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The traditional methodology used for the identification of microbes colonizing our cultural
heritage was the application of cultivation methods and/or microscopy. This approach
has many advantages, as living microorganisms may be obtained for physiological
investigations. In addition, these techniques allow the quantitative and qualitative
assessment of the investigated environment. Quantitative analyses are done by plate
count and the determination of abundance by the colony forming unit (CFU). Nevertheless,
these techniques have many drawbacks that lead to an underestimation of the cell
numbers and do not provide a comprehensive overview of the composition of the
inhabiting microbiota. In the last decades, several molecular techniques have been
developed enabling many advantages over the cultivation approach. Mainly PCR-based,
fingerprinting techniques allow a qualitative detection and identification of the microbiota.
In this study, we developed a real time PCR method as a simple, rapid and reliable tool to
detect and quantify fungal abundance using the β-actin gene, which is known to appear as
a single-copy gene in fungi. To this end, five different indoor thermal insulation materials
applied for historical buildings that were previously tested for their bio-susceptibility
against various fungi were subjected to qPCR analyses. The obtained results were
compared with those obtained from a previous study investigating the bio-susceptibility
of the insulation materials using classical cultivation experiments. Both results correlated
well, revealing that Perlite plaster was the most suitable insulation material, showing the
lowest fungal CFU and qPCR values. In contrast, insulations made of wood showed to be
not recommendable from the microbiological point of view. In addition, the potential of
qPCR was tested in other materials of cultural heritage, as old parchments, showing to be
a suitable method for measuring fungal abundance in these delicate materials.
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INTRODUCTION
Our cultural heritage is continuously exposed to the effects
of physical, chemical, and biological factors. The latter includ-
ing biodeterioration caused by microorganisms (Sterflinger and
Piñar, 2013). Therefore, the identification of the microorgan-
isms involved in biodeterioration is the first necessary step for
understanding the effects of microorganisms on cultural assets.
The second step is to elucidate the actual amount, activity and
functional stage of these microorganisms and their role in biode-
terioration. Finally, the third step is to use the obtained informa-
tion to develop strategies for the conservation and protection of
monuments and art-works (González and Saiz-Jimenez, 2005).

Traditionally, the methodology used for the isolation and iden-
tification of microorganisms from different types of materials of
our cultural heritage was the application of cultivation methods
and/or microscopy. The classical cultivation of microorganisms
has offered many advantages, as living microorganisms could be
obtained for further physiological investigations. Furthermore,
these techniques allowed the quantitative and qualitative assess-
ment of the investigated environment. By using this methodology,
quantitative analyses have been done by plate count and the

determination of activity by the colony forming unit (CFU), both
being analyses based on the growth of microorganisms on selec-
tive media. Nevertheless, nowadays these techniques are known
to have many drawbacks (e.g., need of considerable sample
amounts, great time effort, only a small proportion of cultivable
microorganisms present on samples, etc.) that lead to an under-
estimation of the cell numbers and further do not provide a
comprehensive overview of the composition of the inhabiting
micro-biota (Ward et al., 1990).

In the last decades, several culture-independent, molecular
DNA and phylogenetic techniques have been developed supply-
ing many advantages over the traditional cultivation approach
(Amann et al., 1995; Hugenholtz and Pace, 1996; Hugenholtz
et al., 1998). Molecular techniques take advantage of the speci-
ficity provided by nucleic acid sequences for the identification of
microorganisms and their independence of culturing microor-
ganisms. Different, mainly PCR-based, genotyping techniques
have been developed and adapted for the fingerprinting of micro-
bial communities on biodeteriorated cultural heritage (Piñar
et al., 2001a; Schabereiter-Gurtner et al., 2001; González, 2003;
González and Saiz-Jimenez, 2004, 2005; Michaelsen et al., 2006).
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These techniques have enabled a reliable study and monitoring
of the microbial communities associated with different materi-
als, such as stone, prehistoric caves, wall paintings, oil paintings,
historical glasses, paper, parchment, human remains, etc. (Piñar
et al., 2001b, 2010, 2011, 2013a,b; Schabereiter-Gurtner et al.,
2001, 2002, 2004; Carmona et al., 2006; Michaelsen et al., 2006,
2010, 2013; Bastian et al., 2010; Ettenauer et al., 2010, 2011;
Portillo and González, 2011; López-Miras et al., 2013a,b). To date,
molecular techniques are very well established and are comple-
menting to more classical microbiological methods in the study
of microorganisms and their role in cultural heritage. The fusion
of these two different strategies have delivered complementary
results which allow a much better understanding of the identity
and diversity of the microorganisms inhabiting our cultural her-
itage (Laiz et al., 2003; Ettenauer et al., 2010; López-Miras et al.,
2013a,b).

