
REVIEW ARTICLE
published: 28 April 2014

doi: 10.3389/fmicb.2014.00186

Bacteriophages of Leuconostoc, Oenococcus, and
Weissella
Witold Kot1, Horst Neve2, Knut J. Heller2 and Finn K. Vogensen3*

1 Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
2 Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
3 Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark

Edited by:

Jennifer Mahony, University College
Cork, Ireland

Reviewed by:

Eric Altermann, AgResearch Ltd,
New Zealand
Beatriz Martínez, Consejo Superior
de Investigaciones Científicas, Spain

*Correspondence:

Finn K. Vogensen, Department of
Food Science, Faculty of Science,
University of Copenhagen,
Rolighedsvej 30, DK-1958
Frederiksberg, Denmark
e-mail: fkv@food.ku.dk

Leuconostoc (Ln.), Weissella, and Oenococcus form a group of related genera of lactic
acid bacteria, which once all shared the name Leuconostoc. They are associated with
plants, fermented vegetable products, raw milk, dairy products, meat, and fish. Most of
industrially relevant Leuconostoc strains can be classified as either Ln. mesenteroides
or Ln. pseudomesenteroides. They are important flavor producers in dairy fermentations
and they initiate nearly all vegetable fermentations. Therefore, bacteriophages attacking
Leuconostoc strains may negatively influence the production process. Bacteriophages
attacking Leuconostoc strains were first reported in 1946. Since then, the majority of
described Leuconostoc phages was isolated from either dairy products or fermented
vegetable products. Both lytic and temperate phages of Leuconostoc were reported. Most
of Leuconostoc phages examined using electron microscopy belong to the Siphoviridae
family and differ in morphological details. Hybridization and comparative genomic studies
of Leuconostoc phages suggest that they can be divided into several groups, however
overall diversity of Leuconostoc phages is much lower as compared to, e.g., lactococcal
phages. Several fully sequenced genomes of Leuconostoc phages have been deposited
in public databases. Lytic phages of Leuconostoc can be divided into two host
species-specific groups with similarly organized genomes that shared very low nucleotide
similarity. Phages of dairy Leuconostoc have rather limited host-ranges. The receptor
binding proteins of two lytic Ln. pseudomesenteroides phages have been identified.
Molecular tools for detection of dairy Leuconostoc phages have been developed. The
rather limited data on phages of Oenococcus and Weissella show that (i) lysogeny seems
to be abundant in Oenococcus strains, and (ii) several phages infecting Weissella cibaria
are also able to productively infect strains of other Weissella species and even strains of
the genus Lactobacillus.
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INTRODUCTION
TAXONOMY OF Leuconostoc, Oenococcus, AND Weissella
Leuconostoc (Ln.), Weissella (W.), Oenococcus (O.), and Fructo-
bacillus (F.) form a group of related genera of lactic acid bacteria.
Based on 16S rRNA sequencing, Collins et al. (1993) proposed
that Ln. paramesenteroides and related species (Lactobacillus
(Lb.) confusus, Lb. halotolerans, Lb. kandleri, Lb. minor, and Lb.
viridescens) should be reclassified in the new genus Weissella.
Dicks et al. (1995) assigned Ln. oenos to the new genus
Oenococcus. Endo and Okada (2008) proposed to allocate sev-
eral Leuconostoc species to the new genus Fructobacillus. Schleifer
(2009), on the basis of 16S rRNA sequences, transferred the
three genera Leuconostoc (including those species synonymous
with Fructobacillus), Weissella, and Oenococcus into the newly
formed family Leuconostocaceae. Members of the family show
highest similarity to the genus Lactobacillus: they all are Gram-
positive, catalase-negative, facultative anaerobes, and are char-
acterized by heterofermentative lactic acid fermentation. While
all members of the genera Leuconostoc and Oenococcus exhibit

ovoid-shaped morphology, members of the genus Fructobacillus
are rod-shaped. Species within the genus Weissella show two
different (i.e., rod-shaped and ovoid-shaped) morphotypes.

SPECIES IN THE FAMILY Leuconostocaceae
According to information presented on the web-site of the “List of
prokaryotic names with standing in nomenclature” (http://www.

bacterio.net) the genus Leuconostoc is represented by 23 species
and 4 subspecies for Ln. mesenteroides. However, several of the
species names are synonyms within the genus Leuconostoc (like,
e.g., Ln. argentinum and Ln. lactis, or Ln. mesenteroides subsp.
cremoris and Ln. cremoris) or within different genera (like, e.g.,
Ln. pseudoficulneus and F. pseudoficulneus, Ln. paramesenteroides
and W. paramesenteroides, Ln. oenos and O. oeni). Besides being
recognized as meat spoilage organisms, Leuconostoc species have
been described to be involved in several fermentation processes
(Björkroth and Holzapfel, 2006). Ln. mesenteroides subsp. mesen-
teroides, Ln. mesenteroides subsp. cremoris, Ln. lactis, and Ln.
pseudomesenteroides are regular constituents of aroma-producing
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starter-cultures applied in dairy fermentations (Farrow et al.,
1989). In addition, Ln. mesenteroides subsp. mesenteroides is an
important component of vegetable fermentations: it is involved
in fermentation of coffee beans and (together with Ln. fallax)
in sauerkraut fermentation. Ln. mesenteroides, Ln. citreum, Ln.
gelidum and Ln. kimchii are dominant species in early kimchi fer-
mentation, and Ln. mesenteroides subsp. dextranicum plays a key
role in sourdough fermentations (Schleifer, 2009).

The genus Weissella comprises 18 species. As already men-
tioned for the genus Leuconostoc, some of the species names are
synonyms within the genus (like, e.g., W. cibaria and W. kimchii)
or within different genera (like the above mentioned Lactobacillus
species proposed to be reclassified as Weissella). The species
W. cibaria, W. confuse, and W. koreensis have been described
to be associated with vegetable fermentations (Schleifer, 2009).
Recently, W. fabalis and W. paramesenteroides have been detected
in cocoa bean fermentation (Snauwaert et al., 2013) and in tradi-
tional Caciocavallo cheese (Settanni et al., 2012), respectively.

The genus Oenococcus comprises just two species: O. oeni orig-
inally described as Ln. oenos, and O. kitaharae isolated from
composting residues of schochu distillation (Endo and Okada,
2006). O. oeni plays an important role in wine fermentation,
where it decarboxylates malic acid to lactic acid (Schleifer, 2009).

The genus Fructobacillus is represented by five species, all of
which except F. tropaeoli are synonyms of Leuconostoc species
(Endo et al., 2011). Species of this genus have been described to
be involved in spontaneous cocoa bean fermentations (Snauwaert
et al., 2013). So far, no bacteriophages have been described for this
genus. Therefore, the fructobacilli will not be further addressed in
this review.

