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The replication and pathogenicity of lentiviruses is crucially modulated by “auxiliary
proteins” which are expressed in addition to the canonical retroviral ORFs gag, pol, and
env. Strategies to inhibit the activity of such proteins are often sought and proposed as
possible additions to increase efficacy of the traditional antiretroviral therapy. This requires
the acquisition of an in-depth knowledge of the molecular mechanisms underlying their
function. The Nef auxiliary protein is expressed uniquely by primate lentiviruses and plays
an important role in virus replication in vivo and in the onset of AIDS. Among its several
activities Nef enhances the intrinsic infectivity of progeny virions through a mechanism
which remains today enigmatic. Here we review the current knowledge surrounding such
activity and we discuss its possible role in HIV biology.
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A BRIEF HISTORY OF THE DISCOVERY OF THE Nef ORF
The first reports of the entire HIV-1 genome sequences exposed
an ORF, partially overlapping with the 3′LTR, which was initially
named 3′ORF (Ratner et al., 1985; Sanchez-Pescador et al., 1985).
Early studies demonstrated that its gene product was antigenic
during the course of natural infection (Arya and Gallo, 1986; Fran-
chini et al., 1986). However, it took several years before its role in
vivo and its molecular functions began to be understood. Initial
studies suggested that 3′ORF encoded for a GTPase (Guy et al.,
1987), a finding soon dismissed as a possible consequence of sam-
ple contamination with bacterial GTPases (Backer et al., 1991).
Subsequent reports suggested that 3′ORF was a negative factor
(hence the name nef, still in use today), because its over-expression
was found to attenuate viral transcription and HIV replication
in cell culture (Luciw et al., 1987; Ahmad and Venkatesan, 1988;
Niederman et al., 1989). These findings were soon contradicted
by later reports (Hammes et al., 1989; Kim et al., 1989) which
attributed the negative effect to the LTR sequences maintained in
Nef-encoding vectors and interfering with HIV gene expression.

The first evidence demonstrating the requirement for an intact
nef allele in the maintenance of high viral load and the timely
development of immunodeficiency came from Rhesus macaques
infected with a mutated strain of SIVmac239 lacking the Nef
ORF (Kestler et al., 1991). Further evidence came from patients
who contracted infection with Nef-deleted viruses and manifested
long-lasting low level of virus replication and delayed onset of the
disease (Deacon et al., 1995; Kirchhoff et al., 1995). A positive effect
of Nef on HIV-1 replication was eventually confirmed in vitro
using primary cell cultures and, to a lesser extent, in transformed

cell lines (Terwilliger et al., 1991; de Ronde et al., 1992; Zazopoulos
and Haseltine, 1993; Miller et al., 1994; Spina et al., 1994).

OVERVIEW OF Nef ACTIVITIES
The nef gene is only present in the genomes of primate lentiviruses,
i.e., HIV-1, HIV-2, and SIV. It is translated from a multiply spliced
mRNA which generates a protein of 27–32 KDa highly expressed
from the early stages of the infection process. Based on crystal
(Lee et al., 1996; Arold et al., 1997; Grzesiek et al., 1997) and NMR
(Grzesiek et al., 1996, 1997) structures, we know that Nef is made
of a globular core domain flanked by a flexible N-terminal arm and
a C-terminal disordered loop. Residues crucial for the interaction
with different host factors are located in all three regions of the
protein. Nef is myristoylated, which contributes to its association
with membranes, together with a stretch of basic aminoacids close
to the N-terminus (Bentham et al., 2006). Indeed, a significant
fraction of Nef is observed in association with the plasma mem-
brane and perinuclear membrane complexes (Kohleisen et al.,
1992; Fujii et al., 1996; Greenberg et al., 1997). Myristoylation may
also contribute to prevent Nef from multimerizing (Breuer et al.,
2006). The protein is also detected within virion particles (Pan-
dori et al., 1996; Welker et al., 1996, 1998; Bukovsky et al., 1997),
a feature which could depend on the ability of Nef to associate
with cellular membranes. Packaged Nef has also been reported
to undergo cleavage by the viral protease (Bukovsky et al., 1997;
Chen et al., 1998). However, as discussed below, the meaning and
the specificity of Nef packaging into virions remain unclear.

Perhaps the most remarkable feature of Nef is its multi-
functionality. Nef does not contain enzymatic activity, but exerts
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several cellular functions resulting from its ability to interact
with numerous host factors. The most characterized activities
of Nef result from the ability of the protein to connect with
the cellular vesicular trafficking machinery and to perturb cell
signaling.

