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Fluorescent staining coupled with flow cytometry (FCM) is often used for the monitoring,
quantification and characterization of bacteria in engineered and environmental aquatic
ecosystems including seawater, freshwater, drinking water, wastewater, and industrial
bioreactors. However, infrequent grab sampling hampers accurate characterization and
subsequent understanding of microbial dynamics in all of these ecosystems. A logic
technological progression is high throughput and full automation of the sampling, staining,
measurement, and data analysis steps. Here we assess the feasibility and applicability of
automated FCM by means of actual data sets produced with prototype instrumentation.
As proof-of-concept we demonstrate examples of microbial dynamics in (i) flowing tap
water from a municipal drinking water supply network and (ii) river water from a small
creek subject to two rainfall events. In both cases, automated measurements were done
at 15-min intervals during 12–14 consecutive days, yielding more than 1000 individual
data points for each ecosystem. The extensive data sets derived from the automated
measurements allowed for the establishment of baseline data for each ecosystem, as
well as for the recognition of daily variations and specific events that would most likely be
missed (or miss-characterized) by infrequent sampling. In addition, the online FCM data
from the river water was combined and correlated with online measurements of abiotic
parameters, showing considerable potential for a better understanding of cause-and-effect
relationships in aquatic ecosystems. Although several challenges remain, the successful
operation of an automated online FCM system and the basic interpretation of the resulting
data sets represent a breakthrough toward the eventual establishment of fully automated
online microbiological monitoring technologies.
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INTRODUCTION
Monitoring microbial dynamics in engineered and environmen-
tal aquatic ecosystems is a key step toward a better understanding
of the driving forces and consequences of changes in bacterial
concentrations and community composition (Stadler et al., 2008;
Read et al., 2011). Such ecosystems are often highly dynamic.
For instance, engineered ecosystems such as drinking water pro-
duction and wastewater treatment plants follow daily routines in
operation, may suffer from short-term malfunctioning, and are
exposed to dynamic changes in raw water composition (Gunther
et al., 2012; Hwang et al., 2012). Environmental ecosystems
such as oceans, lakes, and groundwater are subject to daily
or seasonal variations or sudden events (e.g., acute pollution)
(Guadayol et al., 2009; Stadler et al., 2010). Bacterial parame-
ters tend to respond to such variations and events. To estab-
lish the links between the microbial dynamics and their causes
and implications, accurate and high-throughput measurements
of microbial parameters are necessary (Van Den Hoven et al.,

2009). Specifically, in the field of drinking water, an improved
understanding of microbial dynamics can support process opti-
mization, microbial risk assessment, and risk management (e.g.,
Smeets et al., 2010, World Health Organization, 2011). When
investigating this type of dynamics, it is crucial to collect data
for sufficiently long periods and at high sampling frequencies to
fully capture the respective type of pattern (e.g., daily, weekly)
(Stadler et al., 2008). This makes optimal monitoring a chal-
lenge with respect to the choice of method(s) and practical in-situ
implementation.

Only a limited number of microbial detection methods are
suitable for monitoring aquatic ecosystems in the detailed manner
described above. Major constraints are low sensitivity for changes,
low reproducibility, and high demand for labor, time and other
resources (Sheikh et al., 2012). In view of these constraints, flow
cytometry (FCM) is a promising method for high-throughput
routine measurements (Porter et al., 1997; Vives-Rego et al., 2000;
Czechowska et al., 2008; Hammes and Egli, 2010) and hence
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has been widely applied in the analysis of ecosystems includ-
ing seawater (Legendre et al., 2001), freshwater (Gregori et al.,
2001), wastewater (Foladori et al., 2010), and drinking water
(Vital et al., 2012). Direct FCM measurements are possible for
organisms with auto-fluorescence (e.g., phytoplankton) (Pomati
et al., 2013) or organisms with fluorescence reporter genes [e.g.,
green fluorescence protein (GFP)] (Arnoldini et al., 2013). Other
microorganisms—such as small, environmental bacteria—need
to be stained with a fluorescent dye before measurement in order
to distinguish them from background and/or to detect specific
cellular features (Prest et al., 2013). In light of the requirements
for ecosystem monitoring discussed above, one of the principle
challenges is to develop robust, automated FCM systems that can
stain and measure over extended time periods (e.g., weeks to
months) in short intervals (e.g., 10–15 min).