HISTORY OF BACTERIOPHAGES IN THE FAMILY Leuconostocaceae
The first description of bacteriophages affecting Leuconostoc was
published in 1946 (Mosimann and Ritter, 1946). In this publi-
cation already, the negative impact on butter aroma of bacte-
riophages infecting Leuconostoc strains was shown. Just 1 year
later, Leiva-Quiros and McCleskey (1947) isolated phages infect-
ing Ln. mesenteroides for phage-typing purposes. From late 1970’s
to beginning of 2000’s only dairy Leuconostoc phages have been
reported on with the exception of one report also included
phages from coffee fermentations (Table 1) (Boizet et al., 1992).
From 2002 to 2012 a number of reports on Leuconostoc phages
from sauerkraut fermentations have been published, and since
2010–2012 genomes of Ln. mesenteroides and Ln. pseudomesen-
teroides phages have been published (Table 1). A thorough classi-
fication of dairy Leuconostoc phages has been presented recently
(Ali et al., 2013).

Lu et al. (2003) reported on bacteriophages infecting Weissella
sp. Later, several studies described Podoviridae-phages infecting
W. cibaria (Pringsulaka et al., 2011; Kleppen et al., 2012b).

Sozzi et al. (1976) were the first to describe phage infecting lac-
tic acid bacteria in wine, which were later identified as O. oeni
(Sozzi et al., 1982; Dicks et al., 1995). Lysogeny appears to be
rather frequent in O. oeni, with 45–60% of O. oeni strains reported
to be lysogenic (Arendt et al., 1991; Poblet-Icart et al., 1998).
Pan-genome comparisons have confirmed these results and have
demonstrated that apparently six different bacterial tRNA genes

are involved as targets for prophage DNA integration of temperate
bacteriophages in different strains of O. oeni (Borneman et al.,
2012).

FERMENTATIONS AFFECTED BY PHAGES INFECTING SPECIES OF
Leuconostocaceae
Dairy fermentations are the most frequently described fermen-
tations affected by bacteriophages (Samson and Moineau, 2013).
This may be due to two major reasons: (i) milk is a liquid sub-
strate in which phage are easily distributed, and (ii) most dairy
fermentations involve application of starter culture mixtures, thus
variations in acidification performance become readily evident.
Presence of phages infecting dairy Leuconostoc strains has only
been described occasionally (Sozzi et al., 1978; Boizet et al., 1992;
Davey et al., 1995). However, the publications never acquired
attention similar to those describing phages causing disturbances
of acidification. This is probably due to the fact that during
fermentation acidification failures are much easier and much ear-
lier detectable than aroma defects. As a consequence, while the
negative impact of phage on starter strains and acidification is
well documented, the impact of phage on starter strains and
aroma development is much less well known and is only begin-
ning to be investigated systematically (Samtlebe et al., 2012). In
recent years Swedish and Danish dairies have reported problems
related to lack of diacetyl and CO2 in fermented milks (similar
to report by Mosimann and Ritter, 1946) that could be correlated
to phages attacking Leuconostoc strains (Anon. meeting reports,
Vogensen, not published). Similarly, in several cases phage attacks
on Leuconostoc strains in blue-mold cheeses have been correlated
with lack of mold growth probably due to less openness in the
cheese structure (Kot et al., 2014; Pujato et al., 2014).

Highest Leuconostoc phage titers in dairy products or in whey
samples can vary significantly within a range from approximately
102 to 107 plaque-forming units (PFUs) per gram or per ml
(Atamer et al., 2011) (Figure 1). The maximum numbers of
PFUs for Leuconostoc phages in dairy samples are approximately
2 log units lower than maximum lactococcal phage numbers
(approximately 109 PFU/ml). The lower Leuconostoc phage num-
bers are therefore probably reflecting the use of Leuconostoc as a
minor starter component (1–10%) in undefined complex cultures
consisting mainly of lactococcal strains. While the homo-lactic
lactococci mainly contribute to acidification, the heterolactic and
only weakly acidifying leuconostocs contribute to aroma by pro-
duction of acetate, acetoin, and diacetyl (Farkye and Vedamuthu,
2002).

The Leuconostoc lytic phages involved in dairy fermentations
have generally been shown to be members of the Siphoviridae
group of phages (Davey et al., 1995; Kleppen et al., 2012a; Ali
et al., 2013; Kot et al., 2014; Pujato et al., 2014). However, for
Leuconostoc phages isolated from sauerkraut fermentations also
Myoviridae phages are seen (Barrangou et al., 2002; Yoon et al.,
2002; Lu et al., 2003). Other than in dairy fermentations, in
sauerkraut fermentations phages may even play an important
role by affecting the development of different lactic acid bacte-
ria species over fermentation time (Lu et al., 2003). However,
when defined starter strains are supposed to be applied, phage
infection may negatively affect quality parameters of the final
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Table 1 | Table summarizing reports on phages infecting genus Leuconostoc.

Leuconostoc host species Origin Life style Analysis References

Ln. citrovorum (Ln. mesenteroides subsp.
cremoris)

Dairy Lytic Flavor defects Mosimann and Ritter, 1946

Ln. mesenteroides Dairy Lytic TEM (2 phages) Sozzi et al., 1978

Ln. mesenteroides subsp. cremoris, subsp
dextranicum, and subsp. mesenteroides

Dairy Lytic (4 phages) Host range Shin and Sato, 1979

Ln. mesenteroides subsp. dextranicum
and subsp. mesenteroides

Dairy Temperate TEM (9 phages) Shin and Sato, 1979

Ln. mesenteroides subsp. cremoris Dairy Lytic (phage Lc-4) 1-step growth Shin, 1983

Ln. mesenteroides subsp. cremoris Dairy Lytic (4 phages) Host range, TEM Saxelin et al., 1986

Ln. mesenteroides subsp. cremoris Dairy Lytic (phage PWL-2) TEM, structural proteins, REN analysis Neve et al., 1988

Ln. mesenteroides subsp. cremoris and
subsp. Ln. lactis

Dairy Lytic (4 phages) Host range Johansen and Kibenich, 1992

Ln. mesenteroides Dairy, coffee Lytic (19 phages) 6 DNA homology groups, structural
proteins, TEM, REN analysis, genome
sizes

Boizet et al., 1992

Leuconostoc sp. Dairy Lytic (4 phages) 1 DNA homology group, structural
proteins, TEM, REN analysis

Davey et al., 1995

Ln. mesenteroides and Leuconostoc sp. Sauerkraut Lytic (8 phages) TEM, Host range Yoon et al., 2002

Ln. fallax Sauerkraut Lytic (6 phages) TEM, REN analysis, Host range,
structural proteins