MODULATION OF CELL-SURFACE MOLECULES EXPRESSION LEVELS
Nef interacts with several proteins implicated in intracellular traf-
ficking and modulates cell surface expression of several molecules
(Landi et al., 2011). Nef down-regulates CD4 (Garcia and Miller,
1991) by enhancing its uptake into the endosome–lysosome com-
partment (Aiken et al., 1994; Chowers et al., 1994; Rhee and Marsh,
1994; Schwartz et al., 1995a; Bresnahan et al., 1998; Craig et al.,
1998; Piguet et al., 1998, 1999; Janvier et al., 2001; Faure et al.,
2004), a function conserved and maintained throughout disease
progression that increases both virus infectivity and replication,
as discussed in Section “Potential Effect of Nef During Virus
Biogenesis.”

Nef affects the trafficking of many other proteins, which favors
virus replication in the host by hiding or protecting infected cells
from immune surveillance and by promoting virus dissemination.
Because these properties are not strictly related to the ability of Nef
to increase virus infectivity, they are mentioned in this chapter but
the underlying mechanism will not be discussed further.

The ability of Nef to prevent the elimination of infected cells by
the immune system is an important feature that favors virus dis-
semination in the host. Nef down-regulates molecules of the major
histocompatibility complex-I (MHC-I; Schwartz et al., 1996)
through a still debated mechanism distinct from that involved
in CD4 down-regulation (Piguet et al., 2000; Blagoveshchenskaya
et al., 2002; Williams et al., 2002, 2005; Larsen et al., 2004; Roeth
et al., 2004; Lubben et al., 2007; Noviello et al., 2008; Dikeakos
et al., 2012). This protects infected cells against killing by cytotoxic
T cells (Collins et al., 1998), and is maintained under strong selec-
tive pressure only during the acute phase of infection, when the
host is still fully immunocompetent (Carl et al., 2001). Protection
against cell lysis is further achieved by Nef-dependent FasL up-
regulation which triggers apoptosis of bysander cytotoxic cells (Xu
et al., 1997, 1999). Of note, HIV and SIV Nef also interfere with
MHC-II functions by down-regulating MHC-II complexes and
up-regulating the MHC-II-associated II invariant chain (Schindler
et al., 2003).

Cell infection by HIV or SIV is also characterized by T-cell
receptor (TCR) pathway dysfunction. Nef can down-regulate the
TCR/CD3 complex (Bell et al., 1998; Schaefer et al., 2000; Munch
et al., 2002), a property restricted to alleles derived from SIV iso-
lates non-pathogenic to their natural host, which might explain
the higher virulence of HIV compared with SIV (Schindler et al.,
2006). In addition, TCR activity can also be inhibited by the
Nef-dependent down-regulation of the co-stimulatory molecule
CD28 (Bell et al., 2001; Swigut et al., 2001). Finally, SIV Nef down-
regulates the restriction factor BST-2 and ensures efficient release
of viral particles from infected cells (Jia et al., 2009).

Key to these activities of Nef is the ability to form ternary com-
plexes with cargo molecules and adaptor or coatamer complexes
via a ExxxLL acidic di-leucin motif (Aiken et al., 1994) a EE di-
acidic sequence located in its C-terminal loop (Piguet et al., 1999),

a EEEE acidic cluster (Piguet et al., 2000) and a Yxx� motif (where
� represents a hydrophobic residue) on its N-terminal arm (Lock
et al., 1999).

MODULATION OF T-CELL ACTIVATION
In addition to modulating receptor expression levels, Nef also
hijacks signaling pathways and alters the activation threshold of
lymphocytes (Baur et al., 1994; Alexander et al., 1997; Schrager
and Marsh, 1999; Simmons et al., 2001) by interacting with Src
family tyrosine kinases (Saksela et al., 1995), members of the
p21-activated serine/threonine kinases (Sawai et al., 1994, 1996;
Khan et al., 1998; Renkema et al., 1999; Agopian et al., 2006)
and Vav (Fackler et al., 1999; Rauch et al., 2008). This leads to
a transcriptional program resembling that triggered by TCR stim-
ulation, which might create a favorable intracellular milieu for
virus replication. Signaling perturbation by Nef also results in the
inactivation of cofilin, which inhibits cytoskeleton rearrangement
and cell motility (Stolp et al., 2009). Features of the Nef protein,
which are reported to contribute to this activity, include a PxxP
proline-rich motif (Saksela et al., 1995), an amphipathic α-helix in
the N-terminal arm (Baur et al., 1997) and a hydrophobic surface
within the C-terminal loop (Agopian et al., 2006). Given that Nef
increases cell-free virus infectivity in non-T-cell systems, the effect
on primary T-cell activation does not seem to correlate with the
activity of Nef on virus infectivity.

