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In CD+
4 T cells, HIV-1 buds from the host cell plasma membrane. The viral Gag polyprotein

is mainly responsible for this process. However, the intimate interaction of Gag and lipids
at the plasma membrane as well as its consequences, in terms of lipids lateral organization
and virus assembly, is still under debate. In this review we propose to revisit the role
of plasma membrane lipids in HIV-1 Gag targeting and assembly, at the light of lipid
membranes biophysics and literature dealing with Gag-lipid interactions.
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INTRODUCTION
In a very oversimplified view, assembling could be seen as: retriev-
ing all of your partners at the right place on the right time. In the
case of enveloped retroviruses such as HIV, this means retrieving
in a sophisticated spatio-temporal concerted mechanism:

• genomic RNA and cellular t-RNA nucleotide primers
• structural (Gag and GagPol) and other (protease, transcriptase

and integrase) proteins or polyproteins
• lipid membrane embedded envelop glycoproteins (Env).

in order to correctly produce a potential infective new virion.
The main molecular constituents of HIV-1 are Gag polypro-

tein (50% of the virion mass) and the viral envelop membrane
lipids (30%) exclusively issued from the host cell (for review
see Carlson et al., 2008). Gag is a polyprotein that has the abil-
ity to induce on its own the formation of virus like particle
(VLPs) without any requirement of other viral or cellular compo-
nents (except lipid membrane) (Gheysen et al., 1989; Campbell
and Rein, 1999). Although Gag has been reported to inter-
act with a cellular motor protein (Tang et al., 1999; Martinez
et al., 2008) and with other components of vesicular traffick-
ing pathway (Dong et al., 2005; Camus et al., 2007), it is not
clear whether Gag is targeted to the plasma membrane or simply
reaches the plasma membrane by diffusion through the cytosol.
It has been shown that Gag molecules do not multimerize exten-
sively before they reach the membrane (Kutluay and Bieniasz,
2010) and that they arrive at the plasma membrane as dimers or
monomers that will multimerize onto eventual nucleation sites
composed of Gag-RNA complexes (Jouvenet et al., 2009; Ku et al.,
2013). Other major components of the viral infectivity are the
Env glycoproteins, they reach the plasma membrane indepen-
dently of Gag. Env is constituted of two different subunits gp120
and gp41, the later being a transmembrane protein. The gp41

protein is twice palmitoylated and is considered to be targeted
to the so called lipid “rafts” membrane domains (Patil et al.,
2010).

Undoubtedly, Gag is the main pillar of HIV assembly. It
recruits the constituents of HIV virions and orchestrates their
assembly while multimerizing onto the inner leaflet of the plasma
membrane. Although assembly should appear as a very simple
mechanism, many questions concerning Env recruitment and
incorporation into virions remain unsolved. Different studies
have shown that the cytoplasmic tail of the gp41 and the N-
terminal part of Gag are both necessary for Env incorporation
into virions, suggesting therefore an interaction of these two
proteins, whether direct or through a cellular protein interme-
diate (for review see Murakami, 2008). Nevertheless, since HIV-1
only displays a tenth of glycoprotein trimers (Zhu et al., 2006)
for thousands of Gag molecules (Turner and Summers, 1999;
Briggs et al., 2004), it can still be questioned whether or not
Gag and Env interact directly? Moreover, it is still to be known
if there is a sequential order importance for the control of viral
assembly.

In every polymerization by addition, the triggering of the
reaction, called initiation step, is the formation of an acti-
vated monomer. The propagation of the polymerization will
depend on local concentration of the “reactants” i.e., the
number of monomers surrounding the activated monomer.
Although it is not established that Gag multimerization needs
an activated form of it, a simple guess shows that the reduc-
tion of dimensionality principle (Adam and Delbrück, 1968)
should favor enhanced kinetics of the multimerization pro-
cess. Therefore, it is clear that lipid membranes could play
an important role in the assembly process. Moreover, the lat-
eral compartmentalization of lipid membranes could locally
induce higher concentrations of Gag monomers and facili-
tate the retrieval of Env proteins. Due to their physical and
chemical heterogeneity, the detailed role of cellular plasma
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membrane in the assembly process of HIV-1 is still a source of
controversy.