Barrangou et al., 2002

Ln. mesenteroides, Ln. citreum, Ln.
pseudomesenteroides, Ln. fallax

Sauerkraut Lytic (29 phages) Host range (all), TEM, REN analysis,
structural proteins (6 phages)

Lu et al., 2003

Ln. mesenteroides Sauerkraut Lytic (�1-A4) TEM, structural proteins, genome
sequence (29.5 kb)

Lu et al., 2010

Ln. pseudomesenteroides KC04 strain Temperate (�MH1) TEM, genome sequence (38.7 kb) Jang et al., 2010

Ln. mesenteroides; Ln.
pseudomesenteroides

Dairy Lytic (77 phages) Host range, thermal stability and
inactivation kinetics, TEM

Atamer et al., 2011

Ln. mesenteroides
(pseudomesenteroides)

Dairy Lytic (phage Lmd1) TEM, genome sequence (26.2 kb) Kleppen et al., 2012a

Ln. mesenteroides and
pseudomesenteroides

Dairy Lytic (83 phages) TEM, 2 DNA homology groups, host
range, PCR detection

Ali et al., 2013

Ln. pseudomesenteroides Dairy Lytic (2 phages) TEM, receptor binding proteins Kot et al., 2013

Ln. mesenteroides and Ln.
pseudomesenteroides

Dairy Lytic (9 phages) TEM, genome sequence, structural
proteins, host range

Kot et al., 2014

Ln. mesenteroides subsp. mesenteroides Dairy Lytic (9 phages) TEM, stability and inactivation
kinetics, REN analysis, host range

Pujato et al., 2014

Type of analysis presented in the paper is listed in the column “analysis.” TEM, Transmission electron microscopy, REN, analysis of restriction endonuclease

fragments.

product (Mudgal et al., 2006). Applying metagenomic analysis
to kimchi, a traditional Korean fermented cabbage, evidence for
presence of phage infecting Leuconostoc was obtained (Jung et al.,
2011). So far, the only phage/host pair characterized for kimchi
is a Podoviridae phage infecting Weissella cibaria (Kleppen et al.,
2012b). A similar pair, Podoviridae phage and W. cibaria host,
has been described for Nham, a Thai fermented pork sausage
(Pringsulaka et al., 2011). Recently, several phages infecting W.
cibaria and W. paramesenteroides were isolated from commercial
cucumber fermentations and one phage for each host was shown
to belong to the Siphoviridae family of phages (Lu et al., 2012).
The only fermentation known to be affected by phages infecting
O. oeni is wine fermentation, due to the exclusive involvement of
these host bacteria in this type of fermentation (Schleifer, 2009).

The phages have been shown to belong to the Siphoviridae family
of phages (Poblet-Icart et al., 1998).

Leuconostoc PHAGES
Phages attacking Leuconostoc are best documented among all
phages of the Leuconostocaceae family. The majority of reports on
Leuconostoc phages are connected to problems in dairy fermen-
tations, however few of the reports are dealing with Leuconostoc
phages in vegetable or in coffee fermentations (Table 1). However,
Leuconostoc gelidum is a known meat spoilage organism (Sakala
et al., 2002). Interestingly, it was proposed to use Ln. gelidum
phages to prevent bacterial spoilage of the meat products, point-
ing toward a different angle of phage-host interactions, i.e., phage
bioprotection in fermented foods (Greer et al., 2007).
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MORPHOLOGY OF Leuconostoc PHAGES
Recently, the morphotypes of dairy Ln. pseudomesenteroides and
of Ln. mesenteroides phages from the dairy environment have
been studied extensively with a set of 83 phage isolates (Ali
et al. (2013). Although the phages were isolated from various
sources (11 dairies, 3 phage collections), a low degree of vari-
ation was documented for their morphotypes. All phages were
small isometric-headed Siphoviridae phages with non-contractile
140-nm long tails, however, according to their baseplate struc-
ture, these phages were differentiated into 6 different subgroups
with six globular baseplate appendices or with peculiar Y-shaped
baseplate structures (Ln. mesenteroides phages of morphotypes
Ia or Ib), with plain baseplates but with or without charac-
teristic collar structures or with uncommon tail striations (Ln.
pseudomesenteroides phages of morphotypes IIa, b and d), or
with undefined “fluffy” baseplate appendices (morphotype IIc
Ln. pseudomesenteroides phages) (Figure 2). Dairy Leuconostoc
phages of morphotypes Ia and IIb had been reported occasion-
ally, i.e., Ia type phages: (Neve et al., 1988); IIb type phages:
(Saxelin et al., 1986; Davey et al., 1995; Kleppen et al., 2012a).
Siphoviridae phages of Leuconostoc with longer phage tails have

FIGURE 1 | Highest Leuconostoc phage titers in whey ( ) and in brine

( ) samples obtained from 4 large and from 7 small to medium size

dairies. �, no brine samples (dairies L4 and S6); a, butter milk sample; b,
butter cream sample. (Modified from Atamer et al., 2011).

also been described previously, indicating a broader biodiversity
(Saxelin et al., 1986) within Leuconostoc phage populations. This
correlates well with the establishment of 6 DNA homology groups
for Ln. mesenteroides phages (Boizet et al., 1992). Leuconostoc
phages isolated from sauerkraut fermentations did also reveal dif-
ferent morphotypes Siphoviridae phages with different tail lengths
and Myoviridae phages (Barrangou et al., 2002; Lu et al., 2003,
2012). Temperate Siphoviridae phages from lysogenic Ln. mesen-
teroides and Ln. pseudomesenteroides strains with different tail
lengths have been shown by Shin and Sato (1979), Lu et al. (2012),
and Jang et al. (2010).

GENETICS OF Leuconostoc PHAGES
Currently, there are 12 full genomes of phages infecting
Leuconostoc sp. present in publically available databases. All
phages have dsDNA genomes with sizes from 25.7 to 38.7 kb
(Table 2). Genomic G + C content varies from 36.1% for phage
�-A4 to 38.7% for phage �MH1. All described lytic phages of
Leuconostoc exhibit high similarity in regard to genome organiza-
tion. Five modules can be distinguished in the genomes specifying
replication, packaging, morphogenesis, host cell lysis, and reg-
ulation and modification. Moreover, high similarity of putative
proteins encoded in the genomes of lytic Leuconostoc phages sug-
gests that they originated from a common ancestor (Kot et al.,
2014). Ali et al. (2013) reported two groups of hybridization pat-
terns among lytic Leuconostoc phages of dairy origin; one for Ln.
mesenteroides phages and one for Ln. pseudomesenteroides phages,
although all phage members of the two groups share a short,
cross-hybridizing genome region. The cross-hybridizing region
codes for tail proteins, e.g., major tail protein (mtp) and tape mea-
sure protein (tmp), however higher similarities were found within
mtp gene. This conserved region was used as target for develop-
ing a universal PCR-based detection system for lytic phages of Ln.
mesenteroides and Ln. pseudomesenteroides (Ali et al., 2013). The
PCR assay resulted in 322-bp long fragments and was validated
with all reported 83 lytic phages of Leuconostoc (Ali et al., 2013).
The recent sequencing data confirms that the selected region is

FIGURE 2 | Overview on the current taxonomy of dairy Leuconostoc

phages based on transmission electron microscopy, genotyping, and

host range profiles. Arrows indicate structural details as follows: globular

baseplate appendices (1), non-globular (Y-shaped) baseplate appendages (2),
collar or neck passage structure (3), “fluffy” baseplate appendices (4), tail
striations (5). (modified from Ali et al., 2013).
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indeed the only region that can be used for PCR-based detection
for both phage species (Kot et al., 2014).