THE EFFECT OF Nef ON RETROVIRUS INFECTIVITY
With the term infectivity we here indicate the efficiency with which
the virus establishes an infection event within a cell, which culmi-
nates with the integration of the virus genome into the host cell
genome. This is therefore a parameter which does not depend on
steps of the virus life cycle which follow integration, such as virus
gene expression or virus release. Infectivity is measured by relat-
ing the number or the frequency of the infectious events produced
by cell-free virus with the physical number of virus particles. To
compare infectivity across different samples, infectious events are
therefore normalized to the physical virus content in the inocu-
lum, determined by quantifying the amount of p24 CA protein
or the RT-activity of the virus. Most studies investigating HIV-1
infectivity employ infection assays limited to a single round of viral
replication by using trans-complemented molecular clones or by
the addition of AZT or entry inhibitors at various time points
following infection with replication competent viruses, in order
to avoid the contributions from successive rounds of replication
to the overall phenotype. Steps of the virus life cycle where the
effect of Nef on infectivity can be manifest include receptor inter-
action, entry, uncoating, reverse transcription, nuclear import and
integration.

The Guatelli lab was the first to report that HIV-1 lacking the
ability to express Nef has lower infectivity compared with the Nef-
positive counterpart (Chowers et al., 1994). This observation has
then been confirmed by several labs using a variety of experi-
mental systems differing for producer cell type, target cells and
viral molecular clones (Aiken and Trono, 1995; Goldsmith et al.,
1995; Miller et al., 1995; Tokunaga et al., 1998; Khan et al., 2001;
Tobiume et al., 2001; Papkalla et al., 2002). Altogether, the mag-
nitude by which Nef alters HIV-1 infectivity is highly variable,
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ranging from 3 to 40. In particular, the infectivity of Nef-defective
HIV-1 seems to be the most impaired when virus is produced from
lymphoid cell lines (Pizzato, 2010).

Additional observations indicate that the effect of Nef on infec-
tivity plays a major function in the biology of primate lentiviruses.
First, a comprehensive analysis including nef alleles derived from
a large panel of diverse HIV and SIV isolates has demonstrated
that the activity on infectivity is phylogenetically highly conserved
(Munch et al., 2007). Second, functional analysis of nef alleles
obtained during different stages of HIV infection revealed that
the Nef effect on infectivity is maintained by a strong selective
pressure during disease progression (Carl et al., 2001). Although
this evidence suggests an important function for the Nef effect on
infectivity, its precise role during the pathogenic infection remains
to be deciphered. While an increased virus infectivity would logi-
cally imply an advantage on virus replication and therefore on viral
load, clear evidence demonstrating such a link remains elusive.

THE EFFECT OF Nef ON VIRUS REPLICATION
A positive effect of Nef on virus replication was first observed more
than 20 years ago (Kim et al., 1989) and remains today mechanis-
tically unclear. While the role of Nef for efficient virus replication
in vivo is evident, this is not always the case in spreading infection
in vitro, for which the effect of Nef is highly variable depending on
the experimental system. The most robust requirement for Nef was
observed using primary T-cells or macrophages infected before
mitogenic stimulation of the cultures (Miller et al., 1994; Spina
et al., 1994). An important contribution to this effect could there-
fore stem from the ability of Nef to alter T-cell activation status
and favor preliminary virus replication before massive stimulation
following exposure to mitogens.

In contrast, Nef seems to only have a modest effect on the
replication of HIV-1 in transformed cell lines and in activated pri-
mary human T-cells. Discrepancy is observed between the marked
effect of Nef on the infectivity of single round infection competent
viruses and the modest Nef requirement for virus replication in
the same cell cultures (Haller et al., 2011). One major difference
between single round infections using cell-free virus and spread-
ing infection of HIV throughout a cell culture is that in the latter
cell-associated virus can be transmitted directly from cell to cell
(cell-to-cell transfer; Jolly et al., 2004) which seems to be remark-
ably efficient [up to 1000-fold more efficient than cell-free virus
(Sourisseau et al., 2007)]. A recent report indicates that Nef exerts
only a modest positive effect on cell-to-cell transfer using both
transformed cell lines and activated primary cells (Malbec et al.,
2013), therefore overriding bigger differences from the contribu-
tion of cell-free virus (Haller et al., 2011). The role of the effect
of Nef on infectivity on virus replication remains therefore to be
elucidated.

THE MECHANISTIC DETAILS OF THE EFFECT OF Nef ON
INFECTIVITY
The effect of Nef on virus infectivity requires its expression in
producer cells rather than target cells (Aiken and Trono, 1995).
Nef might thus play a role as a virus-borne protein when viri-
ons hit target cells. Alternatively, in the presence of Nef, progeny
virus particles might inherit a modification which is required to

maintain their full infectious potential. Two sides of the same
coin should therefore be considered. (1) What is the nature of the
Nef-dependent modification inherited by the virus particle and
how is it acquired? (2) In which step of the virus life cycle (ranging
from receptor interaction to integration) is the infection of a target
cell affected by such Nef-dependent modification? (Figure 1).