The concept of FCM automation is not new. The first
automated systems with and without staining procedures were
developed for medical and biotechnology applications (Omann
et al., 1985; Lindberg et al., 1993; Zhao et al., 1999; Abu-Absi
et al., 2003). In environmental sciences, automated systems were
developed for auto-fluorescent pigments (e.g., phytoplankton)
(Dubelaar et al., 1999; Thyssen et al., 2008). More recently systems
were described for measuring fluorescence from genetically mod-
ified organisms in biotechnology (Broger et al., 2011; Brognaux
et al., 2013) and a prototype was developed specifically for
drinking water analysis (Hammes et al., 2012). The latter study
describes laboratory-scale testing of automated sampling, stain-
ing, incubation, and measurement as an interesting technique
for monitoring aquatic ecosystems. Full-scale application and
implementation of automated FCM, though coming with con-
siderable technological and scientific challenges, offer immense
potential. Until now automated FCM studies that include fluo-
rescent staining of cells have been limited to short-term (<60 h)
experiments for industrial processes or research applications.
Long-term automated FCM measurements focusing on monitor-
ing environmental ecosystems have not yet been explored and
considered in depth.

We developed a new prototype online FCM system capable of
meeting these challenges. Here we demonstrate the application
of this instrumentation and approach on two aquatic ecosys-
tems (drinking water and river water) of differing microbiological
quality and dynamics. The novelties of this study are: (i) in-
situ analysis of real water samples subject to natural events (e.g.,
rainfall), (ii) fully automated analysis during extended time peri-
ods (days-to-weeks), and (iii) detailed analysis of large data sets
with respect to microbiological baselines, patterns, and correla-
tions with abiotic sensor data. In addition we critically discuss the
advantages and challenges of online FCM and consider the added
value of such large data sets in a variety of applications.

MATERIALS AND METHODS
ONLINE FCM SYSTEM
A fully automated staining robot was constructed based on the
principles of a previously described system (Hammes et al., 2012).
In short, the system was designed to collect discrete water samples
at 15-min intervals from a given source (e.g., flowing tap, flowing
river). Upon collection the sample was mixed at a 1:1 ratio with

a solution of fluorescent dye [SYBR Green I (Life Technologies,
Eugene OR, USA)] diluted in sterile TRIS buffer (10 mM, pH 8.0).
The final concentration of SYBR Green I in the sample relative
to the stock solution was 1:10,000. A bacteriostatic concentrate
solution (BD Accuri, Ann Arbor MI, USA) was added to the
dye at 5 µL mL−1 to avoid contamination in the stain solution.
The sample-dye mixture was subsequently incubated for 10 min
at 40◦C and afterwards automatically pumped to, and analyzed
with, a C6 flow cytometer (BD Accuri, San Jose CA, USA). The
C6 flow cytometer measured at a flow rate of 66 µL min−1 for
30 s with a lower threshold on the green fluorescence (FL1-H) set
at 1000. All other Accuri C6 flow cytometer specifications, filters,
and measured variables were identical to those described in Prest
et al. (2013). All tubing, pumping, and mixing chambers were
rinsed with nanopure water between sampling. The sampling line
was flushed with the sample water prior to every new measure-
ment to avoid contamination from earlier steps and ensure that
a fresh sample was collected. A cleaning cycle with hypochlorite
(1% active chlorine), detergent (Partec, Goerlitz, Germany), and
nanopure water was automatically initiated every 24 h.

ENGINEERED ECOSYSTEM: DRINKING WATER
Drinking water samples were drawn at 15-min intervals from a
continuously flowing cold water tap (16.0 ± 0.5◦C, 0.5 L min−1)
in the Eawag laboratory building (Dübendorf, Switzerland) dur-
ing an experimental period of 14 days. The tap water was non-
chlorinated groundwater supplied as drinking water by the local
water utility. No other parameters were measured during the
course of this experiment, but the same water was described in
detail in a previous study (Lautenschlager et al., 2010).