It is the aim of this review to remind basic concepts in lipid
membrane organization and domains formation and to introduce
the concept of lipid molecular shape and its consequence on the
bilayer curvature. Thereafter, the role of lipids in HIV-1 assembly
will be considered, by looking at the interaction of Gag with the
plasma membrane at the molecular (atomistic) level. Finally the
current model of HIV-1 assembly at the cell plasma membrane
will be discussed.

PLASMA MEMBRANE: BASIC PHYSICAL PROPERTIES
LATERAL SEGREGATION AND LIPID DOMAINS
Our current view of plasma membrane mainly derives from the
fluid mosaic model proposed 40 years ago by Singer and Nicolson
(1972) arguing for proteins embedded in a homogeneous sea
of lipids. Nevertheless the possibility of lipids segregating lat-
erally to form “domains” in model membrane was reported at
the same time (Phillips et al., 1970; Shimshick and McConnell,
1973). Later on, other types of membrane domains induced by
protein-lipid interactions were proposed to explain membrane-
mediated processes (Marcelja, 1976; Sackmann et al., 1984).
Meanwhile, Israelachvili also proposed a model that accounts for
the need of membrane proteins (peripheral and transmembrane)
and lipids to adjust to each other due to packing effects as well as
thermodynamics (i.e., adjust hydrophobic and hydrophilic areas
and height) (Israelachvili, 1977), inducing thereby lateral hetero-
geneities. Based on this, Mouritsen and Bloom (1984) proposed
the hydrophobic mismatch model where hydrophobic matching
conditions can lead to elastic distortions of the lipid matrix, there-
fore, resulting in clustering of adapted lipid molecules around a
transmembrane protein. Finally, another model accounting for
the role of structural peripheral proteins and sugars (cytoskele-
ton and glycogalix) has been proposed by Sackmann (1995).
In this model, cytoskeleton as well as glycocalix could decrease
the lateral diffusion of lipids and therefore induce their micro-
compartmentalization. This has been widely documented in the
case of the cortical actin networks and is known as the membrane-
skeleton “fence” (Kusumi et al., 2012).

Although all these membrane models give many possible
explanation of the observed lateral heterogeneity and domains
existence in lipid membrane, the most popular in bioscience
nowadays is based on lipid demixing and named the “rafts”
model. Initially reported by van Meer and Simons (1988), “rafts”
were considered to be microdomains (r∼ 100–300 nm) enriched
in sphingolipids and cholesterol that are functionally associ-
ated to specific proteins involved in trafficking and cell signal-
ing (Simons and Ikonen, 1997). Since then, “rafts” spawned
thousands of projects and papers up to a point where nowa-
days a membrane protein is often classified as being a “raft”
or a “non-raft” component of the membrane. However, accu-
rate physical explanation of the “raft” hypothesis is still lacking
and its definition has been revisited many times to end up with
the most recent one as being “fluctuating nano-scale assemblies
(r∼ 20–50 nm) of sphingolipid, cholesterol and proteins that
can be stabilized to coalesce, forming platforms that function
in membrane signaling and trafficking” (Lingwood and Simons,

2010). They are claimed to exist in an ordered phase (or “raft-
phase”) different from the liquid ordered phase observed in
model membrane systems. The thermodynamic term phase relies
on a system at equilibrium and it remains to be established if
the plasma membrane is near local equilibrium at some time
scales in order to permit real phase separation. Another problem
with the “raft” hypothesis is that they have mainly been observed
using detergent based extraction methods. It is clear that these
methods will always isolate from biological membranes the pro-
teins (and their associated lipids) partitioning into the detergent,
thereby inducing formation of domains. Even Lingwood and
Simons themselves concluded that detergent extraction meth-
ods do not isolate pre-existing membrane domains (Lingwood
and Simons, 2010). Finally, while conclusive experiments about
the existence of rafts in the plasma membrane remain elusive it
is clearly established (Ipsen et al., 1987) that, in model systems
containing cholesterol, liquid ordered (lo) and liquid disordered
(ld) phase coexists. It is also important to state that, as origi-
nally proposed by Sackmann (1995), cytoskeleton (Ehrig et al.,
2011a; Sens and Turner, 2011) as well as trafficking (Turner
et al., 2005) could play a major role in the lateral segregation of
lipids.

