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Obesity and its associated disorders are a major public health concern. Although obesity
has been mainly related with perturbations of the balance between food intake and energy
expenditure, other factors must nevertheless be considered. Recent insight suggests
that an altered composition and diversity of gut microbiota could play an important role
in the development of metabolic disorders. This review discusses research aimed at
understanding the role of gut microbiota in the pathogenesis of obesity and type 2 diabetes
mellitus (TDM2). The establishment of gut microbiota is dependent on the type of birth.
With effect from this point, gut microbiota remain quite stable, although changes take
place between birth and adulthood due to external influences, such as diet, disease and
environment. Understand these changes is important to predict diseases and develop
therapies. A new theory suggests that gut microbiota contribute to the regulation of
energy homeostasis, provoking the development of an impairment in energy homeostasis
and causing metabolic diseases, such as insulin resistance or TDM2. The metabolic
endotoxemia, modifications in the secretion of incretins and butyrate production might
explain the influence of the microbiota in these diseases.

Keywords: gut microbiota, obesity, type 2 diabetes mellitus, inflammation, LPS, SCFA

INTRODUCTION
The prevalence of obesity and its associated disorders, such as type
2 diabetes mellitus (TDM2), has increased substantially worldwide
over the last decades. Recent insight suggests that an altered com-
position and diversity of gut microbiota could play an important
role in the development of metabolic disorders. Most of the gut
microorganisms reside in the large intestine, which contains an
estimated 1011−12 bacterial concentrations per gram of content
(Leser and Molbak, 2009). These gut microbiota play a number
of physiological roles involving digestion, metabolism, extraction
of nutrients, synthesis of vitamins, prevention against coloniza-
tion by pathogens, and immunomodulation (Jumpertz et al., 2011;
Purchiaroni et al., 2013). In addition to an increased energy harvest
from the diet, several mechanisms, including chronic low-grade
endotoxemia, regulation of biologically active fatty acid tissue
composition, and the modulation of gut-derived peptide secre-
tion, have been proposed as links between gut microbiota and
obesity (Musso et al., 2010). However, the contribution of gut
microbiota to obesity and diabetes in humans is unclear. This
is probably for various reasons, such as the fact that the het-
erogeneous etiology of obesity and diabetes can be associated
with different microbes, studies have involved participants of
diverse ethnic origin and food habits, the large inter-individual

variation in the composition of gut microbiota, and in particular
the different methods that have been used to profile the micro-
biota in these studies (Tremaroli et al., 2012). On the other hand,
the differences between gut microbiota in lean and obese individ-
uals as well as the impact of diet in the composition of the gut
microbiome are still not wholly understood. Thus, manipulation
of the gut microbiome represents a novel approach to treating
obesity although it is in no way a substitute for diet and exercise.
This review discusses the research conducted in understanding the
role of gut microbiota in the pathogenesis of obesity and TDM2.