In this context, recent investigations have focused on the devel-
opment of quantitative molecular tools that are broad-coverage,
sensitive, and specific. One of these methods is based on real-time
quantitative polymerase chain reaction (qPCR), which is a well-
known method for microbial detection (Zhang and Fang, 2006).
It is based on amplification of specific DNA-regions, monitor-
ing the amplification continuously by using fluorescent dyes, and
quantification of the target based on standards. Since the detec-
tion is based on DNA, it is not dependent on the cultivability of
the microbes. The main advantages of real-time PCR are its quan-
titative property and high specificity. It is also rapid and easy to
perform, after the assay has been set up and validated properly.
Quantitative PCR analyses have been widely applied for studying
the levels of individual species and assay groups in indoor sam-
ples (Haugland et al., 1999, 2004; Meklin et al., 2004; Vesper et al.,
2008; Kaarakainen et al., 2009) and in less cases, in building mate-
rials (Pietarinen et al., 2008; Pitkäranta et al., 2011). However, few
studies have explored the total mycobiota using DNA-based uni-
versal community characterization methods, like ribosomal DNA
amplicon sequencing or metagenome analysis (Pitkäranta et al.,
2008; Tringe et al., 2008; Liu et al., 2012). Nevertheless, it is worth
noting that by using universal rRNA primers, it is difficult to cal-
culate single fungal cells in a certain environmental sample. The
great variation of the number of rRNA gene clusters in a genome
and in a species (Herrera et al., 2009) makes it difficult to estimate
the number of fungal individuals.

Therefore, in this study, we have developed a real time PCR
method as a simple, rapid and reliable tool to detect and quan-
tify fungi using the β-actin gene. Fungi appear to have a tendency
toward a single actin gene copy per haploid genome (Gallwitz and
Seidel, 1980; Ng and Abelson, 1980; Mertins and Gallwitz, 1987;
Fidel et al., 1988; Voigt and Wostemeyer, 2000), thus enabling
a precise quantification of fungal cells. Moreover, comparative
sequence analysis of actin information, both at the nucleotide and
at the amino acid level, is developing into a highly appreciated
tool for long-range phylogenetic studies (Voigt and Wostemeyer,
2000).

To this end, five different indoor thermal insulation materials,
based on ecological materials that can be applied for historical
buildings, were tested for their bio-susceptibility against various
fungi under natural and laboratory conditions (Sterflinger et al.,

2013) based on the qPCR targeting the β-actin and the CFU
method. In addition, the potential of qPCR for the detection of
the β-actin gene was tested in other materials of cultural heritage,
as old parchments, which were already investigated and known to
be colonized by fungi (Piñar et al., 2011, 2014).

MATERIALS AND METHODS
EXPERIMENTAL PROCEDURE
Five different indoor insulation materials—bloated Perlite plaster,
bloated Perlite board, reed board and loam, wooden soft-board
and sprayed cellulose—were evaluated (see Table 1). Therefore,
small areas (4 × 4 cm) of the test items (∼10 × 10 cm in size)
were inoculated with each 1 ml (concentration 105 spores ml−1)
of 4 different spore solutions from 3 commonly indoors occurring
fungi: Cladosporium cladosporioides (MA 1610—further named
a), Aspergillus niger (MA 1615—b) and Penicillium chrysogenum
(MA 1701—c), and a mixture of all three (d), by plating and
spreading the spore solutions with a spatula on the materials sur-
face. These samples were incubated in a climate chamber (Weiss-
Klimakammer WKL 100) at 28◦C and 90% relative humidity
for a period of 6 months. Afterwards, the surface area (to a
depth of ∼0.5 cm) was removed for cultivation and molecular
analysis.

Similar investigations were performed with samples of each
insulation material collected after 18 months (1st sampling) and
32 months (2nd sampling) after installation from the tentative
historical building and were investigated in the laboratory. From
the sprayed cellulose, only samples from the 2nd floor could be
taken after 32 months.

