 4). At the same
time, the toxicity of polluted internal MSS sediments dropped
almost twice after 1 month of aeration (T29) and continued to
decrease till the end of bioremediation treatment, approaching
the vitality of 62% of amphipods exposed to T90 sediments. This
indicated that the internal MSS sediment at T90 was significantly
less toxic than their external counterpart.

DIVERSITY AND SUCCESSION OF BACTERIAL COMMUNITIES DURING
BIOREMEDIATION AND NATURAL SEDIMENT AGEING
To monitor the succession of metabolically active microbial
communities during the bioremediation treatment, five 16S
rRNA transcript libraries were established. 450 clones from
these libraries were randomly selected and analyzed. Among
those, 411 sequences were included into phygenetic analysis
(T0, 96 clones; T1, 83 clones; T29, 80 clones; T90, 90 clones
and T90OUT, 62 clones). The majority of native T0 clones were
affiliated with the Gammaproteobacteria (51%), followed by the
Alphaproteobacteria (22%). Other proteobacteria, belonging to
microaerophilic and anaerobic Epsilon- and Deltaproteobacteria
were also present, although in significantly lower numbers (6
and 2% of all clones analyzed, respectively). Remaining frac-
tion of T0 microbial community consisted of the members of
Cyanobacteria (7%), Chloroflexi (5%), Verrucomicrobia (3%), and
Bacteroidetes (2%) (Figure 5). At the level of the Class, the derived
from members of Gammaproteobacteria were predominant in all
analyzed MSS internal sediments, with percentage ranging from
73 to 88%. There was a 50%-reduction of Alphaproteobacteria
observed during first month of sediment treatment (decrease
from 22 to 11%). Further on, their numbers returned to the initial
(T0) values by the end of experiment. No Deltaproteobacteria–
related organisms were detected in the internal MSS sediments
throughout the experiment. A completely different scenario was
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FIGURE 4 | Mortality of Corophium orientale organisms in polluted (AN), treated (OX), and control (native) sediments. Error bar indicates the standard
deviation of duplicate measurements.

FIGURE 5 | Dendrogram representation of taxonomic analysis of 16S

crDNA clones retrieved from five libraries. The numbers at the base of
columns represent the percentage of clones in corresponding libraries.

Abbreviations used: PB, Proteobacteria divisions; UC, Unaffiliated cluster.
Bacterial groups involved in, or associated to, hydrocarbon degradation are
marked in bold and red.

observed regarding the succession of microbial community thriv-
ing in the external anoxic sediments. As we mentioned above,
after loading the Bunker C fuel oil, the sediments became highly
reduced within a short period of time and were inhabited mainly
by the members of Deltaproteobacteria (96.8%). The analysis
of 16S rRNA transcripts from T90OUT clone library revealed a
notable prevalence of hydrocarbon-degrading or hydrocarbon
contamination-associated Deltaproteobacteria (90.3%). In par-
ticular, almost two-thirds of all clones (40 out of 62 clones

analyzed) were closely related to the uncultured bacterium RII-
AN044 found in anoxic polluted sediments after the Prestige
oil spill (Acosta González et al., 2013). More than 16% of
clones revealed >98% of similarity to the deltaproteobacterium
NaphS6, capable of naphthalene and 2-methylnaphthalene degra-
dation (Wilkes et al., 2008). Almost 10% of T90OUT clones were
closely related to the n-alkanes- and n-alkenes-degrading strain
Desulfatibacillum aliphaticivorans (Cravo-Laureau et al., 2004)
(Figure 6).
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FIGURE 6 | Phylogenetic affiliation of the Eubacteria clones retrieved in

Messina harbor native sediments and during mesocosm experiment.

Neighbor-joining analysis using 1000 bootstrap replicates was used to infer
tree topology. The scale bar represents 10% of sequence divergence.

Bootstrap values ≥50 are shown as open circles. Cenarcheum symbiosum
was used as the outgroup. The scale bar represents the expected number
of changes pet nucleotide position. Sequences from this study are
indicated in bold.