Genomes of lytic phages of Leuconostoc contain from 38 to 50
predicted genes. Some of us were involved in biological charac-
terization of one of the genes present in Ln. pseudomesenteroides
phages, namely the receptor binding protein (RBP) (Kot et al.,
2013). Construction of chimeric phages resulted in the transition
in host range allowing the identification of the receptor bind-
ing protein genes to be ORF21P793 and ORF23�LN04, respectively.
Until now, the host-encoded receptor for Leuconostoc phages
remains unknown.

Currently, there is only one complete genome sequence of
a temperate phage attacking Leuconostoc deposited in public
databases. The phage is designated �MH1 and it was obtained

from a UV-induced lysate of Ln. pseudomesenteroides strain KC04
(Jang et al., 2010). No host for �MH1 phage was reported.
�MH1 has a dsDNA genome with a length of 38.7 kb with 65
putative ORFs identified. �MH1 did not show significant sim-
ilarities with other described phages of Leuconostoc (Jang et al.,
2010). Besides of �MH1 phages, several predicted prophages can
be identified in the sequenced genomes of Leuconostoc (Table 3).
Analysis of complete translatome of fully sequenced phages and
prophages shows that diversity of prophage elements is higher
than within sequenced two groups of lytic phages (Figure 3).

Oenococcus PHAGES
Phages attacking O. oeni were reported already in the late
1960’s and beginning of 1970’s (Sozzi et al., 1976), and 3 phage

Table 2 | Bacteriophages of Leuconostoc and Weissella with complete genome sequences deposited in public databases.

Genus Name Hosta Accession nr Information Genome References

size (kb)

Leuconostoc �1-A4 Ln. mesenteroides 1-A4 GQ451696 Lytic, cos-type 29.5 Lu et al., 2010

Leuconostoc �Lmd1 Ln. mesenteroides ssp.
dextranicum A1

NC_018273 Lytic, cos-type 26.2 Kleppen et al., 2012a

Leuconostoc �LN25 Ln. mesenteroides LN25 KC013026 Lytic, cos-type 28.4 Kot et al., 2014

Leuconostoc �LN34 Ln. mesenteroides LN05 KC013027 Lytic, cos-type 28.0 Kot et al., 2014

Leuconostoc �LNTR2 Ln. mesenteroides LN05 KC013028 Lytic, cos-type 28.3 Kot et al., 2014

Leuconostoc �LNTR3 Ln. mesenteroides LN05 KC013029 Lytic, cos-type 28.0 Kot et al., 2014

Leuconostoc P793 Ln. pseudomesenteroides BM2 NC_020880 Lytic, cos-type 26.8 Kot et al., 2013

Leuconostoc �LN04 Ln. pseudomesenteroides LN02 NC_020870 Lytic, cos-type 25.9 Kot et al., 2013

Leuconostoc �LN03 Ln. pseudomesenteroides LN02 KC013022 Lytic, cos-type 26.8 Kot et al., 2014

Leuconostoc �LN12 Ln. pseudomesenteroides LN02 KC013025 Lytic, cos-type 28.2 Kot et al., 2014

Leuconostoc �LN6B Ln. pseudomesenteroides LN02 KC013024 Lytic, cos-type 25.7 Kot et al., 2014

Leuconostoc �MH1 NAa HM596271 Induced from Ln.
pseudomesenteroides
KC04

38.7 Jang et al., 2010

Weissella �YS61 Weissella cibaria YS61 NC_018270 Lytic, protein dependent
DNA packaging

33.6 Kleppen et al., 2012b

Table 3 | Predicted prophage sequences found in fully assembled chromosomes of Leuconostoc, Oenococcus, and Weissella available in

GenBank.

Species Strain Accession nr Number of predicted Size of predicted

prophages prophages (kb)

Leuconostoc mesenteroides ATCC 8293 NC_008531 1 41.9

Leuconostoc mesenteroides J18 NC_016805 0

Leuconostoc citreum KM20 NC_010471 1 50.5

Leuconostoc gelidum JB7 NC_018631 0

Leuconostoc gasicomitatum LMG 18811 NC_014319 2 11.5, 45.1

Leuconostoc sp. C2 NC_015734 1 37.5

Leuconostoc carnosum JB16 NC_018673 0

Leuconostoc kimchi IMSNU 11154 NC_014136 3 13.1, 36.8, 65

Oenococcus oeni PSU-1 NC_008528 0

Oenococcus kitaharae DSM 17330 NZ_CM001398 0

Weissella koreensis KACC 15510 NC_015759 0

Prediction was done using PHAST (Zhou et al., 2011) and PhiSpy (Aziz et al., 2008; Akhter et al., 2012) and manually verified afterwards.
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FIGURE 3 | Comparison of the complete translatome of fully

sequenced phages and predicted prophages from complete

genomes of Leuconostoc, Weissella, and Oenococcus. Genomes
were prepared as described before (Mahony et al., 2013). The

concatemeric sequences were aligned using Geneious 7.1.2 software
using BLOSUM62 cost matrix. The phylogenetic tree was constructed
and visualized with bootstrapped neighbor-joining method with 500
replicates in Geneious 7.1.2 software.

morphotypes were described for phages isolated from wine.
They all had isometric heads and 3 distinct non-contractile tail
lengths, i.e., belonging to Siphoviridae. Later, lytic phages from
four Australian wine areas attacking approximately 40% of O.
oeni isolates from the same regions were isolated (Davis et al.,
1985). These also were belonging to Siphoviridae with isomet-
ric heads and long non-contractile tails (approximately 300 nm).
Subsequently, phage P58I was isolated from a phage carrying cul-
ture of O. oeni 58N (Arendt et al., 1990). This phage was able to
plaque on strain 58N as well as on 58PF, which was a phage-free
derivative of 58N strain. A similar phage P58II isolated after mito-
mycin C induction of the 58N strain was not able to plaque on any
of the two strains. Surprisingly no DNA homology was detected
between the two phages genomes and the chromosome of
O. oeni 58N.