DNA EXTRACTION
DNA extracted from insulation materials
The FastDNA Spin kit for soil from MP Biomedicals (Illkrich,
France) was the method of choice for DNA extraction from con-
struction materials (Ettenauer et al., 2012). The kit combines a
mechanical lysis, using bead beating, and chemical lysis of the
cells. Samples from each material were ground in liquid nitrogen
using a sterile mortar and pestle, homogenized in Falcon tubes
and, thereof, 100 mg were weighed for DNA extraction.

After DNA extraction, the DNA yield and –purity
(A260/A280 ratio) were assessed using the NanoDrop® ND-
1000 Spectrophotometer (peqLab Biotechnologie GmbH, Linz,
Austria). Afterwards, 7 μl of the extracted DNA were visualized
on 1.5% agarose gels by electrophoresis. Further, the DNA was
used as template for PCR reactions.

Table 1 | Overview of the investigated insulation materials and the

fungal strains used for inoculation in this study.

Insulation materials Fungal strains (short cut)

Sprayed cellulose Cladosporium cladosporioides (a)

Bloated Perlite board Aspergillus niger (b)

Bloated Perlite plaster Penicillium chrysogenum (c)

Wooden soft-board Mixture of all three fungi (d)

Reed board with loam
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DNA extracted from parchment samples
DNA extraction was performed directly from seven parchment
samples, dating from the 13th–19th century (Piñar et al., 2014),
by using the FastDNA Spin Kit for Soil from MP Biomedicals,
as well. The protocol of the manufacturer was slightly modified.
About 10–20 mg (2–3 mm2) of parchment were placed in the
Lysing Matrix E Tubes with the appropriate buffers, and then pro-
cessed twice in the Fast Prep FP120 Ribolyzer (Thermo Savant;
Holbrook, USA) for 30 s at speed 5.5 (m s−1), with 5 min intervals
on ice. The Lysing Matrix E Tubes were centrifuged at 14.000 × g
for 15 min, and the supernatants were transferred to clean 2 ml
tubes. The PPS reagent and the binding matrix solution were
applied to the supernatant; the suspension was transferred to the
provided spin filter and centrifuged at 14.000 × g for 1 min, fol-
lowing the instructions of the manufacturer. DNA was washed
twice with 500 ml of the SEWS-M solution and eluted from the
binding matrix with 100 ml DNase/Pyrogen Free Water. The DNA
crude extracts were further purified prior to PCR amplification
with the QIAamp Viral RNA mini kit (Qiagen, Hilden, Germany)
with modifications as follows: the washing step was performed
twice with 750 μl buffer AW1/AW, rolling the column to allow
more contact with the cartridge and leaving the tubes to stand for
2 min with the buffer, prior to centrifugation. The final elution
step was repeated twice with 100 μl of 80◦C preheated ddH2O
(Sigma Aldrich, St. Louis, USA) letting the tubes stand for 2 min
before centrifugation. After the DNA extraction and purification
steps, the concentration and quality of the DNA extracts was
assessed using a NanoDrop® ND-1000 Spectrophotometer. The
analyses were performed according to the manufacturer’s proto-
col and the extracted DNA was analyzed in duplicate. Finally, the
purified DNA was used directly for PCR amplification.

QUANTITATIVE REAL-TIME PCR ANALYSES (qPCR)
Quantitative real-time PCR was performed in a BioRad CFX96™
real-time PCR by using the SensiMix Plus™ SYBR-Kit (Bioline).
Each 20 μl reaction contained 10 μl SensiMix-Plus, 1 μl 50 mM
MgCl2 (final conc. 2.5 mM), 0.25 μl of a 10 pmol/μl primer solu-
tion using the β-actin primers: ACT 512-F (5′ ATG TGC AAG
GCC GGT TTC GC 3′) and ACT 783-R (5′ TAC GAG TCC TTC
TGG CCC AT 3′) (Carbone and Kohn, 1999), 6.5 μl H2O and
2 μl of DNA template. The amplification conditions were 95◦C
for 10 min and then 40 cycles of 95◦C 15 s, 61◦C 20 s and 72◦C
15 s. Fluorescence measurements were made at the end of each
annealing cycle and an additional measuring point at 80◦C (for
1 s) to detect the formation of primer dimers during amplifica-
tion. A melt curve analysis was made by raising the temperature
from 65 to 95◦C in 0.5◦C steps for 5 s each.

STANDARD CURVES
To enable the quantification of PCR products, standard curves
based on threshold cycles were produced by re-amplifying 10-fold
dilution series of PCR products from genomic DNA. An aliquot
of each dilution (0.035 fg −0.035 ng, equivalent to 1 × 102 − 1 ×
108 β-actin copies) in 3 replicates were used as templates in real
time PCR.