GUT MICROBIOTA COMPOSITION
Microorganisms colonize all surfaces of the human body that are
exposed to the environment, with most residing in the intesti-
nal tract. Bacterial communities at a particular body site have
more similarity among different subjects than in the same subject
but at different body sites; i.e., there is more similarity between
oral bacterial communities of different individuals than between
the bacterial communities of the skin and the mouth in a single
individual (Costello et al., 2009), although there is also consid-
erable inter-individual variability (Costello et al., 2009; Robinson
et al., 2010). The bacterial component of the microbiota has hardly
been studied in recent years, driven by large-scale projects such as
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the Human Microbiome Project (Turnbaugh et al., 2007; Peterson
et al., 2009) and MetaHIT (Qin et al., 2010). Research about gut
microbiota, mainly using ribosomal 16S RNA and whole-genome
sequencing (WGS – whole-genome shotgun; Turnbaugh et al.,
2009b), has provided a general view of the commensal micro-
bial communities and their functional capacity. For instance,
in 2010, a catalog was established of 3.3 million gut microbial
genes (Qin et al., 2010), with another wider catalog published
soon after (Human Microbiome Project Consortium, 2012a,b).
These studies have shown the great variability in microbiota
composition among healthy subjects, even between twins shar-
ing less than 50% of their bacterial taxons at the species level
(Turnbaugh et al., 2010). However, this does not mean genetics
has no role in the establishment and conformation of the gut
microbiota, and it has been demonstrated that bacterial com-
munity composition is influenced by host-specific genomic locus
(Benson et al., 2010; Koenig et al., 2011). Metagenomic studies
have established that in spite of the high interpersonal vari-
ability, some bacterial groups share functionalities (Turnbaugh
et al., 2009b; Burke et al., 2011). The main bacterial phyla are:
Firmicutes (Gram-positive), Bacteroidetes (Gram-negative), and
Actinobacteria (Gram-positive). Firmicutes is found in the highest
proportion (60%), with more than 200 genera, the most important
of which are: Mycoplasma, Bacillus, and Clostridium; Bacteroidetes
and Actinobacteria each comprise about 10% of the gut micro-
biota, with the rest belonging to over 10 minority families. In
total there are more than 1000 different species in the gut. It has
also been suggested that the microbiota of most individuals can
be categorized into three predominant enterotypes dominated by
three different genera: Bacteroides, Prevotella, and Ruminococ-
cus, which are independent of age, gender, ethnicity, or body
mass index (BMI; Benson et al., 2010; Arumugam et al., 2011).
Nevertheless an important debate has recently started about the
concept of enterotypes (Jeffery et al., 2012; Yong, 2012), with a
number of studies failing to identify the three distinct categories
described by Arumugam et al., 2011 (Claesson et al., 2012; Huse
et al., 2012).

MICROBIOTA ESTABLISHMENT
Changes are produced in our microbiota from birth to adult-
hood. The fetal intestinal tract is sterile until birth, after which
the newborn tract begins to be colonized. Infants are exposed to
a great variety of microorganisms from different environments
during and immediately after birth, either in their encounter
with their maternal vagina or by the cutaneous microorgan-
isms depending on the type of delivery (Adlerberth and Wold,
2009; Dominguez-Bello et al., 2010). Infants born vaginally have
similar communities to those found in the vaginal microbiota
of their mothers. In contrast, those born by Caesarian section
have the characteristic microbiota of the skin, with taxons
like Staphylococcus and Propionibacterium spp. (Dominguez-
Bello et al., 2010). Moreover, these infants have lower intestinal
bacteria counts with less diversity in the early weeks of life
(Grölund et al., 1999; Axad et al., 2013). Another factor influ-
encing the microbiota concerns the method of feeding. The
microbiota of breast-fed infants is dominated by Bifidobacterium
(Turroni et al., 2012; Yatsunenko et al., 2012) and Ruminococcus

(Morelli, 2008), with significantly lower rates of colonization
by Escherichia coli, C. difficile, Bacteroides fragilis, and Lacto-
bacillus than those observed in exclusively formula-fed infants
(Penders et al., 2006). The microbiota of formula-fed infants
is more complex and includes enterobacterial genera, Strepto-
coccus, Bacteroides, and Clostridium, as well as Bifidobacterium
and Atopobium (Bezirtzoglou et al., 2011). But, the composi-
tion of the microbiota changes with the introduction of solid
foods and a more complex and stable community similar to the
adult microbiota becomes established at 2–3 years of age (Palmer
et al., 2007; Koenig et al., 2011; Ravel et al., 2011; Yatsunenko
et al., 2012), with Firmicutes and Bacteroidetes predominating.
During adulthood the microbiota is relatively stable until old
age, when this stability is reduced (McCartney et al., 1996). The
ELDERMET consortium studied the microbiota of elderly Irish
subjects, finding a different characteristic microbiota composi-
tion to that of young persons, particularly in the proportions
of Bacteroides spp. and Clostridium groups (Claesson et al.,
2011).