Huang et al. isolated a temperate phage �1002 that was able to
grow lytically on approximately 46% of all O. oeni isolates from
Australian wine (Huang et al., 1996). The phage belonged to the
Siphoviridae family with a 52 nm isometric head and a 210 nm
non-contractile tail. A set of 17 prophages were induced from O.
oeni isolated from Portuguese wines (Santos et al., 1998). They
all had a similar morphology with isometric heads of approx-
imately 40–50 nm and non-contractile tails of approximately
220–240 nm. The cos-type phages were divided into 6 groups
based on restriction enzyme digestion profiles. These could fur-
ther be divided into 2 main groups α and β based on restriction
maps (Santos et al., 1998). Cross-hybridization between the α

and β group was located in the central part of the genomes and
included the phage attachment site (attP). This part was later
sequenced (Parreira et al., 1999) and revealed the presence of lysin
and holin genes.

The lysin (Lys44) from O. oeni phage fOg44 was described in
greater detail. Interestingly, secretion of the lysin seems to occur
with the aid of a signal peptide and independent of the holin, also
encoded in the phage genome. A potential role of the holin as
a triggering factor for lytic activity is discussed (São-José et al.,
2000).

Screening of 167 isolates of O. oeni for lysogeny by mitomycin
C resulted in the identification of approximately 45% of lysogenic
strains and for some of these propagating hosts were identified as
indicator strains (Poblet-Icart et al., 1998).

Until now, there is no complete genome sequence of a phage
attacking O. oeni, however a number of partial sequences derived
from phages of O. oeni have been deposited in public databases.
Borneman et al. (2012) reported several prophage sequences in
the O. oeni pan genome. Prophage-like sequences were integrated
into six different tRNA genes, with some of these sequences rep-
resenting presumably functional phages (Borneman et al., 2012).
Recently, Doria et al. (2013) communicated a PCR-based method
for detection and identification of lysogenic strains of O. oeni.
The assay allowed detection of a target sequence within the
prophage lysin gene in 25 out of 37 isolates tested. Furthermore,
the majority of the lysogenic isolates could be prophage induced
(Doria et al., 2013). Shortly after, Jaomanjaka et al. (2013) ana-
lyzed oenococcal prophages based on integrase gene polymor-
phism and classified them into four groups (A–D). Remarkably,
in the two fully assembled chromosomes of Oenococcus sp. no
prophage sequences were detected using PHAST and PhiSpy
program (Aziz et al., 2008; Zhou et al., 2011; Akhter et al.,
2012) (Table 3). Absence of prophage-like sequences in the O.
oeni PSU-1 strain had been reported before by Mills et al.
(2005).
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Weissella PHAGES
Pringsulaka et al. (2011) isolated phage �22 attacking Weissella
cibaria N22 from a Thai fermented pork sausage Nham. This
phage belonged to the Podoviridae family with morphotype C2
with a prolate head of approximately 92 × 50 nm and a non-
contractile tail of 37 nm. Phage �22 had a narrow host-range
attacking only one of 40 W. cibaria strains.

Lu et al. (2012) also isolated phages attacking W. cibaria from
the initial phase of cucumber fermentation. Interestingly, the host
range of some of these phages crossed the species barrier and in
some cases also the genus barrier. Phage �3.8.18 belonging to the
Myoviridae family attacked two isolates of W. cibaria, one isolate
of Lb. plantarum and one isolate of Lb. brevis. Phage �3.8.18 had
an isometric head of approximately 80 nm and an approximately
200 nm tail with indication of a baseplate structure. Another
Myoviridae phage �7.2.50 attacked same two isolates of W. cibaria
and 24 isolates of Lb. brevis. Also two Siphoviridae phages crossed
the species/genus barrier. Phage �3.8.43 attacked, beside four W.
cibaria isolates, one isolate of Lb. plantarum, and one isolate of
Lb. brevis (both of which were also attacked by �3.8.18). Phage
�3.8.43 had an isometric head of approximately 50–60 nm and an
approximately 250 nm long non-contractile tail. Besides two iso-
lates of W. cibaria, phage �3.8.48 also attacked one isolate of W.
paramesenteroides. Kleppen et al. (2012b) determined the genome
sequence of �YS61 attacking W. cibaria (Table 2). This phage
isolated from 1-week old kimchi fermentation belonged to the
Podoviridae family of morphotype C2 (Ackermann, 1998) with
a prolate head of 85 × 36 nm and a short non-contractile tail.

Phage �YS61 is infecting W. cibaria (Kleppen et al., 2012b)
and has a 33.6 kb dsDNA genome, which is similar to the esti-
mated genome size of another podovirus of W. cibaria isolated
recently from a Thai sausage (Pringsulaka et al., 2011). The
genome of the �YS61 phage codes for 48 putative ORFs. It is very
likely that �YS61 utilizes a protein-dependent DNA replication
mechanism similarly to �29 phage from Bacillus subtilis (Kleppen
et al., 2012b). Very few putative genes of �YS61 show signif-
icant similarities to the sequences present in public databases.
No prophages were detected in W. koreensis KACC 15510 strain
(Table 3).

CONCLUSION
Phages of Leuconostoc, Oenococcus, and Weissella are present
in many types of food-related fermentations, where they are
responsible for various defects in production. The majority of
described phages were isolated from dairy samples, where they
attack Leuconostoc starter strains and subsequently contribute to
aroma- and CO2-production defects. Another large reservoir of
Leuconostoc and Weissella phages are various vegetable fermenta-
tions, most importantly kimchi and sauerkraut fermentations. All
phages of Oenococcus described so far are solely reported in con-
nection to wine production, where they can disturb the malolactic
fermentation.

All phages of Leuconostoc, Oenococcus, and Weissella belong
to Caudovirales order with members of the Siphoviridae,
Podoviridae, and Myoviridae families. Thirteen complete genomes
of phages infecting Leuconostoc and Weissella have been
reported. Among them, lytic phages of Leuconostoc belonging

to Siphoviridae exhibit high similarities in overall composition,
regardless on the environment they were isolated from. PCR-
based assays for detecting lytic Leuconostoc and Oenococcus phages
have been established so far, however further detailed knowledge
of the genetic diversity of Leuconostoc, Oenococcus, and Weissella
phages, e.g., Myoviridae phages from sauerkraut fermentations
as well as temperate phages is needed in order to provide better
taxonomy, control, and detection strategies for these groups of
phages.