INFECTIVITY: IS VIRUS-BORNE Nef DOING IT ITSELF?
Conflicting results have been published regarding the effect of
Nef on fusion/entry which will be discussed later (Zhou and
Aiken, 2001; Tobiume et al., 2003; Cavrois et al., 2004). Never-
theless the literature agrees that Nef+ viruses complete post-entry
steps more efficiently than their Nef− counterparts (Aiken and
Trono, 1995; Chowers et al., 1995; Schwartz et al., 1995b).The
fact that Nef is incorporated into viral particles and cleaved by
HIV-1 protease at residues W57L58 in the course of virion mat-
uration makes it reasonable to hypothesize a specific role for
virus-borne Nef in early steps of viral replication (Pandori et al.,
1996; Welker et al., 1996; Bukovsky et al., 1997). Site-directed
mutagenesis led to the identification of molecular species with
a range of phenotype regarding their incorporation and matura-
tion in virions; however, no correlation could be drawn between
incorporation/maturation and infectivity because mutants were
also deficient in other known functions of Nef, mostly CD4 or
MHC down-regulation (Bukovsky et al., 1997; Miller et al., 1997;
Chen et al., 1998; Welker et al., 1998; Bentham et al., 2006). The
fact that Nef can be also incorporated into MLV particles (without
affecting virus infectivity) further suggests that it is passively and
“unpurposely” incorporated into enveloped virions due to its asso-
ciation with cell membranes (Bukovsky et al., 1997). Two papers
by Laguette et al. (2009a) and Qi and Aiken (2008) addressed the
question of Nef incorporation and its correlation to infectivity
by fusing WT Nef proteins with a “viral carrier protein”, Vpr and
CypA, respectively. These results support the idea that a role of
Nef in the course of virus biogenesis, not as a virus-borne factor,
likely accounts for its effect on virus infectivity, and are in line with
the inability of Nef to complement the infectivity of Nef− viruses
when it is expressed in target cells (Aiken and Trono, 1995; Pizzato
et al., 2008).

POTENTIAL EFFECT OF Nef DURING VIRUS BIOGENESIS
One of the first effects attributed to Nef is its ability to down-
regulate cell surface CD4 expression level in infected cells (Guy
et al., 1987). Because CD4 is the primary receptor for HIV (Dal-
gleish et al., 1984; Klatzmann et al., 1984), its down-regulation
from the plasma membrane spares cells from cytotoxic super-
infection and favors virus dissemination (Benson et al., 1993; Little
et al., 1994). Furthermore CD4 down-regulation prevents the for-
mation of CD4/gp120 complexes in intracellular compartments
and at the plasma membrane, which has been shown to inter-
fere with envelope glycoproteins (Env) incorporation into nascent
virions and to decrease virus infectivity (Lama et al., 1999; Cortes
et al., 2002; Arganaraz et al., 2003; Lundquist et al., 2004; Schi-
avoni et al., 2004). This phenotype appears to be of particular
importance for primate lentiviruses since HIV and SIV Nef alleles,
but also Vpu and Env, down-regulate cell surface CD4 through
distinct mechanisms (Garcia and Miller, 1991; Benson et al., 1993;
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FIGURE 1 | Cellular or virus-borne: localization of Nef activity on virus

infectivity. Nef is expressed in infected cells and incorporated into virions.
Given the profound imprint of Nef on the biology of infected cells, it may
regulate a cellular function in virus-producing cells that favors virus

infectivity (1). The fact that virus-borne Nef molecules are processed during
maturation also suggests that cleaved molecules may play a role when
virions hit target cells (2). Recent findings tend to favor the former
hypothesis.

Sanfridson et al., 1994; Chen et al., 1996; Fujita et al., 1997; Hua
and Cullen, 1997; Margottin et al., 1998; Schubert et al., 1998;
Wildum et al., 2006; Laguette et al., 2009b; Magadan et al., 2010).
CD4 down-regulation by Nef thus seems to favor HIV infectivity
and replication as correlated by the Aiken and Kirchhoff groups
(Glushakova et al., 2001; Lundquist et al., 2002). However, the
sole ability of Nef to down-regulate CD4 cannot explain its effect
on virus infectivity since Nef remains capable of increasing virus
infectivity when virions are produced from CD4-negative cells or
when virions are pseudotyped with the MLV-A envelope glyco-
protein that does not interact with CD4 (Aiken and Trono, 1995;
Miller et al., 1995; Aiken, 1997; Pizzato et al., 2008). In addition,
Nef does not seem to modulate Env incorporation into the viral
membrane when virions are produced from CD4-negative cells
(Miller et al., 1995; Lai et al., 2011). The effect on infectivity is
therefore an independent activity of Nef.