EFFECT OF DIET ON THE TEMPORAL DYNAMICS OF
MICROBIOTA
Human-related microorganisms have been enumerated and cate-
gorized (Costello et al., 2009) and their temporal dynamics have
been described (Caporaso et al., 2011). To understand the stabil-
ity of microbiota within an individual over time is an important
step to predict diseases and develop therapies to correct dysbio-
sis (microbial community mismatches). Data from longitudinal
studies show the microbiota composition is relatively stable in
healthy adults over time and is only transiently altered by exter-
nal disturbances such as diet, disease, and environment (Delgado
et al., 2006). Particularly, changes in diet have shown important
effects on the composition of the intestinal microbiota. Indeed,
dietary changes could explain 57% of the total structural varia-
tion in gut microbiota whereas changes in genetics accounted for
no more than 12% (Zhang et al., 2010). Diet provides nutrients
for both the host and the bacteria of the gastrointestinal tract.
Changes in the composition of the gut microbiota in response to
dietary intake take place because different bacterial species are bet-
ter equipped genetically to utilize different substrates (Scott et al.,
2008). Many studies have demonstrated that an increase in fat
intake produces an increase in the Gram-negative/Gram-positive
index of our microbiota. Recent studies have found that mice
[humanized germ-free (GF)] changed from a diet low in fat and
rich in vegetable polysaccharides to a diet rich in fat and sugar and
low in plant polysaccharides (western diet) changed their micro-
biota in just 1 day. Mice on the “western diet” experienced an
increase in the abundance of bacteria of the phylum Firmicutes and
a decrease in the abundance of those of the phylum Bacteroidetes
(Turnbaugh et al., 2009a,b). Hildebrandt et al. (2009) also found
important changes in the abundance of the gut microbiota of mice
after changing from a standard chow to a high-fat diet, which was
associated with a decrease in the abundance of bacteria of the
phylum Bacteroidetes and an increase in that of both Firmicutes
and Proteobacteria phyla. Moreover, murine studies have shown
that carbohydrate-reduced diets result in enriched populations of
bacteria from the Bacteroidetes phyla (Walker et al., 2011) while
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calorie-restricted diets prevent the growth of C. coccoides, Lacto-
bacillus spp., and Bifidobacteria spp., which are all major butyrate
producers required for colonocyte homeostasis (Santacruz et al.,
2009). Only a limited number of human clinical trials have assessed
the effects of changes in dietary patterns on the intestinal micro-
biota (De Palma et al., 2009; Muegge et al., 2011; Walker et al.,
2011). In a controlled-feeding study with humans consuming a
high-fat/low-fiber or low-fat/high-fiber diet, notable changes were
found in gut microbiota in just 24 h, highlighting the rapid effect
that diet can have on the intestinal microbiota (Wu et al., 2011).
Interestingly, De Filippo et al. (2010) found that European chil-
dren have a microbiota depleted of Bacteroidetes and enriched in
Enterobacteriaceae compared to rural African children, which the
authors attributed to low dietary fiber intake by Europeans (Wu
et al., 2011). These authors postulated that gut microbiota co-
evolved with the plant-rich diet of the African children, allowing
them to maximize energy extraction from dietary fiber while also
protecting them from inflammation and non-infectious intesti-
nal diseases (De Filippo et al., 2010). Another study demonstrated
that subjects consuming a vegan or vegetarian diet had a lower
stool pH and significantly lower total counts of culturable Bac-
teroides spp., Bifidobacterium spp., E. coli, and Enterobacteriaceae
spp. than controls (Zimmer et al., 2011). A vegetarian diet has
also been shown to decrease the amount and change the diver-
sity of Clostridium cluster IV and Clostridium clusters XIV and
XVII (Liszt et al., 2009). However, large well-controlled trials are
needed to elucidate the mechanisms that link dietary changes to
alterations in microbial composition as well as the implications of
key population changes for health and disease.