ACKNOWLEDGMENTS
Witold Kot was the recipient of a Ph.D. grant from University of
Copenhagen (UoC). The work on dairy Leuconostoc phages done
in our own labs at UoC and at Max Rubner-Institut (MRI) was
partially financed by MetaPhageLAB (UoC: FTP project no. 11-
106991) and was supported by a grant from the Forschungskreis
der Ernährungsindustrie e.V. (Bonn, Germany), the AiF, and the
Ministry of Economics and Technology (MRI: project no. AiF-
FV 15886N). MRI authors sincerely acknowledge the cooperation
with University of Hohenheim (J. Hinrichs and Z. Atamer) within
project AiF-FV 15886N.

REFERENCES
Ackermann, H. W. (1998). Tailed bacteriophages: the order Caudovirales. Adv. Virus

Res. 51, 135–201. doi: 10.1016/S0065-3527(08)60785-X
Akhter, S., Aziz, R. K., and Edwards, R. A. (2012). PhiSpy: a novel algorithm

for finding prophages in bacterial genomes that combines similarity- and
composition-based strategies. Nucleic Acids Res. 40, 126. doi: 10.1093/nar/
gks406

Ali, Y., Kot, W., Atamer, Z., Hinrichs, J., Vogensen, F. K., Heller, K. J., et al.
(2013). Classification of lytic bacteriophages attacking dairy Leuconostoc
starter strains. Appl. Environ. Microbiol. 79, 3628–3636. doi: 10.1128/AEM.00
076-13

Arendt, E. K., Lonvaud, A., and Hammes, W. P. (1991). Lysogeny in Leuconostoc
oenos. J. Gen. Microbiol. 137, 2135–2139. doi: 10.1099/00221287-137-
9-2135

Arendt, E. K., Neve, H., and Hammes, W. P. (1990). Characterization of phage iso-
lates from a phage-carrying culture of Leuconostoc oenos 58n. Appl. Microbiol.
Biotechnol. 34, 220–224. doi: 10.1007/BF00166784

Atamer, Z., Ali, Y., Neve, H., Heller, K. J., and Hinrich, J. (2011). Thermal resis-
tance of bacteriophages attacking flavour-producing dairy Leuconostoc starter
cultures. Int. Dairy J. 21, 327–334. doi: 10.1016/j.idairyj.2010.11.005

Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., et al.
(2008). The RAST Server: rapid annotations using subsystems technology. BMC
Genomics 9:75. doi: 10.1186/1471-2164-9-75

Barrangou, R., Yoon, S.-S., Breidt, F. Jr., Flemming, H. P., and Klaenhammer, T. R.
(2002). Characterization of six Leuconostoc fallax bacteriophages isolated from
an industrial sauerkraut fermentation. Appl. Environ. Microbiol. 68, 5452–5458.
doi: 10.1128/AEM.68.11.5452-5458.2002

Björkroth, J., and Holzapfel, W. (2006). “Genera Leuconostoc, Oenococcus and
Weissella,” in The Prokaryotes, 3rd Edn. eds M. Dworkin, S. Falkow, E.
Rosenberg, K. Schleifer, and E. Stackebrandt (New York, NY: Springer Science +
Business Media), 267–319.

Boizet, B., Mata, M., Mignot, O., Ritzenthaler, P., and Sozzi, T. (1992).
Taxonomic characterization of Leuconostoc mesenteroides and Leuconostoc
oenos bacteriophage. FEMS Microbiol. Lett. 90, 211–216. doi: 10.1111/j.1574-
6968.1992.tb05154.x

Borneman, A. R., McCarthy, J. M., Chambers, P. J., and Bartowsky, E. J.
(2012). Comparative analysis of the Oenococcus oeni pan genome reveals
genetic diversity in industrially-relevant pathways. BMC Genomics 13:373. doi:
10.1186/1471-2164-13-373

Collins, M. D., Samelis, J., Metaxopoulos, J., and Wallbanks, S. (1993). Taxonomic
studies on some Leuconostoc−like organisms from fermented sausages: descrip-
tion of a new genus Weissella for the Leuconostoc paramesenteroides group of
species. J. Appl. Microbiol. 75, 595–603.

www.frontiersin.org April 2014 | Volume 5 | Article 186 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Virology/archive


Kot et al. Bacteriophages of Leuconostoc, Oenococcus, and Weissella

Davey, G. P., Ward, L. J. H., and Brown, J. C. S. (1995). Characterisation of four
Leuconostoc bacteriophages isolated from dairy fermentations. FEMS Microbiol.
Lett. 128, 21–25. doi: 10.1111/j.1574-6968.1995.tb07494.x

Davis, C., Davis, C., Silveira, N. F., Silveira, N. F., Fleet, G. H., and Fleet, G. H.
(1985). Occurrence and properties of bacteriophages of Leuconostoc oenos in
Australian wines. Appl. Environ. Microbiol. 50, 872–876.

Dicks, L., Dellaglio, F., and Collins, M. D. (1995). Proposal to reclassify Leuconostoc
oenos as Oenococcus oeni [corrig.] gen. nov., comb. nov. Int. J. Syst. Bacteriol. 45,
395–397. doi: 10.1099/00207713-45-2-395

Doria, F., Napoli, C., Costantini, A., Berta, G., Saiz, J. C., and Garcia-Moruno,
E.(2013). Development of a new method for detection and identification of
Oenococcus oeni bacteriophages based on endolysin gene sequence and ran-
domly amplified polymorphic DNA. Appl. Environ. Microbiol. 79, 4799–4805.
doi: 10.1128/AEM.01307-13

Endo, A., Irisawa, T., Futagawa-Endo, Y., Sonomoto, K., Itoh, K., Takano, K., et al.
(2011). Fructobacillus tropaeoli sp. nov., a fructophilic lactic acid bacterium iso-
lated from a flower. Int. J. Syst. Bacteriol. 61, 898–902. doi: 10.1099/ijs.0.02
3838-0

Endo, A., and Okada, S. (2006). Oenococcus kitaharae sp. nov., a non-
acidophilic and non-malolactic-fermenting oenococcus isolated from a com-
posting distilled shochu residue. Int. J. Syst. Bacteriol. 56, 2345–2348. doi:
10.1099/ijs.0.64288-0

Endo, A., and Okada, S. (2008). Reclassification of the genus Leuconostoc and pro-
posals of Fructobacillus fructosus gen. nov., comb. nov., Fructobacillus durionis
comb. nov., Fructobacillus ficulneus comb. nov. and Fructobacillus pseudofi-
culneus comb. nov. Int. J. Syst. Bacteriol. 58, 2195–2205. doi: 10.1099/ijs.0.
65609-0

Farkye, N. Y. and Vedamuthu, E. R. (2002). “Microbiology of soft cheeses,” in Dairy
Microbiology Handbook, 3rd Edn, ed R. K. Robinson (New York, NY: Wiley
Interscience) 479–513.