ENVIRONMENTAL ECOSYSTEM: RIVER WATER
A shallow, oligotrophic river (Chriesbach, Dübendorf,
Switzerland) was monitored during 12 consecutive days.
Samples were measured with online FCM at 15-min intervals
from a sedimentation basin, located in an experimental facility
adjacent to the river, into which the river water was continuously
pumped (approximate retention time: 30 min). The same water
was simultaneously fed to a 14-L-PVC reactor (at 0.9 L min−1)
where four abiotic parameters [temperature (T), dissolved oxy-
gen (DO), electrical conductivity (EC) and pH] were measured
with online sensor probes (Table 1) once every 10 s in parallel
to the FCM measurements. The DO, EC, and pH sensors were
automatically compensated for temperature changes.

DATA EXTRACTION AND ANALYSIS
The raw FCM data files were analyzed with custom software that
enabled batch processing of the large data sets generated in this
study. In short, FCM gates were constructed to separate signals of
stained bacterial cells from signals of the background and distin-
guish between the so-called high (HNA) and low (LNA) nucleic
acid content bacterial cells. The gating strategy was based on
descriptions provided elsewhere (SLMB, 2012; Prest et al., 2013).
All generated data, i.e., total cell concentration (TCC) and LNA
content bacteria concentration, were subsequently exported in
csv format for final processing in MS Excel. In order to sepa-
rately analyze regular daily patterns and specific events, subsets
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Table 1 | Overview of measured parameters and employed measurement devices for each water type.

Measured parameters Tap water River water Measurement device Figure/Table

Total cell concentration x x Online FCM Figures 1–6

Percentage of LNA content bacteria x x Online FCM Figures 1–6

Conductivity x Online sensor Figures 5, 6

Temperature x Online sensor Figures 5, 6

pH x Online sensor Figures 5, 6

Oxygen concentration x Online sensor Figures 5, 6

Rainfall volume x Weather station [NABEL (FOEN and EMPA)] Figures 3, 5

were extracted from both data sets by subjective selection. Both
the data selection and the reasoning behind it are discussed and
illustrated in detail in the results and discussion sections below,
in Figures 1, 3, and in Table S1 (Supplementary information).
The online sensor data set for abiotic parameters was reduced
to one point every 15 min to match the sampling frequency of
the online FCM. Multivariate analyses were computed in R (R
Development Core Team, 2008) according to a numerical ecology
methodology analogous to the one developed (Weissbrodt et al.,
2014) based on Borcard et al. (2011). In short, pair-wise x-y plots
were computed between the average baselines of all FCM and
sensor parameters for a first visual observation of any apparent
correlations. The pair-wise correlations between the full base-
lines of all parameters were then quantified by the computation
of Pearson’s correlation coefficients (PCC, linear relationship)
and Spearman’s rank correlation coefficients (monotonic rela-
tionship) after standardization of the FCM and sensor data sets
(see Section 8 in supplementary information). The significance
of the correlations was assessed by the computation of p-values
at 95% confidence level. The pair-wise coefficients were displayed
in a heat map for efficient representation of the gradients in pos-
itive and inverse correlations between parameters, and for rapid
identification of the pre-dominant correlations. In this heat map,
the parameters were reordered by hierarchical clustering using the
Ward algorithm (see Section 8 in supplementary information).
The additional R packages Vegan (Oksanen et al., 2009), Heatplus
(Ploner, 2011), and Heatmap.plus (Day, 2007) were used to these
ends.

RESULTS
ENGINEERED ECOSYSTEM: DRINKING WATER
The 1300 online FCM measurements of flowing municipal tap
water during 14 consecutive days showed overall relatively sta-
ble TCC and fluorescence fingerprints [i.e., percentage of LNA
content bacteria, Prest et al. (2013)], but also revealed daily fluc-
tuations as well as a discernable event/shift in TCC between days
10 and 14 (Figure 1). In order to establish baseline data for this
particular ecosystem, we extracted from the combined data set
only the values recorded on weekdays, excluding the weekends
and the apparent event (days 1–4, 7–10, 14–15; Figure 1 and Table
S1). The resulting data set (n = 674) had an average TCC of 108.3
± 7.8 cells µL−1 and an average percentage of LNA content bac-
teria of 57.6 ± 2.0%. These data were pooled and sorted in a
24-h window according to their individual measurement times.
From this we calculated averages and standard error of the data