MODULATION OF GUT MICROBIOTA DIVERSITY BY
ANTIBIOTICS
Much evidence now exists concerning an important change in
our microbiota over recent decades, with some species increasing
and others decreasing, though one of the most striking findings
is that in developed countries there is a loss in the diversity of
our microbiota. One of the most important factors that can dis-
turb microbiota composition is the increased use of antibiotic
treatment. There is evidence of important alterations in micro-
biota after antibiotic treatment (Sullivan et al., 2001; Jernberg
et al., 2007; Dethlefsen et al., 2008). Although affected taxons
vary among subjects, some taxons are not recovered even sev-
eral months after treatment, and in general, there is a long-term
reduction in bacterial diversity after the use of antibiotics (Jern-
berg et al., 2010; Dethlefsen and Relman, 2011). A correlation has
recently been proposed between the increasing global use of antibi-
otics and weight gain or obesity in humans (Thuny et al., 2010).
Several studies have indicated that some antibiotics are associated
with weight gain in malnourished children, neonates, and adults
(Ajslev et al., 2011; Trehan et al., 2013), but the precise mechanisms
by which antibiotics improve weight are not well characterized. It
has been suggested that antibiotics, such as avoparcin (a glycopep-
tide structurally related to vancomycin), exert selective pressure on
Gram-positive bacteria and that gut colonization by Lactobacillus
spp., which are known to be resistant to glycopeptides, used as a
growth promoter in animals and found at a high concentration
in the feces of obese patients, could be responsible for the weight

gain observed in patients who had been treated with vancomycin.
These data suggest that nutritional programs and follow-up of
weight should be undertaken in patients under such treatment
(Thuny et al., 2010). Other recent studies have also demonstrated
the beneficial effects of antibiotics on metabolic abnormalities in
obese mice, giving rise to reduced glucose intolerance, body weight
gain, metabolic endotoxemia, and markers of inflammation and
oxidative stress (Bech-Nielsen et al., 2012). Moreover, these effects
were associated with a reduced diversity of gut microbiota (Mur-
phy et al., 2013). Antibiotic treatment combined with a protective
hydrolyzed casein diet has been found to decrease the incidence
and delay the onset of diabetes in a rat model (Brugman et al.,
2006). A recent study also reported that antibiotic-treated humans
showed greater and less balanced sugar anabolic capabilities than
non-treated individuals (Hernandez et al., 2013). However, the
majority of clinical studies are focused primarily on the charac-
terization of the composition and diversity of gut microbes, it
remaining uncertain whether antibiotic-induced gut microbiota
alteration in human subjects with metabolic disorders is associ-
ated with improvements in metabolic derangements as observed
in animal studies.

ROLE OF GUT MICROBIOTA IN METABOLIC DISEASES
Recent decades have seen an increase in the prevalence of
metabolic diseases in developed countries. Environmental fac-
tors, such as the increase in energy intake and the decrease in
physical activity, have been considered causes of this spectacular
increase in the prevalence of metabolic diseases. However, even
when the energy intake does not increase and physical activity
does not decrease, the prevalence continues growing exponen-
tially, so other environmental factors must be taken into account,
including changes in gut microbiota. One of the challenges is
to elucidate the molecular origin of metabolic diseases, though
the great diversity and social differences among humans make
this difficult. During the last half century, with the advances in
molecular biology, researchers have been investigating the genet-
ics of metabolic diseases. In spite of the great efforts and the
identification of some mutations in the genome, no global view
has yet been established. The discovery of candidate genes in
studies of pangenomic associations (GWAS – genome-wide asso-
ciation studies) has helped to identify new genes associated with
sensitivity/resistance to diabetes and extreme metabolic pheno-
types (Jacquemont et al., 2011). However, the global diversity of
metabolic diseases cannot be explained, especially given the studies
in monozygotic twins, discordant for TDM2 and obesity (Medici
et al., 1999; Beck-Nielsen et al., 2003).

A second step toward the comprehension of the origin of
metabolic diseases involves epigenetic and environmental factors.
A drastic change in feeding habits in which dietary fiber has been
replaced by a high fat diet contributes to the origin of metabolic
diseases. However, this simple concept cannot explain why some
people are sensitive and others are resistant to the development
of these metabolic diseases. In mice, a metabolic adaptation is
frequently observed (Burcelin et al., 2002). Genetically identical
mice in the same box and with a fat-rich diet for 6–9 months can
develop both obesity and diabetes, or only one of the diseases.
There is a need to find a new paradigm that takes into account
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the genetic diversity, the environmental factor impact, the rapid
development of metabolic diseases, and the individual behavior to
develop diabetes and obesity. The conclusion reached concerns
the concept of personalized medicine in which the individual
characteristics should be identified in order to adapt a suitable
therapeutic strategy for small patient groups.