Farrow, J. A. E., Facklam, R. R., and Collins, M. D. (1989). Nucleic acid homolo-
gies of some vancomycin-resistant Leuconostocs and description of Leuconostoc
citreum sp. nov and Leuconostoc pseudomesenteroides sp. nov. Int. J. Syst.
Bacteriol. 39, 279–283. doi: 10.1099/00207713-39-3-279

Greer, G. G., Dilts, B. D., and Ackermann, H. W. (2007). Characterization of
a Leuconostoc gelidum bacteriophage from pork. Int. J. Food Microbiol. 114,
370–375. doi: 10.1016/j.ijfoodmicro.2006.09.021

Huang, C. M., Asmundson, R. V., and Kelly, W. J. (1996). Characterization of a
temperate phage isolated from Leuconostoc oenos strain 1002. Appl. Microbiol.
Biotech. 45, 472–476. doi: 10.1007/s002530050715

Jang, S. H., Hwang, M. H., and Chang, H.-I. (2010). Complete genome sequence
of �MH1, a Leuconostoc temperate phage. Arch. Virol. 155, 1883–1885. doi:
10.1007/s00705-010-0799-5

Jaomanjaka, F., Ballestra, P., Dols-Lafargue, M., and Le Marrec, C. (2013).
Expanding the diversity of oenococcal bacteriophages: insights into a novel
group based on the integrase sequence. Int. J. Food Microbiol. 166, 331–340. doi:
10.1016/j.ijfoodmicro.2013.06.032

Johansen, E., and Kibenich, A. (1992). Characterization of Leuconostoc isolates
from commercial mixed strain mesophilic starter cultures. J. Dairy Sci. 75,
1186–1191. doi: 10.3168/jds.S0022-0302(92)77865-5

Jung, J. Y., Lee, S. H., Kim, J. M., Park, M. S., Bae, J. W., Hahn, Y., et al. (2011).
Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl.
Environ. Microbiol. 77, 2264–2274. doi: 10.1128/AEM.02157-10

Kleppen, H. P., Holo, H., Jeon, S. R., Nes, I. F., and Yoon, S. S. (2012a).
Characterization of a Leuconostoc bacteriophage infecting flavor produc-
ers of cheese starter cultures. Appl. Environ. Microbiol. 78, 6769–6772. doi:
10.1128/AEM.00562-12

Kleppen, H. P., Holo, H., Jeon, S.-R., Nes, I. F., and Yoon, S.-S. (2012b). Novel
Podoviridae family bacteriophage infecting Weissella cibaria isolated from kim-
chi. Appl. Environ. Microbiol. 78, 7299–7308. doi: 10.1128/AEM.00031-12

Kot, W., Hammer, K., Neve, H., and Vogensen, F. K. (2013). Identification of
the receptor-binding protein in lytic Leuconostoc pseudomesenteroides bacterio-
phages. Appl. Environ. Microbiol. 79, 3311–3314. doi: 10.1128/AEM.00012-13

Kot, W., Hansen, L. H., Neve, H., Hammer, K., Jacobsen, S., Pedersen, P. D., et al.
(2014). Sequence and comparative analysis of Leuconostoc dairy bacteriophages.
Int. J. Food Microbiol. 176, 29–37. doi: 10.1016/j.ijfoodmicro.2014.01.019

Leiva-Quiros, A., and McCleskey, C. S. (1947). The application of bacteriophage
and serology in the differentiation of strains of Leuconostoc mesenteroides.
J. Bacteriol. 54, 709–713.

Lu, Z., Altermann, E., Breidt, F., and Kozyavkin, S. (2010). Sequence analy-
sis of Leuconostoc mesenteroides bacteriophage 1-A4 Isolated from an indus-
trial vegetable fermentation. Appl. Environ. Microbiol. 76, 1955–1966. doi:
10.1128/AEM.02126-09

Lu, Z., Breidt, F., Plengvidhya, V., and Fleming, H. P. (2003). Bacteriophage ecol-
ogy in commercial sauerkraut fermentations. Appl. Environ. Microbiol. 69,
3192–3202. doi: 10.1128/AEM.69.6.3192-3202.2003

Lu, Z., Perez-Diaz, I. M., Hayes, J. S., and Breidt, F. (2012). Bacteriophage ecology in
a commercial cucumber fermentation. Appl. Environ. Microbiol. 78, 8571–8578.
doi: 10.1128/AEM.01914-12

Mahony, J., Martel, B., Tremblay, D. M., Neve, H., Heller, K. J., Moineau, S., et al.
(2013). Identification of a new P335 subgroup through molecular analysis of
lactococcal phages Q33 and BM13. Appl. Environ. Microbiol. 79, 4401–4409. doi:
10.1128/AEM.00832-13

Mills, D. A., Rawsthorne, H., Parker, C., Tamir, D., and Makarova, K. (2005).
Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking.
FEMS Microbiol. Rev. 29, 465–475. doi: 10.1016/j.femsre.2005.04.011

Mosimann, W., and Ritter, W. (1946). Bacteriophages as cause of loss of
aroma in butter cultures (Bakteriophagen als Ursache von Aromaschwund in
Rahmsäuerungskulturen). Schweizerische Milchzeitung 72, 211–212.

Mudgal, P., Breidt, F., Lubkin, S. R., and Sandeep, K. P. (2006). Quantifying the
significance of phage attack on starter cultures: a mechanistic model for popu-
lation dynamics of phage and their hosts isolated from fermenting sauerkraut.
Appl. Environ. Microbiol. 72, 3908–3915. doi: 10.1128/AEM.02429-05

Neve, H., Lilischkis, R., and Teuber, M. (1988). Characterisation of a virulent bac-
teriophage of Leuconostoc mesenteroides subsp. cremoris. Kiel. Milchwirtschaftl.
Forschungsber. 40, 205–215.

Parreira, R., Saxelin, M.-L., São-José, C., Nurmiaho-Lassila, E.-L., Isidro, A.,
Meriläinen, V. T., et al. (1999). Gene organization in a central DNA frag-
ment of Oenococcus oeni bacteriophage fOg44 encoding lytic, integrative and
non-essential functions. Gene 226, 83–93. doi: 10.1016/S0378-1119(98)00554-X

Poblet-Icart, M., Bordons, A., and Lonvaud-Funel, A. (1998). Lysogeny of
Oenococcus oeni (syn. Leuconostoc oenos) and study of their induced bacterio-
phages. Curr. Microbiol. 36, 365–369. doi: 10.1007/s002849900324

Pringsulaka, O., Patarasinpaiboon, N., Suwannasai, N., Atthakor, W., and
Rangsiruji, A. (2011). Isolation and characterisation of a novel Podoviridae-
phage infecting Weissella cibaria N 22 from Nham, a Thai fermented pork
sausage. Food Microbiol. 28, 518–525. doi: 10.1016/j.fm.2010.10.011