The hypothesis of a role of Nef in the course of virus biogenesis
was further investigated in a comparative proteomic analysis of
WT and Nef-defective NL4-3 viral particles intended to identify
differences in their composition that might explain the higher
infectivity of WT viruses (Bregnard et al., 2013). This study
revealed that Ezrin and EHD4 are more abundant in Nef-defective
than in WT NL4-3 virions but failed to demonstrate a direct
inhibitory effect of these virus-borne proteins on Nef-defective
virus infectivity. On the contrary, Ezrin and EHD4 depletion
decreased WT viruses infectivity but not that of Nef-defective
viruses, which supports their roles as possible co-factors in the
Nef-mediated increase of virus infectivity. A similar comparative
analysis has been conducted to identify a specific signature of Nef

on the lipid composition of the viral membrane (Brugger et al.,
2007). Although differences could be identified between Nef+
and Nef− derived membranes, none was found to account for the
Nef-dependent increase of virus infectivity. Nef-dependent post-
translational modification of viral proteins could also account
for the higher infectivity of Nef+ over Nef− viruses. Although
Nef-associated kinases were found to induce matrix phosphory-
lation on serine residues (Swingler et al., 1997), matrix was later
found dispensable not only for virus replication, but also for Nef
responsiveness, which ruled out its contribution to the phenotype
(Reil et al., 1998; Dorfman et al., 2002). Of note, matrix deletion
from Gag requires mutation or deletion of HIV-1 Env cytoplas-
mic tail to ensure the incorporation of the retroviral glycoprotein
into the viral membrane and the biogenesis of infectious virions
(Ono et al., 1997; Reil et al., 1998; Murakami and Freed, 2000; Ono
et al., 2000; Tedbury et al., 2013). Simultaneous mutations might
thus interfere and hide the requirement for matrix phosphory-
lation in the Nef-dependent increase of virus infectivity. Further
investigation is thus required to formally identify Nef-dependent
modifications of viral proteins, or incorporation/exclusion of cel-
lular factors into/from virions, that might directly affect virus
infectivity.

EFFECT OF Nef (OR MODIFICATIONS INHERITED FROM PRODUCER
CELLS) IN TARGET CELLS
Although Nef does not seem to affect the concentration of Env on
the virus surface, its ability to increase virus infectivity is some-
what dependent on the mechanism that promotes fusion between
the virus and the cell membrane and was long thought to be linked
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to the route of viral entry. While Nef increases the infectivity of
viruses decorated with Env that allow for fusion at neutral pH
such as that of HIV and A-MLV (referred to as responsive Env), no
effect of Nef is observed with Env that requires virus endocytosis
and endosome acidification to promote fusion such as that of VSV
and RSV-A (Miller et al., 1995; Aiken, 1997; Luo et al., 1998; Piz-
zato et al., 2008). This has suggested the existence of a post-entry
block encountered by incoming capsids when fusion takes place
at the plasma membrane and counteracted by Nef (or its effects
inherited from the virus producing cell, see below) or bypassed
by incoming virions traveling through the endocytic network, out
of reach of cytoplasmic factors. The cortical actin network has
been suggested to account for such post-entry block, based on the
relieving effect of actin-targeting drugs on the poorly infectious
Nef− viruses but not on the fully infectious Nef+ viruses (Camp-
bell et al., 2004). However, although Nef increases the infectivity
of HIV-1, regardless of its tropism for CXCR4 or CCR5 receptors,
not all HIV-1 Envs are equally responsive to Nef (Chazal et al.,
2001; Papkalla et al., 2002; Lai et al., 2011; Usami and Gottlinger,
2013). Furthermore, the correlation between Nef responsiveness
and entry at the plasma membrane is at odds with evidence of
HIV entry into target cells in early endosomes, after endocytic
vesicles have passed the cortical actin network but before endo-
some acidification (Miyauchi et al., 2009; van Wilgenburg et al.,
2014). In addition, Nef responsiveness can be observed even when
fusion takes place in acidic endosomes, in experimental setting
where cells express RSV-A Env and virions are pseudotyped with
the cognate Tva receptor (Pizzato et al., 2008).