INFLUENCE OF GUT MICROBIOTA COMPOSITION IN THE
DEVELOPMENT OF OBESITY
Studies during the last decade have associated the gut microbiota
with the development of metabolic disorders, especially diabetes
and obesity. Although incompletely understood, the gut micro-
biota is implicated in the programing and control of many phys-
iological functions, including gut epithelial development, blood
circulation, innate and adaptative mechanisms (Mackie et al.,
1999; Dethlefsen et al., 2006). A new theory shows microbiota as
a contributor to the regulation of energy homeostasis. Thus, with
the environmental vulnerabilities, gut microbiota could provoke
the development of impairment in energy homeostasis, causing
metabolic diseases.

The first discovery was related to the fact that mice with
a mutation in the leptin gene (metabolically obese mice) have
different microbiota as compared with other mice without the
mutation (Ley et al., 2005). In this obese animal model, the
proportion of the dominant gut phyla, Bacteroidetes and Firmi-
cutes, is modified with a significant reduction in Bacteroidetes
and a corresponding increase in Firmicutes (Ley, 2010). Ley et al.
(2006) were the first to report an altered gut microbiota similar
to that found in obese mice (a larger proportion of Firmicutes
and relatively fewer Bacteroidetes) in 12 obese subjects compared
with 2 lean controls. Later, Armougom et al. (2009) confirmed a
reduction in Bacteroidetes accompanied by a rise in Lactobacil-
lus species belonging to the Firmicutes phylum. Turnbaugh et al.
(2009b) and Furet et al. (2010) showed a different pattern based
on a lower representation of Bacteroidetes (Bacteroides/Prevotella)
in obese individuals with no differences in Firmicutes phylum.
Collado et al. (2008) reported increases in species belonging to
both Firmicutes (Staphylococcus aureus) and Bacteroidetes (Bac-
teroides/Prevotella) in overweight women. Million et al. (2012)
described changes in the composition of Firmicutes based on
an increase in Lactobacillus reuteri coupled with a reduction in
L. paracasei and L. plantarum. Finally, other studies have found
no differences between Firmicutes and Bacteroidetes at the phy-
lum level (Duncan et al., 2008; Mai et al., 2009; Jumpertz et al.,
2011).

The shift in the relative abundance observed in these phyla
is associated with the increased capacity to harvest energy from
food and with increased low-grade inflammation. The increase
in Firmicutes and the decrease in the proportion of Bacteroidetes
observed in obese mice could be related with the presence of genes
encoding enzymes that break down polysaccharides that cannot
be digested by the host, increasing the production of monosac-
charides and short-chain fatty acids (SCFA) and the conversion of
these SCFA to triglycerides in the liver (Figure 1). These SCFAs
are able to bind and activate two G-protein-coupled receptors
(GPR41 and GPR43) of the gut epithelial cells. The activation of
these receptors induces peptide YY secretion, which suppresses gut

motility and retards intestinal transit. By this mechanism of SCFA-
linked G-protein-coupled receptor activation, the gut microbiota
may contribute markedly to increased nutrient uptake and depo-
sition, contributing to the development of metabolic disorders
(Erejuwa et al., 2014). Moreover, gut microbiota have also been
shown to decrease the production of the fasting-induced adipose
factor [FIAF; a secreted lipoprotein lipase (LPL)] by the intesti-
nal cells, which inhibits LPL activity, increasing the storage of
liver-derived triglycerides (Backhed et al., 2007).

Turnbaugh et al. (2006), in a study using ob/ob mice, found a
reduced calorie content in the feces of obese mice as compared
with lean mice. Other studies have suggested that obese subjects
might be able to extract more energy from nutrients due to hydro-
gen transfer between taxa. In fact, a simultaneous increase in
both hydrogen-producing Prevotellaceae and hydrogen-utilizing
methanogenic Archaea has been previously associated with obe-
sity by Zhang et al. (2009), suggesting a higher energy harvest
in obese patients. For instance, intestinal starch digestion pro-
duces hydrogen, the increase of which inhibits digestion and
methanogenic Archaea are able to transform this hydrogen into
methane (Figure 1). Thus, there is a specific microbiota that
obtains more energy from the same energy intake (Turnbaugh
et al., 2009a). These findings agree with the observation in
which GF mice fed with a fat-rich diet gained less weight than
conventional mice (Backhed et al., 2004).