The DNA standards were generated with the β-actin primers,
mentioned above, with the following PCR program: 95◦C for

3 min and the 30 cycles of 95◦C 30 s, 55◦C 30 s, 72◦C 30 s
and a final elongation step at 72◦C for 1 min. PCR was done
with a BioRad C1000 thermal cycler using the PCR Master
Mix (Promega, Mannheim, Germany) [50 units/ml of TaqDNA
Polymerase in a supplied reaction buffer (pH 8.5), 400 μM dATP,
400 μM dGTP, 400 μM dCTP, 400 μM dTTP, 3 mM MgCl2]. Each
100 μl reaction contained 50 μl 2x PCR Master Mix, each 1 μl of
forward and reverse primer (stock: 10 pmol/μl), 43 μl ultra-pure
water and 5 μl template of genomic DNA of Aspergillus niger. The
PCR products were cleaned using the QIAquick PCR Purification
kit (QIAGEN) and checked for purity on agarose gels and by
sequence analysis with database comparison. Concentration of
the PCR product was measured spectrophotometrically at 260 nm
with a NanoDrop® ND-1000. The resulting PCR products were
used to construct standard curves for absolute quantification.
The numbers of copies in the standards were calculated using
the formula from Le Calvez et al. (2009) and various online-
tools, like from the URI Genomics and Sequencing Center (http://
cels.uri.edu/gsc/cndna.html). Standard curves were automati-
cally generated by the BioRad Precision Melt Analysis™ software.

STATISTICAL ANALYSIS
A Pearson correlation coefficient was done to compare the results
derived from qPCR analyses and those derived from classical cul-
tivation (CFU method) determined in one of our previous studies
(Sterflinger et al., 2013). Further ANOVA and pairwise Wilcoxon
tests were applied to look at the statistical significance of the
differences in fungal abundance between the different materials
inspected. All statistics were done with R (R Core Team, 2014).

RESULTS
QUANTIFICATION OF THE β-ACTIN GENE IN INSULATION MATERIALS
BY qPCR ANALYSES
The five selected insulation materials were subjected to qPCR
analyses targeting the β-actin gene to quantify the fungal abun-
dance present in such materials. The amount of newly synthesized
target-DNA during the ongoing PCR reaction-cycles was mea-
sured continually and the emitted fluorescence from SYBR-green
binding was detected in real time by the instrument used. The
BioRad Precision Melt Analysis™ software allowed the compar-
ison of the β-actin gene copy numbers in the samples with the
known concentrations of the standards. The values obtained
from each insulation material sample were further extrapo-
lated per ng of extracted DNA from each material, and are
shown in Table 2. Representative primer-specific quantification-
and standard curves, as well as melt peak charts are shown in
Figures S1A–D (Supplementary Data).

The quantitative real time PCR allowed the detection of fungi
in all analyzed samples (see Table 2). Compared to the classical
cultivation methodology it was possible to detect fungi in the con-
trol items (3.6–25.13 copies per ng of extracted DNA from the
sample material) using qPCR.

The detected copy numbers per ng of extracted DNA from
the different test items ranged from 5.76 to 5480.56. The high-
est fungal abundance was observed in the wooden soft-board
samples (906.79–5480.56 copies/ng), followed by the bloated
Perlite board (82.83–167.19 copies/ng) and the sprayed cellulose
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(21.68–216.93 copies/ng). The lowest β-actin gene numbers were
found in the bloated Perlite plaster (5.76–27.47 copies/ng) and
the reed board with loam (21.59–35.48 copies/ng) (see Figure 1).
The growth differences observed for the different materials were
significant (One-Way ANOVA p-value: 4.44 × 10–11). In addi-
tion, the growth difference between each pair of materials was
computed with a Wilcoxon tests, and showed that all but one
pair exhibited a p < 0.05 (see Table 3). Bloated Perlite plaster
and wooden soft-board showed the lowest and the highest fungal
abundance, respectively (see Table 2 and Figure 1).

FIGURE 1 | Distribution of fungal abundance for different growth

materials as measured by CFU (l.h.s) and qPCR (r.h.s). For both metrics
the bloated Perlite plaster and wooden soft-board showed the lowest and
highest fungal abundance, respectively. The only inconsistence between
CFU and qPCR was seen between the reed board and the sprayed
cellulose, where the latter showed a reduced fungal abundance compared
to sprayed cellulose based on the qPCR methodology, but a higher fungal
abundance based on the CFU approach.