Nef might thus have an effect on fusion that correlates neither
with the route of entry, nor with Env dependence on pH. Such
effect has been investigated with responsive and non-responsive
Envs and led to contradictory results. While a Nef-dependent
increase of the fusion process extrapolated from virus/cell or
intravirion fusion assays has been reported by some groups (Scha-
effer et al., 2001; Zhou and Aiken, 2001), others have failed to
detect any difference between Nef+ and Nef− viruses in the com-
pletion of the fusion step, including groups that used the most
quantitative βlam-Vpr fusion assay developed in the Greene lab-
oratory (Miller et al., 1995; Tobiume et al., 2003; Campbell et al.,
2004; Cavrois et al., 2004; Basmaciogullari, personal communica-
tion). Such conflicting results led Cavrois et al. (2004) to cautiously
interpret the sensitivity of the βlam-Vpr assay and the hypotheti-
cal effect of Nef on fusion. The authors suggested that Nef might
assist the enlargement of the pore arising from the fusion between
the virus and cell membranes, and promote translocation of the
viral capsid into the cell cytoplasm. Small pores arising from the
fusion between Nef− viruses and cell membranes would restrict
capsid translocation but allow for full diffusion of the fluorogenic
substrate or βlam-Vpr. This would explain why Nef− viruses are
less infectious than Nef+ viruses yet induce identical βlam-Vpr
readouts. However, this model is based on the assumption that
pore size does not limit substrate or βlam-Vpr diffusion, which
needs to be demonstrated. Alternatively, if small pores restrict
diffusion, hence βlam-Vpr positivity, identical βlam-Vpr read-
outs obtained with Nef+ and Nef− viruses can only be achieved
if large pores are underrepresented and have a negligible contri-
bution to the overall βlam-Vpr signal (i.e. Nef+ viruses: 99%

small pores and 1% large pores/full entry; Nef− viruses, 99.9%
small pores and 0.1% large pores/full entry). The fact that fusion
inhibitors clearly decrease infectivity and the Vpr-βlam signal does
not support this hypothesis. It thus seems that the most likely
explanation for identical βlam-Vpr readouts is that Nef has no
effect on fusion/capsid delivery but affects post-fusion steps of
the virus life cycle. Of Note, Day et al. (2004), who also used this
assay, reported a fusion advantage of Nef+ viruses over Nef−
viruses, which highlights the need for a more robust and sensi-
tive fusion assay in order to clarify the possible effect of Nef on
fusion.

Besides these discrepancies on fusion, it has been shown that
Nef affects the accessibility of neutralizing antibodies directed
against the MPER region of gp41 in a cell/virus fusion context (Lai
et al., 2011). Although this did not fully correlate with the ability of
Nef to increase virus infectivity, it nevertheless demonstrates that
Nef might affect Env proteins conformation or the lipid environ-
ment adjacent to the MPER region and thus the fusion capacity
of Env glycoproteins. The difference between responsive and non-
responsive HIV-1 Env was recently mapped to an epitope within
the V2 region of gp120 (Usami and Gottlinger, 2013). Yet, given
the divergence between Nef responsive HIV-1 and MLV-A Env gly-
coprotein sequences and the responsiveness of Tva-pseudotyped
viruses (Pizzato et al., 2008), the common parameter that allows
for Nef responsiveness remains unknown. It thus seems that pro-
teins found on the virus surface that mediate fusion, whether they
be viral Envs or cognate receptor(s), are major determinants of Nef
responsiveness but most likely not through their role in fusion.

The effect of Nef has also been documented at the level of
cDNA synthesis in target cells. Although early experiments could
not discriminate between effects of Nef on fusion or post-fusion
steps, they nevertheless demonstrated that Nef+ viruses generate
more early reverse transcription products than Nef− viruses, sup-
porting an effect of Nef operating anywhere between fusion and
viral DNA translocation to the nucleus (Aiken and Trono, 1995;
Schwartz et al., 1995b). Of note, intravirion stimulation of reverse
transcription was shown to compensate for the effect of Nef on
virus infectivity (Khan et al., 2001). Given the interdependence
between uncoating and RT, these results suggest that Nef might
assist either of the mechanisms (Hulme et al., 2011; Yang et al.,
2013). Although Nef does not show any effect on uncoating in
vitro, an effect of Nef in vivo cannot be ruled out (Forshey and
Aiken, 2003).

CONVERGING MECHANISMS
Three papers published recently describe a striking parallel
between HIV-1 Nef and MLV glycoGag (Pizzato, 2010; Usami
and Gottlinger, 2013; Usami et al., 2014). This protein arises from
the translation of the unspliced MLV RNA from a CUG initiation
codon upstream from the conventional initiation codon of Gag,
which results in the addition of 88 residues in frame and N terminal
to Gag, responsible for the type II orientation of the corresponding
protein where the added N terminal residues constitute the trans-
membrane domain and extend into the cytoplasm of the cell. It has
been shown that ectopic expression of Nef or glycoGag similarly
increases the infectivity of viruses produced from cells transfected
with a Nef− provirus. Interestingly, simultaneous co-expression
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of Nef and glycoGag has no synergistic effect and glycoGag has no
effect on VSV-G pseudotyped viruses, suggesting that these pro-
teins are involved in the same mechanism that eventually leads to
the increase of virus infectivity (Pizzato, 2010). In addition the
V2 region of HIV-1 Env, which dictates Nef responsiveness, also
dictates responsiveness to glycoGag (Usami and Gottlinger, 2013).
Finally, although the ability of Nef to increase virus infectivity and
its effect on the accessibility of MPER epitopes on HIV-1 Env par-
tially overlap, glycoGag expression also affects the accessibility of
similar MPER epitopes (Lai et al., 2011). This further confirms the
converging functions of these unrelated proteins.