The most relevant experiment dealing with the causality
between microbiota and obesity was done by Turnbaugh et al.
(2006). In this study, they demonstrated that microbiota trans-
plantation from genetically obese mice to axenic mice provokes
a very significant weight increase compared with the axenic mice
transplanted with the microbiota from lean mice.

Surprisingly, the phenotype with increase capacity for energy
harvest is simply transmitted by transplantation of the obesity-
associated gut microbiota in to healthy and lean donors (Turn-
baugh et al., 2006, 2008). But within a phylum, not all the genera
have the same role, so that bacterial genera have been related with
either beneficial or harmful characteristics associated within the
same phylum. Kalliomäki et al. (2008) undertook a prospective
study in which they followed 49 children from birth to 7 years of
age. Stool was collected at 6 and 12 months of life and it was found
that the children who were 7 years old with a normal weight had
a higher number of Bifidobacterium spp. and a smaller number of
Staphylococcus aureus than the children who became overweight
several years later. The authors concluded that the alteration in the
microbiota precedes the alteration in weight, an explanation that
is relevant for obesity prevention. The authors also proposed that
Staphylococcus aureus may act as a trigger of low-grade inflamma-
tion, contributing to the development of obesity (Kalliomäki et al.,
2008).

On the other hand, Lactobacillus spp. and bifidobacteria rep-
resent a major bacterial population of the small intestine where
lipids and simple carbohydrates are absorbed, especially in the
duodenum and jejunum. Recent publications reveal that the
Bifidobacteria and Lactobacillus are not all the same and they
may have different characteristics according to the species. For
example, within the genus Lactobacillus, L. plantarum, and L.
paracasei have been associated with leanness whereas L. reuteri
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FIGURE 1 |The action of gut microbiota is needed to digest some

polysaccharides. Gut microbiota converts polysaccharides into monosac-
charides and short-chain fatty acids (SCFA). These SCFAs are able to bind and
activate two G-protein-coupled receptors (GPR41 and GPR43) of the gut

epithelial cells. The activation of these receptors induces peptide YY. Starch
digestion is an example of this process: H2is produced, and its increase
inhibits starch digestion, moment at which other bacterial groups work and
transform the H2 into methane.

is associated with obesity (Million et al., 2012). Moreover, Drissi
et al. (2014) have shown that weight gain-associated Lactobacil-
lus spp. encode more bacteriocins and appear to lack enzymes
involved in the catabolism of fructose, a defense against oxidative
stress and the synthesis of dextrin, L-rhamnose and acetate than
weight protection-associated Lactobacillus spp., which encodes
for a significant gene amount of glucose permease. Regarding
lipid metabolism, thiolases were only encoded in the genome
of weight gain-associated Lactobacillus spp. The results of this
study revealed that weight protection-associated Lactobacillus
spp. have developed defense mechanisms for enhanced gly-
colysis and defense against oxidative stress while weight gain-
associated Lactobacillus spp. possess a limited ability to break
down fructose or glucose and might reduce ileal brake effects
(Drissi et al., 2014).

MICROBIOTA AND ITS RELATIONSHIP WITH TYPE 2
DIABETES MELLITUS
Type 2 diabetes mellitus is the consequence of an increase in the
production of glucose in the liver and a deficit in the secretion
and action of insulin. Other physiological functions are altered,
such as the central and autonomous nervous systems, leading to
an impaired secretion of hormones like glucagon and incretins.
However, a common feature of obesity and TDM2 is the presence