Table 3 | P-value returned by the Wilcoxon test for the pairwise

comparison of fungal abundance for different materials.

Material Bloated Bloated Wooden Reed board

Perlite Perlite soft-board with loam

board plaster

Sprayed cellulose 0.19 7.17 × 10−5 7.40 × 10−7 0.0045

Bloated Perlite board 7.40 × 10−7 7.40 × 10−7 1.48 × 10−6

Bloated Perlite plaster 7.40 × 10−7 0.0036

Wooden soft-board 7.40 × 10−7
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Samples obtained from the insulation materials installed in
the historical building showed qPCR values ranging from 0.88 to
91.90 copy numbers per ng of DNA after 18 months, and from
3.85 to 317.33 copies/ng after the second sampling (see Table 2).
From the wooden soft-board samples, the highest β-actin gene
numbers were retrieved (19.94–317.33 copies/ng). The detected
copy numbers for nearly all in situ samples were 1-2 orders
of magnitude lower than the values obtained from the incu-
bated test items. Only the reed board with loam material from
the historical building had slightly higher copy numbers, which
could be explained by the higher relative humidity in the rooms
(19.59–112.34 copies/ng). For the other materials, lower copy
numbers–close or below the detection limit of the assay (30.57
copies/ng)—were measured: bloated Perlite board (0.88–11.82
copies/ng), sprayed cellulose (1.84–3.39 copies/ng) and bloated
Perlite plaster (3.85–15.7 copies/ng).

QUANTIFICATION OF THE β-ACTIN GENE IN PARCHMENT SAMPLES BY
qPCR ANALYSES
To determine if the quantification of the β-actin gene by qPCR
could be used as cellular abundance indicator in other materials
of cultural heritage, the DNAs extracted from valuable parchment
samples were subjected to qPCR analyses using the same proto-
col described for insulation materials. The quantitative real time
PCR allowed the detection of fungal cells in all parchment sam-
ples (see Table 4). The detected β-actin copies were referred to the
total amount of DNA extracted from each parchment sample. The
resulting values were very similar for all samples and ranged from
168.01–680.09 copies/ng of extracted DNA.

DISCUSSION
Molecular techniques employing a quantitative real-time PCR
have been used for microbial quantification in a variety of envi-
ronments (Zhang and Fang, 2006; Smith and Osborn, 2009). The
method avoids sample limitations and therefore, is particularly
suitable for cultural heritage studies. This method has been widely
developed for detection of indoor microbes and used for determi-
nation of microbes in indoor samples, e.g., house dust, building
materials and air (Haugland et al., 1999, 2004; Pietarinen et al.,
2008; Vesper et al., 2008; Kaarakainen et al., 2009). However, to
date, qPCR has been successfully applied in only very few cultural
assets studies. Imperi et al. (2007) used qPCR to investigate the
relative abundance of eubacterial and archaeal populations in dif-
ferent wall painting areas suffering from rosy discoloration. Piñar

Table 4 | Quantification results of the single-copy β-actin gene for the

detection of fungal cells on parchment samples by qPCR.

Sample Copies/ng extracted DNA

P1 168.01 ± 5.09

P2 573.84 ± 71.45

P3 337.12 ± 21.15

P5 178.66 ± 1.41

P6 380.55 ± 15.79

P7 680.09 ± 53.23

P8 187.55 ± 23.03

et al. (2010) used qPCR for the specific and sensitive detection
and quantification of a Myxococcus xanthus strain in a mixed cul-
ture used for biological consolidation of ornamental limestone.
Martin-Sanchez et al. (2013) developed a qPCR to detect, quan-
tify and monitor Ochroconis lascauxensis in the Lascaux Cave
in France, being this fungus the principal causal agent of the
black stains threatening the Paleolithic paintings of this UNESCO
World Heritage Site.