Pujato, S. A., Guglielmotti, D. M., Ackermann, H. W., Patrignani, F., Lanciotti, R.,
Reinheimer, J. A., et al. (2014). Leuconostoc bacteriophages from blue cheese
manufacture: long-term survival, resistance to thermal treatments, high pres-
sure homogenization and chemical biocides of industrial application. Int. J.
Food Microbiol. 177, 1–8. doi: 10.1016/j.ijfoodmicro.2014.02.012

Sakala, R. M., Hayashidani, H., Kato, Y., Hirata, T., Makino, Y., Fukushima, A.,
et al. (2002). Change in the composition of microflora on vacuum-packaged
beef durin chiller storage. Int. J. Food Microbiol. 74, 87–99. doi: 10.1016/S0168-
1605(01)00732-2

Samson, J. E., and Moineau, S. (2013). Bacteriophages in food fermentations: new
frontiers in a continuous arms race. Annu. Rev. Food Sci. Technol. 4, 347–368.
doi: 10.1146/annurev-food-030212-182541

Samtlebe, M., Neve, H., Heller, K. J., Hinrichs, J., and Atamer, Z. (2012).
Leuconostoc bacteriophages and their effects on the organoleptic properties of
fermented milk products. Eur. Dairy Mag. 5, 20–23.

Santos, R., São-José, C., Vieira, G., Paveia, H., and Santos, M. A. (1998). Genome
diversity in temperate bacteriophages of Oenococcus oeni. Arch. Virol. 143,
523–536. doi: 10.1007/s007050050308

São-José, C., Parreira, R., Vieira, G., and Santos, M. A. (2000). The N-Terminal
region of the Oenococcus oeni bacteriophage fOg44 lysin behaves as a bona
fide signal peptide in Escherichia coli and as a cis-inhibitory element, pre-
venting lytic activity on Oenococcal cells. J. Bacteriol. 182, 5823–5831. doi:
10.1128/JB.182.20.5823-5831.2000

Saxelin, M.-L., Nurmiaho-Lassila, E.-L., Meriläinen, V., and Forsén, R. (1986).
Ultrastructure and host specificity of bacteriophages of Streptococcus cremoris,
Streptococcus lactis subsp. diacetylactis, and Leuconostoc cremoris from Finnish
fermented milk viili. Appl. Environ. Microbiol. 52, 771–777.

Schleifer, K. (2009). “Family V. Leuconostocaceae fam. nov,” in Bergey’s Manual of
Systematic Bacteriology, Vol. 3, 2nd Edn, (The Firmicutes), eds P. De Vos, G.
Garrity, J. Jones, N. R. Krieg, W. Ludwig, F. A. Rainey, K. Schleifer, and W. B.
Whitman (New York; Dordrecht; Heidelberg; London: Springer), 624.

Frontiers in Microbiology | Virology April 2014 | Volume 5 | Article 186 | 8

http://www.frontiersin.org/Virology
http://www.frontiersin.org/Virology
http://www.frontiersin.org/Virology/archive


Kot et al. Bacteriophages of Leuconostoc, Oenococcus, and Weissella

Settanni, L., Di Grigoli, A., Tornambé, G., Bellina, V., Francesca, N., Moschetti, G.,
et al. (2012). Persistence of wild Streptococcus thermophilus strains on wooden
vat and during the manufacture of a traditional Caciocavallo type cheese. Int. J.
Food Microbiol. 155, 73–81. doi: 10.1016/j.ijfoodmicro.2012.01.022

Shin, C. (1983). Some characteristics of Leuconostoc cremoris bacteriophage iso-
lated from blue cheese. Jpn. J. Zootech. Sci. 54, 481–486.

Shin, C., and Sato, Y. (1979). Isolation of Leuconostoc bacteriophages from dairy
products. Jpn. J. Zootech. Sci. 50, 419–422. doi: 10.2508/chikusan.50.419

Snauwaert, I., Papalexandratou, Z., De Vuyst, L., and Vandamme, P. (2013).
Characterization of strains of Weissella fabalis sp nov and Fructobacillus tropae-
oli from spontaneous cocoa bean fermentations. Int. J. Syst. Evol. Microbiol. 63,
1709–1716. doi: 10.1099/ijs.0.040311-0

Sozzi, T., D’Amico, N., Hose, H., and Gnaegi, F. (1982). Difficultes de fermentation
malolactique du vin dues a des bacteriophage de Leuconostoc oenos. Revue Suisse
de Viticulture 32, 568–569.

Sozzi, T., Maret, R., and Poulin, J. M. (1976). Observation of bacteriophages in
wine. Experientia 32, 568–569. doi: 10.1007/BF01990165

Sozzi, T., Poulin, J. M., Maret, R., and Pousaz, R. (1978). Isolation of a bacterio-
phage of Leuconostoc mesenteroides from dairy products. J. Appl. Microbiol. 44,
159–161. doi: 10.1111/j.1365-2672.1978.tb00787.x

Yoon, S. S., Barrangou-Poueys, R., Breidt, F., Klaenhammer, T. R., and Fleming,
H. P. (2002). Isolation and characterization of bacteriophages from fermenting

sauerkraut. Appl. Environ. Microbiol. 68, 973–976. doi: 10.1128/AEM.68.2.973-
976.2002

Zhou, Y., Liang, Y., Lynch, K. H., Dennis, J. J., and Wishart, D. S. (2011). PHAST:
a fast phage search tool. Nucleic Acids Res. 39, 347–352. doi: 10.1093/nar/
gkr485

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 27 December 2013; accepted: 04 April 2014; published online: 28       April 2014.
Citation: Kot W, Neve H, Heller KJ and Vogensen FK (2014) Bacteriophages of
Leuconostoc, Oenococcus, and Weissella. Front. Microbiol. 5:186. doi: 10.3389/fmicb.
2014.00186
This article was submitted to Virology, a section of the journal Frontiers in
Microbiology.
Copyright © 2014 Kot, Neve, Heller and Vogensen. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

www.frontiersin.org April 2014 | Volume 5 | Article 186 | 9

http://dx.doi.org/10.3389/fmicb.2014.00186
http://dx.doi.org/10.3389/fmicb.2014.00186
http://dx.doi.org/10.3389/fmicb.2014.00186
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Virology/archive

	Bacteriophages of Leuconostoc, Oenococcus, and Weissella
	Introduction
	Taxonomy of Leuconostoc, Oenococcus, and Weissella
	Species in the Family Leuconostocaceae
	History of Bacteriophages in the Family Leuconostocaceae
	Fermentations Affected by Phages Infecting Species of Leuconostocaceae

	Leuconostoc Phages
	Morphology of Leuconostoc Phages
	Genetics of Leuconostoc Phages

	Oenococcus Phages
	Weissella Phages
	Conclusion
	Acknowledgments
	References