of a low-grade inflammatory component described in tissues
involved in metabolism regulation, such as the liver, adipose
tissue, and muscles (Pickup and Crook, 1998). This metabolic
inflammation is characterized by a moderate excess in cytokine
production, including interleukin (IL)-6, IL-1, or tumor necro-
sis factor alpha (TNF-α), that injures cellular insulin signals and
contributes to insulin resistance and diabetes (Hotamisligil, 2006;
Shoelson et al., 2006). Weight increase would be an initiating fac-
tor of low-grade inflammation. When adipocyte hypertrophy is
produced as a response to excess energy intake, an increase in
TNF-α production in the adipose tissue is also produced and this
stimulates the production of chemotactic factors resulting in adi-
pose tissue being infiltrated by proinflammatory macrophages
that produce an increase in the production of IL-6 and IL-1.
Recently, two studies have shown that the intestinal microbiome
might be an important contributor to the development of TDM2.
Both studies also showed that TDM2 subjects were characterized
by a reduction in the number of Clostridiales bacteria (Rose-
buria species and Faecalibacterium prausnitzii), which produce
the SCFA butyrate (Qin et al., 2012; Karlsson et al., 2013). Also,
another study found microbiota changes in patients with dia-
betes or insulin resistance as compared with subjects without
alterations in carbohydrate metabolism (Serino et al., 2013). In
addition, changes in the amount of Bifidobacterium, Lactobacillus,
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and Clostridium as well as a reduced Firmicutes to Bacteroidetes
ratio in gut microbiota have also been recently reported in type
1 diabetic children. This study also showed that bacteria involved
in the maintenance of gut integrity were significantly lower in
diabetic patients than in healthy controls (Murri et al., 2013).
Similar changes in the composition of intestinal microbiota have
also been reported in TDM2 patients (Larsen et al., 2010; Qin
et al., 2012). Several other studies linking the gut microbiota to
metabolic disorders, such as obesity, insulin resistance and dia-
betes mellitus, have been reviewed by other authors (Caricilli and
Saad, 2013; Stachowicz and Kiersztan, 2013; Tagliabue and Elli,
2013). Moreover, probiotic (Amar et al., 2011) and prebiotic treat-
ments (Cani et al., 2007b) control gut microbiota and metabolic
diseases.

Various mechanisms have been proposed to explain the influ-
ence of the microbiota on insulin resistance and TDM2, such
as metabolic endotoxemia, modifications in the secretion of the
incretins and butyrate production.

The lipopolysaccharides (LPS) are endotoxins commonly
found in the outer membrane of Gram-negative bacteria that cause
metabolic endotoxemia, which is characterized by the release of
proinflammatory molecules (Manco et al., 2010). A rise in LPS
levels has been observed in subjects who increased their fat intake
(Amar et al., 2008). Similar results were found in mice (Cani et al.,
2007b) and in mutant mice (like the leptin-deficient mice) even
feeding with a normal diet (Cani et al., 2008), which suggests
that a change in the proportion of Gram-negative bacteria in the
gut or a change in the gut permeability were produced by the
LPS rise in serum (Cani et al., 2008, 2009b) and this increase is

directly related with the degree of insulin resistance. Cani et al.
(2007a,b) reported that modulation of the intestinal microbiota
by using prebiotics in obese mice acts favorably on the intestinal
barrier, lowering the high-fat diet-induced LPS endotoxemia and
systemic and liver inflammation (Figure 2). LPS are absorbed by
enterocytes and they are conveyed into plasma coupled to chy-
lomicrons (Clemente Postigo et al., 2012). In this way, dietary
fats can be associated with increased absorption of LPS which
in turn can be related with changes in the gut microbiota dis-
tinguished by a decrease in the Eubacterium rectale–C. coccoides
group, Gram-negative Bacteroides and in Bifidobacterium (Cari-
cilli and Saad, 2013). This causal role of LPS was demonstrated by
infusing LPS in mice with a normal diet inducing hepatic insulin
resistance, glucose intolerance, and an increase in the weight of
adipose tissue (Cani et al., 2007a). It has been recently shown that
the LPS-induced signaling cascade via Toll-like receptor 4 (TLR4)
impairs pancreatic β-cell function via suppressed glucose-induced
insulin secretion and decreased mRNA expression of pancreas-
duodenum homebox-1 (PDX-1; Rodes et al., 2013). LPS binds to
the CD14/TLR4 receptor present on macrophages and produces
an increase in the production of proinflammatory molecules.
When LPS injections were administrated to mice with a genetic
absence of the CD14/TLR4 receptor they did not develop these
metabolic characteristics and there was no start of TDM2 or obe-
sity, showing the important role of LPS in the mechanism of
CD14/TLR4. Moreover, knockout CD14/TLR4 mice were even
more sensitive to insulin than wild type controls (Cani et al.,
2007a; Poggi et al., 2007). LPS can also promote the expression
of NF-κB (nuclear factor kappa-light-chain-enhancer of activated