Biological lipid membranes are not only characterized by their
lateral heterogeneity but also by their asymmetric transverse lipid
distribution. Each of the plasma membrane monolayer (outer and
inner) significantly differ in their chemical composition. It is gen-
erally accepted that the outer leaflet is enriched in sphingolipids
(SL) and phosphatidylcholine (PC) whereas the inner leaflet is
enriched in phosphatidylethanolamine (PE), phosphatidylserine
(PS), and phosphatidylinositols (PI, PIP, PIP2, PIP3). This trans-
verse asymmetry can also be defined in term of acyl chains
saturation/unsaturation distribution. Indeed, mono or poly-
unsaturated acyl chain are mainly found in PE, PS and PI(P)x

whereas saturated ones are esterified on PC and SL. The trans-
verse partitioning of cholesterol is unclear but surprisingly seems
to be in favor of the cytoplasmic leaflet in different cells (Devaux
and Morris, 2004; Wood et al., 2011). These observations point
out key questions about the existing lateral heterogeneities in the
plasma membrane. How can a “raft” exist in the inner leaflet of
the plasma membrane since it is depleted in sphingolipids and
enriched in unsaturated acyl chains? Can lipid domains of differ-
ent nature and composition exist in both leaflets? Finally, if they
do exist, how are they coupled? Indeed, there is no theoretical
problem with the existence of Lo domains in both leaflets of the
plasma membrane, although the physical and chemical properties
of these domains must be different. For example, liquid ordered
(Lo) domains could exist in PS/PE dominated inner leaflet, pro-
vided these lipids are saturated or bear only one unsaturated fatty
acid restricted to the sn-2 position. Indeed several papers have
reported that the inner leaflet domains containing PC/Chol or
PE/Chol would be less stable than the outer leaflet “rafts.” This has
also been observed in model membranes (Samsonov et al., 2001).
Thus Lo domains in the outer and the inner membrane leaflet
of biomembranes should not necessarily spontaneously match to
each other. On the opposite, some studies performed on asym-
metric model system at the thermodynamic equilibrium tend to
show the opposite result and end up in a coupled macroscopic
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phase separation (Lo/Ld) on both leaflets (Allender and Schick,
2006; Wan et al., 2008; Kiessling et al., 2009).

MOLECULAR SHAPE AND CURVATURE
Another topic of interest for retroviral assembly is the role of
spontaneous local curvature of the membrane. A major reg-
ulator of this local curvature is the lipid average molecular
shape (Israelachvili, 1977). This molecular shape can be defined
by a simple geometric property of the molecule (Israelachvili-
Mitchell-Ninham packing parameter: P = v/al), where v is the
molecular volume, a is the cross section area of the head
group and l is the length of the molecule (mainly due to
acyl chains) (see Figure 1). In a dynamic aggregate, those
values should be considered as average molecular properties.
Although the role of the average molecular shape in the spon-
taneous curvature of lipid bilayers is more and more ques-
tioned (Cooke and Deserno, 2006), value of P turns out to
be very useful to predict the structure of lipid assemblies.
For example, it is clearly seen from Figure 1 that if one of
the two leaflets of the membrane start having different aver-
age P value, the bilayer will suffer from built-in curvature
stress.

Another way to describe the membrane curvature in a contin-
uous model is the bending energy. This latter relies on both the
spontaneous curvature (which can be seen as the average value of
the molecular shape) and the bending stiffness of the membrane
(basically, the thicker the membrane, the higher the bending stiff-
ness). It is clear that average curvature plays a role in lipid sorting
although it is hard to define if lipid sorting induce curvature or the
opposite (for an extensive review see Callan-Jones et al., 2011).
Nevertheless, many reports have shown that bending energy of