In accordance with the type of the contaminant load, the
majority of analyzed clones had highest Blastn homologies with
sequences related to PH-degrading or petroleum contamination-
associated organisms belonging to the Gamma-, Alpha- and
Deltaproteobacteria (Figures 6–8). At the genus and species level,
more than 10% of initial microbial population was attributed
to obligate marine hydrocarbonoclastic bacteria Thalassolituus
oleivorans (Yakimov et al., 2004). This organism seemed to be
sensitive to Bunker C fuel oil, since its abundance decreased
to 2% after 1 day of oil exposition and disappeared after-
wards. Three other OMHCB belonging to genera Alcanivorax,
Cycloclasticus, and Marinobacter demonstrated similar dynamics,
i.e., being in relative minority in the beginning of the experi-
ment, they became predominant in T29 microbial community
and disappeared in the T90 library (Figure 5). Noteworthy, the
addition of Bunker C fuel oil to sediments drastically changed
the structure of T1 microbial community and the propor-
tion of aforementioned Gammaproteobacteria-related OMHCB
decreased threefold compared with the initial population. In con-
trast, previously undetected organisms related to dinoflagellate-
associated Rugeria sp. and to three deep-branching clusters of

Gammaproteobacteria accounted for 77% of all analyzed T1

clones. Having only 16S rRNA gene sequences at our disposal,
we cannot state that these uncultured organisms were involved in
biodegradation activity, but they definitely possessed a remark-
able resilience to the toxicity of Bunker C fuel oil (Païssé et al.,
2008, 2010).

Additionally to 16S rRNA-based analysis, the diversity and
succession of both, total bacterial population and hydrocarbon-
degrading bacteria, was assessed through the combined appli-
cation of CARD-FISH and qPCR. Using the Eubacteria-specific
probe Eub338, the concentration of CARD-positive cells at the
beginning of experiment was estimated at 2.98 ± 0.17 × 106

cells gram−1 (Table 3). Their numbers decreased by 20% within
1 day after the oil spill simulation (P < 0.001, n = 10) and
reached initial values at the end of experiment (2.79 ± 0.12 ×
106 cells gram−1). Noteworthy, a tenfold increase in the num-
ber of CARD-positive cells (2.95 ± 0.11 × 107 cells gram−1) was
detected after 29 days of oil spill, which fully corresponded to
the observed dynamics of the BOD and clone libraries’ val-
ues (Figure 2). Before the oil spill simulation (T0), the frac-
tion of Alcanivorax-related cells, detected with the CARD-FISH
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FIGURE 7 | Phylogenetic affiliation of the Gammaproteobacteria clones

retrieved in Messina harbor sediments and in mesocosm experimen-

tation. Neighbor-joining analysis using 1000 bootstrap replicates was used to

infer tree topology. The scale bar represents 10% of sequence divergence
Bootstrap values ≥50 are shown as open circles. Cenarcheum symbiosum was
used as the out-group. Sequences obtained in this study are indicated in bold.
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FIGURE 8 | Phylogenetic affiliation of the Alphaproteobacteria clones

retrieved in Messina harbor sediments and in mesocosm experimen-

tation. Neighbor-joining analysis using 1000 bootstrap replicates was used to

infer tree topology. The scale bar represents 10% of sequence divergence.
Bootstrap values ≥50 are shown as open circles. Cenarcheum symbiosum was
used as the outgroup. Sequences obtained in this study are indicated in bold.

genus-specific probe, accounted for 7.7% of all Eub338-positive
cells. After the addition of Bunker C fuel oil, their abundance
increased within 1 month up to 27.5%. According to the anal-
ysis of 16S crDNA clone libraries, Alcanivorax became extinct
in microbial community thriving in the MSS internal sediments
at the end of experiment. Dynamics of the Marinobacter-related
bacteria was comparable with that of Alcanivorax population,
with the only exception that the Marinobacter cells decreased their
abundance by 44% at T1, likely due to the higher sensitivity to the
load of fuel oil. Compared to an initial density, their population
increased twofold at T29, from 4.5 ± 0.2 to 9.0 ± 0.1 × 105 cells
g−1. Although due to the overwhelming growth of Alcanivorax,

the relative abundance of Marinobacter during bioremediation
experiment has never exceeded its initial values (15.2% of all
Eub338-stained cells at T0) and at T29 (corresponding to the
maximum of cell density in MSS) accounted for only 3% of
total microbial community. Bacteria stained with Cycloclasticus-
specific CARD-FISH probe, initially present in mesocosm sedi-
ments at concentration of 1.14 ± 0.15 × 105 cells gram−1, were
not detected at T1, whereas their concentration increased four
times after 1 month of the oil spill simulation. Similarly to the
dynamics of Alcanivorax, neither Marinobacter, nor Cycloclasticus
were present in the MSS microbial community at the end of
experiment.
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Succession of hydrocarbon-degrading bacteria during the sed-
iment bioremediation was additionally quantified by qPCR.
Based on the a priori higher sensitivity of qPCR approach,
obtained numbers were slightly higher than those from taxon-
specific CARD-FISH data. Nevertheless, obtained results remark-
ably corroborated with CARD-FISH counts and the general trend
in Alcanivorax, Marinobacter, and Cycloclasticus dynamics was
identical (Table 3). None of these hydrocarbon-degrading bacte-
ria were detected by qPCR at the end of experiment.