FIGURE 2 | Pathways via which intestinal microbiota can alter human

metabolism producing obesity and insulin resistance. (1) Chronic bacterial
translocation due to increased intestinal permeability that can drive a
systemic inflammation leading to macrophage influx into visceral adipose

tissue, activation of hepatic Kupffer cells and insulin resistance. (2)
Short-chain fatty acids normalize intestinal permeability and alter de novo
lipogenesis and gluconeogenesis via reduction of free fatty acid production by
visceral adipose tissue.
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B cells) and activation of the MAPK (mitogen-activated protein
kinase) pathway in adipocytes with several target genes (Chung
et al., 2006).

An increase of Bifidobacterium spp. modulates inflammation in
obese mice by an increase in the production of incretins like the
glucagon-like peptide (GLP), also reducing intestinal permeability
(Cani et al., 2009b). There is evidence that the rise in Bifidobac-
terium spp. produced by some prebiotics is accompanied by an
increase in GLP1 and YY peptide secretions by the intestine. These
two molecules have favorable effects, decreasing insulin resistance
and the functionality of beta cells (Cani and Delzenne, 2009). In
addition, modulation of the gut flora with prebiotics increases
GLP2 production in the colon and this increase in GLP2 produc-
tion is associated with higher expression of zonula occludens-1
(ZO-1), which improves the mucosal barrier function leading to
a decrease in plasma LPS (Cani et al., 2009a,b). The study by Qin
et al. (2012) showed that subjects with TDM2 suffered from a mod-
erate intestinal dysbiosis and an increase in the number of various
opportunistic gut pathogens, more than a change in a specific
microbial species, having a direct association with the pathophys-
iology of TDM2. Specifically, they experienced a decrease in their
butyrate-producing bacteria (Qin et al., 2012). This is significant
because butyrate is the preferred source of energy, repair and main-
taining cell health in the human digestive system. In the colon, the
predominant butyrate-producing bacteria are the C. coccoides and
the Eubacterium rectale groups. These changes in intestinal bacte-
ria have recently been reported in patients with colorectal cancer
(Wang et al., 2012) and in elderly people (Biagi et al., 2010). Thus,
butyrate-producing bacteria could have a protecting role against a
functional dysbiosis. Moreover, as other intestinal diseases show a
loss of butyrate-producing bacteria with a commensurate increase
in opportunistic pathogens, a possible hypothesis is that this
change in the microbiota can cause an increase in susceptibil-
ity to a wide variety of diseases. The analysis of genetic bacterial
functions shows an increase in functions related to the response
to intestinal oxidative stress. This is of interest, because previous
studies have shown that a high oxidative stress level is related to a
predisposition to diabetic complications (Kashyap and Farrugia,
2011).

CONCLUSION
Metabolic diseases are caused by many factors, including a higher
consumption of energy-rich diets, reduced physical activity, and a
hereditary disposition. In the past 6 years, much evidence suggests
that gut microbiota may play an important role in the regulation of
energy balance and weight in animal models and in humans. How-
ever, although metagenomic tools have provided an important
amount of data concerning the characterization and the potential
role of this gut microbiota in the development of human obe-
sity and TDM2, the causal relationship between this microbiota
and obesity still needs to be confirmed in humans. In the future,
larger human studies conducted at the species level and taking
into account all of the possible confounding variables (such as
age, gender, ethnicity, diet, and genetic factors) are needed to
allow us to use the gut microbiota composition and modulation
as novel diagnostic or therapeutic strategies to treat obesity and
TDM2.
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