MECHANISTIC HYPOTHESES
THE BROAD PICTURE
Several hypotheses can be put forward in a two-act scenario
responsible for the differential infectivity of Nef+ and Nef−
viruses. Nef might hijack cellular pathways in virus-producing
cells that ultimately optimize infectivity (modification of viral
proteins or viral content beyond its known elements). Cellular
pathways in target cells might then specifically assist Nef+ viruses
in the early steps of the virus life cycle (Figures 2A,C). Both sides
of this same coin can then either involve cofactors recruited by
Nef or inhibitory factors counteracted by Nef. So far, the lentivi-
ral auxiliary proteins Vif, VpU, and VpX have been involved in the
neutralization of an inhibitory factor (or restriction factor) such as
Apobec3, Bst2, and SAMHD1. In the case of Nef both possibilities

remain open. The Nef requirement for reaching optimal infectiv-
ity is highly variable and depends on the cell types from which
virions are produced (Pizzato, 2010), it is thus plausible that such
variability is conferred by differential expression of one or more
cellular genes involved in the scenario depicted above.

WHAT IS Nef DOING TO THE VIRUS, HOW AND WHERE?
Comparative analysis of Nef+ and Nef− viral particles have
clearly revealed differences in the lipid and protein composi-
tion, confirming that Nef expression in virus-producing cells
has an impact on the virus biogenesis. Although the modifica-
tion of the viral lipid bilayer by Nef did not seem to account
for the higher infectivity of Nef+ viruses over Nef− viruses,
further investigation with more sensitive fusion assays that are
yet to be developed might reveal a direct link between the viral
membrane lipid composition, membrane fusion and infectiv-
ity. Differences in the protein composition of viral particles also
revealed partial depletion or enrichment in particular proteins,
depending on the expression of Nef in virus-producing cells. Ezrin
and EHD4 were found in higher concentration in Nef− viruses
and their involvement in the infectivity phenotype confirmed;
however, their relative excess did not seem to account for the
poor infectivity of Nef− viruses. Rather, it was interpreted that
Ezrin and EHD4 are hijacked by Nef in the process of increasing
virus infectivity, thus preventing their passive incorporation into
virions.

FIGURE 2 | Possible mechanisms responsible for the differential

infectivity of Nef+ and Nef− viruses. (A), Nef− virions may acquire a
defect during biogenesis which could be either the packaging of an
inhibitor into virions (black shape), or the exclusion of a cofactor (not
shown). This defect might then prevent the recruitment of cofactor
(yellow shape) or be the target of an inhibitor (not shown) in target
cells. (B,C) The effect of Nef on virus infectivity is evident when virus
is produced from Nef-responsive cells, in which Nef regulates such

inhibitor or promote virus assembly to subcellular locations where the
defect is not acquired (B). (D–F) In contrast, Nef-non-responsive
producer cells generate Nef+ and Nef− viruses with similar infectivities
(F). Two possibilities may explain this phenotype: Nef fails to protect
the virus from the defect [D,F(1), Virions have suboptimal infectivity
even in the presence of Nef]; alternatively, producer cells lack the
cause of the defect or target virus assembly away from inhibitors
[E,F(2), Nef- virus already has optimal infectivity].
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It is interesting to note the converging phenotype of the
nef− mutation and mutations of p24CA on serine residues: both
mutants are poorly infectious but their infectivity is restored by
VSV-G pseudotyping (Brun et al., 2008). Although this is far from
explaining how Nef increases virus infectivity, it nevertheless con-
firms that post-translational modification by Nef is an interesting
line of investigation to follow. Additional work is thus required in
order to identify the differences between Nef+ and Nef− respon-
sible for the differential behavior of viruses when they hit target
cells.

As presented in this review, a main functional feature which
characterizes Nef alleles and is required for several Nef activ-
ities, is the ability to intersect with the vesicular trafficking
machinery of the cell. As we discussed earlier, Nef is capable
of interacting with AP1, AP2, and βCOP1 via distinct and dis-
crete motifs present in HIV and SIV Nef molecules (ExxxLL, EE,
EEEE, YxxL). Many observations converge toward a fundamental
role of vesicular trafficking for the activity of Nef for infectiv-
ity. In particular: (1) HIV-1 Nef requires the integrity of the AP2
interacting motif ExxxLL in virus producing cells (Chowers et al.,
1994). (2) Similarly, SIV Nef requires the YxxL motif (Lock et al.,
1999). (3) Mutant HIV-1 Nef proteins, which do not interact with
dynamin 2 (crucial for intracellular vesicles biogenesis), are no
longer capable of increasing HIV infectivity (Pizzato et al., 2007).
(4) The activity of Nef on infectivity requires functional clathrin-
mediated endocytosis, because it is impaired by silencing clathrin
gene expression and by over-expressing transdominant-negative
dynamin 2 and AP180. (Pizzato et al., 2007). (5) Glycogag requires
and interacts with AP2 via a YxxL motif to rescue the infectivity
of Nef-defective HIV-1 (Usami et al., 2014). 5) EHD4 and Ezrin
silencing render Nef+ viruses as poorly infectious as Nef− viruses
(Bregnard et al., 2013).