STATISTICAL ANALYSIS OF BACTERIAL DIVERSITY
As it shown in Table 4, the diversity index and coverage val-
ues have been calculated for each 16S rRNA transcript library.
Based on sequence similarity threshold for OTU definition ≥97%
(Rosselló-Mora and Amann, 2001), a total of 93 different OTUs
were discerned. The rarefaction analysis did not demonstrate
the saturation in any library (data not shown), however, the
coverage values varying between 0.64 (T0 library) and 0.92
(T90OUT library) indicated that a satisfactory overview on bac-
terial community was obtained. As reflected by the high values
of Simpson, Shannon and the number of missing species pro-
vided by Chao-2, the highest bacterial diversity was observed
in original sediments (T0). Bacterial biodiversity was drastically
affected by Bunker C fuel oil addition, decreasing the Simpson,
Shannon and Equitability values, due to strong selection for both
petroleum contamination-resilient and hydrocarbon-degrading
bacteria (Harayama et al., 1999; Kasai et al., 2001, 2002; Syutsubo
et al., 2001). Dominance index reached the highest value at T29

and T90. After 1 month of aeration, the microbial population
of the internal MSS sediments was dominated by OMHCBs,
whereas at the end of experiment, the dominant Cluster 9 of
the Gammaproteobacteria accounted for 42% of all T90 clones.
This cluster consists of organisms recovered from pristine sea-
water and marine sediments. As mentioned above, the microbial
community of anaerobic external sediments T90OUT was totally
different compared with aerated internal sediments. Both fuel
oil contamination and rapid development of anaerobiosis have
selected a very specialized and poorly diverse microbial popula-
tion (5 OTUs; Dominance 0.44; Coverage 91%). These data were
confirmed by the HCA and UniFrac PCoA analyses. At the end
of the experiment, the microbial communities thriving in the

MSS external (T90OUT) and the internal (T90) sediments were
significantly different from each other (P1 = 50.85% and P2 =
31.39%). Noteworthy, both applied statistical analyses confirmed
that comparing with OMHCB-enriched T29 population, the T90

microbial community was more similar to those recovered from
early stages of the experiment (T0 and T1 libraries) (Figure 9).
This finding indirectly hints at the process of self-recovery of
petroleum-contaminated sediments, which was confirmed by GC
analysis of the contaminated sediments in and outside the MSS.

DISCUSSION
The influence of the massive Bunker C fuel oil load upon the
microbial population of coastal sediments collected in Messina
harbor and their recovery was investigated during 3 months in
the mesocosms experiment. These sediments chronically polluted
with alkylnaphthalenes were chosen since the autochthonous
microbial community is likely adapted to the steady presence of
PHs and consequently may exhibit a higher biodegradation ability
than those from pristine environments (Païssé et al., 2008, 2010).
Accordingly, the fraction of the OMHCB genera Alcanivorax
Cycloclasticus Marinobacter and Thalassolituus, usually impercep-
tible in pristine marine environments (Yakimov et al., 2007),
accounted for a fifth part of the native microbial community
of Messina harbor sediments. To simulate accidental oil spill we
spiked 1000 kg sandy sediments with Bunker C fuel oil (6500 mg

Table 4 | Diversity indices calculated for the five clone libraries

created at different time of aeration and sediment ageing.

Diversity index T0 T1 T29 T90 T90OUT

Taxa/(OTUs)_S 46 16 14 12 5
Number of clones 96 83 80 90 62
Dominance_D 0.04 0.15 0.22 0.24 0.44
Simpson_1-D 0.96 0.85 0.78 0.76 0.55
Shannon_H 3.5 2.31 2.08 1.89 1.09
Equitability_J 0.91 0.84 0.78 0.76 0.68
Chao-2 104.1 16 14 12 5
Singletons 31 1 0 0 0
Doubletones 7 10 8 6 2
Coverage 0.64 0.74 0.77 0.87 0.92

Table 3 | CARD-FISH and qPCR cell number quantification in the MSS internal sediment during the bioremediation treatment.