a homogeneous tri-component model membrane submitted to
inhomogeneous curvature can be reduced by enriching the highly
curved region in liquid disordered lipids (van Meer and Lisman,
2002; van Meer and Sprong, 2004). It then appears that lipid sort-
ing induced by curvature is a collective effect more than a single
molecule effect. Moreover, it is clear that membrane attached pro-
teins (such as Gag) plays a role in this average curvature and the
associated lipid sorting. It is therefore highly probable that HIV-1
virus budding, which induces a positive curvature of the mem-
brane, should occur with different average molecular shape on
both leaflets of the membrane, i.e., with different lipid compo-
sition on both leaflet. In their review (Callan-Jones et al., 2011)
stated that “In cell membranes, it is very unlikely that individual
lipids, unassisted by interactions with themselves or with pro-
teins, can be enriched in curved regions simply based on their
shape alone.” This questions the role of individual molecular
spontaneous curvature in the curvature based lipid sorting in cells
and on the opposite, this reinforce the role of proteins and lipid
domains in inducing or responding to curvatures.

To summarize, on both side of the membrane, lipid domain
formation and stabilization are due to a combination of lat-
eral segregation or phase separation, induced or spontaneous
curvature, transverse distribution asymmetry. This has been
recently shown in the outer leaflet in the case of “raft” domains
(Meinhardt et al., 2013).

ROLE OF LIPIDS DOMAINS IN HIV-1 ASSEMBLY
As stated in the introduction, the minimal component required
for HIV-1 assembly at the plasma membrane, is the viral Gag
protein. Its MA domain is mainly responsible for membrane
interaction and targeting to the plasma membrane (Ono et al.,

FIGURE 1 | Basic concepts of the lipid average molecular shape and its effect on spontaneous curvature of lipid membranes.
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2000), although MA alone seems to exhibit a lower affinity
for membrane than Gag (Zhou and Resh, 1996). MA domain
has a bipartite motif of interaction with lipid membranes like
many other proteins of the same class (for review see Resh,
1999). Indeed, HIV-1 Gag interacts with acidic lipids such as
phosphatidyl inositols phosphates(PIPx) and phosphatidylserine
(PS) by means of a polybasic region—called HBR (Highly Basic
Region)—(Zhou et al., 1994; Freed et al., 1995; Ono and Freed,
1999). Amongst the (PIPx), the phosphatidylinositol 4,5 bispho-
sphate (PI(4,5)P2) is considered to be the more specific (Ono
and Freed, 2004; Chukkapalli et al., 2008; Hamard-Peron et al.,
2010) but phosphatidylinositol 3,4 bisphosphate (PI(3,4)P2) or
phosphatidylinositol 3,4,5 triphosphate (PI(3,4,5)P2) also bind
efficiently (Anraku et al., 2010). As it is the case for other poly-
basic proteins (Ben-Tal et al., 1997; Murray et al., 1997), one can
expect that this electrostatic interaction occurs at long range dis-
tances (d > 1.5 nm) and can be considered as the attractive force
between the lipid membrane and the Gag protein. In addition to
its HBR region, Gag is also myristoylated at its N-terminus. This
myristoylation is responsible for tightening the attachment of Gag
to the plasma membrane by insertion into the membrane.

Elucidation of HIV MA structure bound to diC4PI(4,5)P2

or diC8PI(4,5)P2 has shown a switch of the myristoyl from an
hydrophobic pocket of MA into the membrane. This switch is
thought to be induced by electrostatic binding to PI(4,5)P2 (Saad
et al., 2006, 2007; Ono, 2010a). Nevertheless, it appeared that
the myristate can spontaneously be released from its hydrophobic
pocket in the vicinity of lipid membranes or upon trimeriza-
tion of the protein (Tang et al., 2004; Valentine et al., 2010;
Charlier et al., 2014). While Valentine et al. suggested that Gag
released myristate could probe the membrane by successive inser-
tion/exclusion until finding its PI(4,5)P2 target, the coarse grain
molecular modeling of Charlier et al. (2014) suggest in contrast,
that insertion of the myristate occurs after non-specific electro-
static attraction to the membrane and permits the Gag protein
to find a correct orientation to capture the PI(4,5)P2 head in the
HBR. Recent NMR data obtained by Vlach and Saad (2013) sug-
gested that other lipid such as PS, PE and PC could reinforce the
interaction of Gag with plasma membrane by direct binding to a
different site of Gag.

The role of pre-existing lipid domains in the interaction of
Gag with the plasma membrane and in HIV-1 assembly has been
studied for many years.