points of all days within the same 15-min interval (Figure 2).
This combined data revealed a clear daily pattern with respect
to TCC (Figure 2A). During nighttime (20:00–08:00), the TCC
gradually increased at a rate of approximately 0.8 cells µL−1 h−1,
and values were mostly above the overall average. The morning
hours (08:00–10:00) displayed the highest bacterial concentra-
tions (119.0 ± 5.8 cells µL−1; n = 55), followed by a sharp
decrease between 10:00 and 12:00, a noticeable peak around noon
(12:00–14:00) and the lowest concentrations around 15:00. TCC
tended to be below the average during daytime. The percentage
of LNA content bacteria showed less daily fluctuation although
a higher percentage of LNA content bacteria was observed dur-
ing daytime compared to nighttime (Figure 2B). Only a weak
negative PCC (−0.34, n = 674) was observed between the TCC
and percentage of LNA. On day 10, a remarkable and sudden
shift in TCC occurred, with average concentrations increasing to
145.1 ± 12.5 cells µL−1 (n = 410) and only gradually decreas-
ing again until day 14. In contrast, the percentage of LNA content
bacteria remained largely unaffected by the dramatic shift in cell
concentration (Figure 1).

ENVIRONMENTAL ECOSYSTEM: RIVER WATER
The 1100 online FCM measurements of river water at 15-min
intervals during 12 consecutive days showed overall stable TCC
but revealed clear daily fluctuations and two very dramatic events
(days 2 and 10). These were directly attributed to regional rain-
fall and were visible in considerable changes to both TCC and
the percentage of LNA content bacteria (Figure 3). To assess
this in detail, a baseline for this particular ecosystem was estab-
lished by excluding the two rainfall events (days 1–3 and 10–12,
Figure 3 and Table S1) and pooling the remaining data together
as described above (Figure 4). For all baseline data combined
(n = 740), the average TCC was 991.3 ± 98.2 cells µL−1, and
the average percentage of LNA content bacteria was 54.9 ± 1.6%.
Moreover, from the averaged data a clear pattern emerged, with
the lowest TCC in the morning hours (09:30–12:30) at 854.1 ±
52.1 cells µL−1 (n = 84) and the highest concentrations in the
afternoon (16:00–18:00) at 1063.1 ± 83.9 cells µL−1 (n = 63).
During the dry periods (i.e., times without rainfall), the percent-
age of LNA content bacteria increased when the TCC increased
(Figure 3), although the fluctuations were smaller than for the
TCC. Relative to the baseline data, the two events (days 1–3
and 10–12; Table S1) were unmistakably clear. Both events were
a direct consequence of acute bacterial loads following rainfall
(Figure 3). Local weather station information showed a total of
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FIGURE 1 | Online FCM measurements of continuously flowing

municipal tap water over 14 days, showing the total cell concentration

(TCC) (A) and percentage of LNA content bacteria (B) (n = 1302). Data
points are single measurements at 15-min intervals of water samples stained

with SYBR Green I. Daily patterns can be identified for both parameters. In
addition, a distinct event with a 50% increase in TCC can be seen from day
10 to day 14 whereas the percentage of LNA content bacteria was barely
affected.

3.1 mm of rain falling within 8 h on day 2 and a total of 1.4 mm of
rain falling within 3 h on day 10 in the catchment area of the river
(Figure S2). As a result, TCC increased above 2000 cells µL−1 on
day 2 and above 1500 cells µL−1 on day 10. During the events,
the trend in the percentage of LNA was dissimilar to the dry peri-
ods, and values dropped below 45% during both events as a direct
consequence of increased concentrations of HNA content bacte-
ria in the water. Values returned to the baseline within 24 h after
the rainfall ceased. A set of raw FCM data from 48 h of measure-
ments for the river water experiment is available in video format
in the supplementary information (Section 9).