As highlighted earlier, doubts remain on the possibility that
Nef affects cytoplasmic delivery of HIV. In the hypothesis where
Nef enhances the efficiency of fusion between the virus and the
cell membranes, it might do so by promoting the endocytosis of
a membrane-bound fusion inhibitor in virus producing cells oth-
erwise incorporated into viral membrane. More generally, factors
with potential inhibitory effect, or responsible for the recruitment
of co-factors in target cells, might also be rerouted away from or to
the viral assembly platforms through the deregulation of protein
trafficking by Nef in infected cells.

Another interesting challenge is the identification of the cel-
lular compartment where Nef+ virions acquire their phenotype.
Nef might drive the viral components to the appropriate assem-
bly platforms where virions acquire specific features responsible
for their higher infectivity and, as suggested earlier, the nature of
the protein that decorates virions might play a role in this sort-
ing mechanism, independently of their involvement in membrane
fusion. Despite some flexibility in virus pseudotyping, much evi-
dence suggests that the acquisition of Env by budding virions is
somewhat regulated (Johnson et al., 1998; Jorgenson et al., 2009;
Muranyi et al., 2013; Roy et al., 2013). Env might be targeted by
Nef and rerouted to ensure assembly at specific sites (Figure 2B).
Of note, similar infectivities of Nef– and Nef+ viruses might either
reflect the inability of Nef to drive virus assembly to such compart-
ments (Figures 2D,F) or indicate that optimal assembly does not

require the presence of Nef (Figures 2E,F). Because cytoplasmic
tail-deleted Envs are still Nef responsive, specific determinants
might lie in the extracellular domain, and interact with a chap-
erone along its secretion and delivery to the plasma membrane.
Although this awaits formal evidence, it is compatible with the
recent identification of a V2 region in HIV-1 Env as a major
determinant of responsiveness to Nef/glycoGag.

CONSEQUENCES IN TARGET CELLS
Tracking virions in target cells is particularly challenging, espe-
cially when virions cannot be pseudotyped with VSV-G. For this
reason, not much is known about possible functions of virus-
borne molecules in early steps of the life cycle. Whether Nef itself
or the modifications it brings to viral particles impact on the com-
pletion of early steps, this most likely relies on the recruitment of
co-factors or the neutralization of inhibitory factors in target cells.
A cutting edge genetic approach based on the screening of a human
siRNA library has allowed for the identification of cellular factors
that modulate HIV-1 replication (HDFs, HIV-1 dependency fac-
tors). However, virions used in such HTS were either Nef− or
VSV-G pseudotyped, excluding de facto the possibility to identify
HDFs involved in the ability of Nef to increase virus infectivity
(Brass et al., 2008; Konig et al., 2008; Zhou et al., 2008). A simi-
lar screening performed in experimental settings where Nef+ and
Nef− viruses could be compared such as that described by Breg-
nard et al. (2013), would shed light on the pathways usurped by
Nef to increase virus infectivity.

CONCLUSION
Biochemistry-based approaches have been used in order to iden-
tify cellular factors involved in the many functions of Nef. Affinity
tagging or immunoprecipitation followed by mass spectrometry
(Pizzato et al., 2007; Jager et al., 2012; Mukerji et al., 2012) and
conventional or ubiquitin-split yeast two-hybrid screening (Beni-
chou et al., 1997; Kammula et al., 2012) have identified Nef binding
partners. Omics methods have also been used to identify how
HIV infection or Nef expression alone modifies the biology of the
cell (Schrager and Marsh, 1999; Wang et al., 2000; Simmons et al.,
2001; Kramer-Hammerle et al., 2005; van’t Wout et al., 2005; Berro
et al., 2007; Ringrose et al., 2008; Kramer et al., 2012). Given the
many Nef partners and cellular processes affected by Nef identified
so far, a strategy focused on the analysis of viral particles might
better address the question of the effect of Nef on virus infec-
tivity. Mass-spectrometry based techniques and computing tools
have strikingly improved, which makes possible the analysis of
Nef-induced post-translational modification of HIV-1 proteins in
order to reveal specific differences between Nef+ and Nef− viri-
ons. In addition, due to the convergence of Nef and glycoGag on
the infectivity phenotype, comparing the results of experiments
carried out with these proteins might narrow down the list of
modifications relevant for virus infectivity.
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