Different experiments based on:

• detergent solubilization (Nguyen and Hildreth, 2000;
Lindwasser and Resh, 2001; Ono and Freed, 2001; Holm et al.,
2003)

• cholesterol depletion (Ono and Freed, 2001; Ono et al., 2007)
• immunofluorescence co-localization (Nguyen and Hildreth,

2000; Holm et al., 2003; Ono et al., 2005)
• lipidomics (Bruegger et al., 2006; Chan et al., 2008; Lorizate

et al., 2013).

have suggested a potential role of “rafts” in the assembly of
Gag. Although lipidomic studies differ one from each other, they
have mainly shown that HIV lipid envelope was highly enriched

in PIPx, but also slightly in sphingomyelin (Chan et al., 2008;
Lorizate et al., 2013). Results are contradictory regarding enrich-
ment in cholesterol and PS (Chan et al., 2008; Lorizate et al.,
2013).

TEM have also been proposed to be the site for HIV-1 assem-
bly (Booth et al., 2006; Nydegger et al., 2006; Thali, 2009). TEM
has been shown to co-localize with Gag in T cells (Jolly and
Sattentau, 2007; Grigorov et al., 2009) and tetraspanin compo-
nents are found to be incorporated into HIV-1 particles, especially
CD81 (Grigorov et al., 2009). GM3, for example, is described to
be highly present in TEM (Hemler, 2005; Yanez-Mo et al., 2009)
and is enriched in the virus lipid envelope compared to the plasma
membrane (Chan et al., 2008).

Although the functional goal of assembling into TEM or
“rafts” has still not been elucidated, different molecular mech-
anisms (mainly for assembly into “rafts”) have been proposed.
Moreover it has been suggested that Gag could induce the coales-
cence of clustered rafts and TEMs at its own assembly site (Hogue
et al., 2011).

“Rafts” are considered to be mainly enriched in saturated
lipids, therefore the major problem of Gag partitioning into
“rafts” is its interaction with PI(4,5)P2, which naturally bear a
long unsaturated acyl chain in its sn-2 position. In our opin-
ion, the most subtle, elegant and detailed model to solve this
controversy is coming from the NMR structure of MA with
di-C8PI(4,5)P2 (Saad et al., 2006). In this mechanism, the unsat-
urated sn-2 acyl chain of the PI(4,5)P2 is sequestered in a
hydrophobic cluster of MA amino acids concomitantly to the
myristate switch, whilst the saturated sn-1 acyl chain remains in
the plasma membrane. The sequestration of the unsaturated fatty
acid of the PI(4,5)P2 out of the hydrophobic part of the mem-
brane thereby allows the complex MA-PI(4,5)P2 to partition into
rafts (Ono, 2010b; Simons and Gerl, 2010). This model has been
recently reinforced by the suggestion that Gag could sense choles-
terol and liquid-ordered acyl-chains environments (Dick et al.,
2012) and by new NMR experiments performed by Vlach and
Saad (2013). These new NMR data show the existence in MA of
a second lipid binding site inducing sn-2 acyl chain flipping into
a new associated hydrophobic pocket whatever the bound lipid
is (PS, PC, PE). Since sn-2 position is usually the place where
unsaturated acyl chains hold in lipids, this new model shows that
MA is able to locally deplete the complex MA-bound lipids of
unsaturated acyl chains. As a result, the complex, mainly bearing
saturated acyl chains, could therefore partition faster into lipid
“rafts” despite the lack of direct interaction with sphingomyelin
(Vlach and Saad, 2013).