Method Cell numbers, 105 × g sediments−1 ± SD

Probe/primers T0 T1 T29 T90

CARD-FISH Eubacteria 29.8 ± 1.7 23.6 ± 1.5 295.0 ± 11.0 27.9 , 1.2

Alcanivorax sp. 2.3 ± 0.1 3.1 ± 0.2 81.0 ± 1.3 ND

Marinobacter sp. 4.5 ± 0.2 2.6 ± 0.1 9.0 ± 0.1 ND

Cycloclasticus sp. 1.2 ± 0.2 ND 4.9 ± 0.1 ND

qPCR* alkB2 5.17 ± 0.17 4.73 ± 0.18 94.60 ± 3.80 ND

alkB 7.90 ± 0.23 3.50 ± 0.20 15.30 ± 2.00 ND

phnA 2.10 ± 0.16 3.78 ± 0.12 × 10−3 7.13 ± 0.28 ND

*These values mean the average number of cells detected in triplicate from three individual subsamples of sediments collected in different parts of MSS.
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FIGURE 9 | Dendrogram of microbial biodiveristy and similarity

analysis of the 16S rRNA transcripts detected at different

sampling time and treatment. The UPGMA cluster analysis was

obtained by using group average clustering from Euclidean distance
on relative abundance matrix of OTUs detected in the analyzed
libraries.

kg−1). This type of heavy fuel oil is frequently used by the cargo
and tanker ships and is generally more complex in composition
and impurities than distilled fuels. Bunker C fuel oil includes
about 25% polyaromatic, 15% aliphatic, 45% naphthenic and
15% non-hydrocarbon compounds (Clark et al., 1990) As it gen-
erally observed, after the oil spill reaches a shoreline, the oil burial
is the main mechanism of the pollution dispersal. This results
in intense oiling of subsurface sediments and consequent reduc-
tion in oxygen concentration due to initial activation of aerobic
hydrocarbon-degrading microorganisms (Albaigés et al., 2006;
Acosta González et al., 2013). Once O2 concentration drops to
zero, the degradation rates of both aliphatic and aromatic PHs
decrease significantly. According with this observation, the oil
cleanup was very marginal, and >80% of initially added Bunker
C fuel oil was extracted from the anaerobic external sediments
after 3 months of oil spill simulation. At the end of experiment,
analysis of microbial community of the MSS external sediments
revealed the overwhelming dominance of the Deltaproteobacteria.

The stimulation of autochthonous bacteria to tackle the pollu-
tion in contaminated environment is widely used in the reme-
diation of aerobic sites (Harayama et al., 2004). However, this
technology is hardly applicable to oxygen-depleted marine sed-
iments. Additionally, due to high probability of contaminant
spreading while removing, the application of ex-situ remedia-
tion technologies is severely limited. To initiate the self-cleaning
process in sediments driven by indigenous aerobic OMHCB,
we used in situ aeration of polluted anoxic sediments in spe-
cially designed MSS. It is generally assumed, that petroleum
contamination induced drastic changes in the bacterial commu-
nity structure associated with a decrease of diversity (Grötzschel
et al., 2002; Röling et al., 2002; Yakimov et al., 2005, 2007; Head
et al., 2006; Bordenave et al., 2007). These changes were referred

to both toxic effect of PHs and a strong selection toward highly
specialized hydrocarbon-degrading microorganisms (Harayama
et al., 1999; Kasai et al., 2001; Grötzschel et al., 2002; Yakimov
et al., 2005, 2007). Accordingly, the most drastic shifts in the
MSS bacterial community dynamic was observed at the begin-
ning and after 1 month of the oil spill. As revealed by 16S crDNA
clone library analysis, more than a half of MSS microbial popu-
lation at T29, belonged to Alcanivorax (43%), Cycloclasticus (7%)
and Marinobacter (5%), the genera of OMHCB, known to play
a pivotal role in petroleum degradation in marine environments
(Harayama et al., 1999; Röling et al., 2002, 2004; Yakimov et al.,
2007). Noteworthy, the dominance of these OMHCB genera was
confirmed by both CARD-FISH and qPCR analyses. At the end
of the treatment, the level of TERHC degradation in the MSS
internal sediments was almost 98%, and the resulting microbial
community was characterized by an almost complete extinction
of OMHCBs. Both HCA and UniFrac PCoA statistic analyses
of the OTUs abundance matrix indicated that the structure of
T90 microbial community was more similar to initial microbial
community structures. As a consequence of successful bioremedi-
ation, the Corophium orientale eco-toxicological bioassay revealed
that toxicity of the MSS internal sediments was substantially lower
compared with the untreated external sediments. Thus, to the
best of our knowledge, our studies for the first time demonstrated
that petroleum-contaminated anaerobic marine sediments could
be efficiently recovered by their capping and in situ aeration,
thus stimulating the self-cleaning potential due to reawakening
of residing aerobic OMHCBs.
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