In this study, a qPCR method targeting the β-actin gene was
developed for the quantitative assessment of fungi on different
insulation materials. The advantage of this method relies in the
quantification of a gene that has been proved to appear as a sin-
gle actin gene copy per haploid genome in fungi (Gallwitz and
Seidel, 1980; Ng and Abelson, 1980; Mertins and Gallwitz, 1987;
Fidel et al., 1988; Voigt and Wostemeyer, 2000). This fact enables
a more precise quantification of the actual amount of fungal cells
in an environmental sample than when using universal rRNA
primers, due to the great variation of the number of rRNA gene
clusters in a genome and among species (Herrera et al., 2009). The
results derived from qPCR analysis performed with the different
interior insulation systems showed that fungal cells occurred in
all samples. The β-actin gene copy number was in nearly all test
items higher than the gene copy numbers detected in the sam-
ples installed in situ in a historical building. Only for the reed
board with loam samples, a higher amount of fungal cells was
measured after 18 and 32 months of the installation of this mate-
rial in the building. These findings can be explained by a higher
relative humidity in the room during the course of the experi-
ment. The higher humidity further led to increased copy numbers
detected on the bloated Perlite plaster and wooden soft-board,
whereas the sprayed cellulose and the bloated Perlite board did
not show increased cell counts. In these two last materials, the
obtained β-actin gene numbers were generally very low and close
to, or even below, the limit of detection of the assay. Therefore,
the fungal contaminations in the samples can be assumed very
low. Furthermore, these results show that the tested insulation
materials do not represent optimal growth habitats for fungal
colonization.

FUNGAL ABUNDANCE IN INSULATION MATERIALS: qPCR vs.
CULTIVATION ANALYSES (CFU)
In parallel to the qPCR analyses, classical cultivation analyses
were performed with these ecological interior insulation materials
(Sterflinger et al., 2013). Results derived from cultivation analyses
proved that actively growing fungi were present in all inoculated
test items (see Table S1).

As seen in Figure 1, both methods showed that bloated Perlite
plaster and wooden soft-board have the lowest and the highest
fungal abundance, respectively. The only inconsistence between
CFU and qPCR was seen for the sprayed cellulose. With the qPCR
method, the sprayed cellulose showed a higher fungal abundance
than the reed board, while with the CFU method the opposite
was observed. The CFU and qPCR metrics showed a significant
correlation (p = 1.123 × 10−9, cor = 0.70).

In summary, the results derived from the developed qPCR
method correlated well with those obtained in our previous
investigations of the different insulation systems using classical
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cultivation analysis. Taking together the results obtained from
both strategies, we conclude that, from the microbiological point
of view, the most appropriate interior insulation system is the
bloated Perlite plaster. This material achieved the best results: the
lowest fungal abundance was detected using the developed qPCR
assay and only very few fungal colonies were cultivated from this
material. On the contrary, the wooden soft-board system showed
to be the most unsuitable material for interior insulation, due to
the highest fungal cell numbers detected on this material and the
highest CFU values.

APPLICABILITY OF THE DEVELOPED qPCR PROTOCOL TO OTHER
MATERIALS OF CULTURAL HERITAGE
To investigate the application range of the developed qPCR for the
detection of cellular abundance in other materials of cultural her-
itage, the potential of this qPCR was tested on samples retrieved
from old parchment manuscripts. These parchment samples were
previously investigated due to their heavy damage, consisting of
dark purple stains, holes and an unusual powdery consistency of
pages. All investigated samples were proved to be colonized by
fungi in a previous molecular survey. However, the isolation of
fungi from these samples showed negative results (Piñar et al.,
2011, 2014). In this study, the results derived from the qPCR anal-
yses showed that this technique was enough sensitive to detect
fungi in such valuable artifacts, from which usually a very tiny
amount of sample can be obtained for microbiological and/or
molecular analyses. This opens the possibility to apply this tech-
nique for assessing fungal abundance in other cultural assets,
from which always sampling is a limiting step.

In conclusion this study shows that the presented qPCR
methodology is a fast, sensitive, direct (without the need of cul-
tivation), and reliable assay for accurately quantifying fungi in
different insulation materials and samples of cultural heritage.
The approach described can be used to provide new informa-
tion about fungal abundance in building biological investigations
and on microbial habitats on works of art and cultural her-
itage. Compared to classical cultivation techniques only small
sample volumes are necessary which allow a minimal invasive
sampling procedure, that is of great importance in the case of
object of cultural heritage. Furthermore, the time effort for qPCR
analysis is much lower and the drawbacks of cultivation assays,
as selectivity and certain detection limits with the use of stan-
dard cultivation media, are avoided. Finally, this method enables
long range phylogenetic studies at the nucleotide and amino
acid level thanks to the sequence information gained from the
qPCR, something that is not possible with the traditional CFU
method.
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