Nevertheless partitioning of Gag into “rafts” is still a mat-
ter of controversy since “rafts,” as they are defined, can almost
exclusively exist in the outer leaflet of the plasma membrane,
explaining therefore the lack of direct interaction of MA with sph-
ingomyelin. Recently, Keller et al. (2013) have nicely shown that
a myristoylated multimerizable Gag bound to PI(4,5)P2 contain-
ing model membrane exclusively partition into liquid disordered
domains, not ordered (“rafts”) ones. Moreover, starting from the
NMR structure established by Saad et al. (2006), Charlier et al.
(2014) have performed coarse grain molecular dynamics of Myr-
MA in the presence of a lipid bilayer whose composition approach
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the inner leaflet of the plasma membrane. Our study shows that,
in this configuration, the unsaturated sn-2 acyl chain of the
PI(4,5)P2 never flipped out of the membrane into an hydropho-
bic pocket of Gag. It is important to notice that, although it is
not discussed in the paper of Charlier et al. (2014), PS was seen
to bind at the site where Saad et al. have seen it by NMR (Vlach
and Saad, 2013), but, here again, without any flipping of its sn-2
acyl chain. Moreover, in the light of what is described on page 3
of this review, it is worth wondering how interesting it would
be to trap acyl chains into hydrophobic pockets of Gag during
HIV-1 assembly. An oversimplified guess shows that removing
acyl chains from the plane of the membrane will locally change
the molecular curvature of the complex and will induce, during
assembly, a negative curvature opposite to the positive curva-
ture expected for budding. Whereas there is no doubt that the
viral lipid envelop is enriched in sphingomyelin and cholesterol
it is still unclear at which step of the assembly this enrichment
occurs. Indeed, these two recent studies clearly questions the
role of “raft” as a pre-existing platform where virus assembly
occurs.

A question that still remains is the possibility for Gag to
be targeted at pre-existing inner leaflet domains. Some stud-
ies have suggested that PI(4,5)P2 could spontaneously aggre-
gate into nanodomains (Johnson et al., 2008; Ellenbroek et al.,
2011; Salvemini et al., 2014). But it has also been shown that
PI(4,5)P2 is sequestered by proteins in the cell (for review see
McLaughlin et al., 2002). In our opinion, based on different
other studies regarding the effect of membrane bound pro-
teins on lipid phase separation (Ehrig et al., 2011a,b; Witkowski
et al., 2012), it is more than likely that, as we already pro-
posed (Kerviel et al., 2013), assembly induces lipid domain,
not the opposite. Using coarse grained molecular dynamics of
the interaction of Myr-MA with inner lipid leaflet we have
shown a potential enrichment of PI(4,5)P2 all around the
protein (Charlier et al., 2014), leading to putative enriched
acidic lipid nanodomain formation as we already suggested in
Kerviel et al. (2013).

Based on micro-emulsion theory, it has been recently demon-
strated (Shlomovitz and Schick, 2013) that local fluctuations
of curvature could induce asymmetric lipid domains (in term
of lipid composition) in both leaflet. The theory predicts that
inner PS enriched domains could face outer SL enriched domains
(“rafts”), which turns out to be very nice in terms of HIV-
1 assembly... Unfortunately, in this configuration (PS domains
facing SL domains), the induced curvature is negative, i.e., oppo-
site to viral budding. More generally, the role of pre-existing
lipid domains in favoring virus assembly is unclear, whatever
their composition and origin are. Indeed, a recent study on
the dynamics of the interaction of Gag with TEM domains
has shown Gag multimerization to be responsible for trap-
ping CD9 into the domain of assembly instead of Gag tar-
geting through CD9 on preexisting TEMs (Krementsov et al.,
2010). This suggests that during retroviral assembly, Gag is trap-
ping membrane components instead of being trapped at specific
pre-existing domains. These controversial data shows that the
role of lipids during HIV-1 assembly is far from being eluci-
dated.

CONCLUSION
One of the key questions regarding the role of membranes in HIV-
1 assembly is the time-ordering of events across the membrane.
Is there an induction of inner leaflet lipid domains during mul-
timerization process domains or is Gag targeted to pre-existing
coupled outer and inner leaflet domains in order to rapidly
assemble. Indeed, in the released virus, the ratio Gag to Env is
largely in favor of Gag, it seems therefore reasonable to expect
that HIV-1 assembly is an “inside out” process, not an “outside
in,” i.e., Gag may be driving the assembly from the inside, not
pre-existing outer “rafts” domains with Env trapped into (for
a scheme of the process see Figure 1 in Mariani et al. in this
special issue). Nevertheless, at the moment, it appears that the
respective roles of lipid domains and viral proteins during HIV-1
assembly are still entangled. It thus remains an exciting chal-
lenge for virologists as well as for biophysicists to remove this
degeneracy.
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