CORRELATIONS WITH ABIOTIC SENSOR DATA
Online data from four sensors for abiotic parameters compli-
mented the online FCM data with respect to daily pattern analysis
and event detection (Figure 5). Figures 5A,B show daily fluc-
tuations in all abiotic parameters. Temperature, DO, and pH
generally peak in the early afternoon and then keep dropping

during the night until reaching a low point shortly before noon
the following day. In contrast, EC showed a sharp drop in the
morning with a low around noon, followed by a sharp increase
in the afternoon and a steady increase overnight and into the next
morning. The rainfall events were most obvious in the conductiv-
ity data (Figure 5B) with other parameters showing comparably
little response. In fact, conductivity data correlated remarkably
well with TCC data both between and during events (Figure
S3). Some sensors also detected apparent weekend-related pat-
terns (notably pH and DO) that were not seen in the FCM data
(Figure 5). This was ascribed to wastewater treatment discharge
upstream of the sampling point. Hence, for a simplified direct
multivariate comparison of all biotic and abiotic data with respect
to the daily patterns, we selected only a 4-day period (days 6–9),
excluding weekends and rainfall events (Figure 3 and Table S1).
The resulting data set (n = 373) displayed some interesting rela-
tionships between biotic and abiotic parameters (Figure 6). Since
the two statistical approaches, i.e., Pearson’s linear correlation and
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FIGURE 2 | Baseline data of the daily microbiological fluctuations in

continuously flowing municipal tap water for total cell

concentrations (A) and percentage LNA content bacteria (B). The
data set (n = 674) comprises only weekday data, excluding weekends
and the apparent event (Figure 1). Blue and green lines are 15-min

averages of all included days for both parameters. Gray lines represent
the standard error for each point of the average. Horizontal red lines
show the average (thick line) and standard deviations (thin lines)
calculated from all data combined (n = 674). A daily fluctuation is clearly
detectable in both parameters.

Spearman’s rank-order correlation, were providing similar trends,
linear relationships between parameters were assumed. Firstly, as
suggested above (Figure S3), EC correlated positively with TCC
(PCC = 0.77). Secondly, pH and the percentage LNA content
bacteria showed a weaker but significant correlation (PCC =
0.45). Thirdly, the dendrogram clustering suggests that EC and
pH were affiliated with TCC and the percentage of LNA content
bacteria. Based on the calculated p-values computed at 95% con-
fidence level, the majority of the determined correlations were
highly significant. Only weak correlations with low significance
were found between the biotic parameters and T and DO. More
detailed results for the different parameters are also shown in
Figure S4.

DISCUSSION
Two distinctively different aquatic ecosystems were automatically
sampled and measured during multiple days involving mini-
mum human intervention and resulted in FCM data sets in

excess of 1000 data points for each experiment. This allowed
the establishment of baseline data and the subsequent detection
of cyclic patterns, gradual changes, and sudden events for each
ecosystem. The automated approach described herein extends
the state-of-the-art of in-situ monitoring of microbial dynamics
in complex engineered and environmental ecosystems consid-
erably. It furthermore allows for a meaningful combination of
microbial data with widely applied online sensor data of abiotic
parameters.

BACTERIAL DYNAMICS IN DRINKING WATER
The average TCC measured in this study corresponded to typ-
ical values for non-chlorinated drinking water (Hammes et al.,
2008; Lautenschlager et al., 2010; Vital et al., 2012). We observed
a reproducible daily pattern in the data (Figures 1, 2) as well
as an unexplained dramatic event in the second week of mea-
surements. To our knowledge, no previous studies investigated
tap water at such high temporal resolution, and therefore the
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FIGURE 3 | Online FCM measurements of river water at 15-min intervals

over 12 consecutive days, showing total cell concentrations (TCC)

(A) and the percentage of LNA content bacteria (B) (n = 1104). Two
distinct events can be seen on days 1–3 and 10–12, corresponding directly

with two rainfall events in the river catchment (C) and resulting in an increase
in TCC and decrease in the percentage of LNA content bacteria. In addition,
repeated daily patterns are visible, which are much smaller in magnitude than
the two events.

interpretation of these dynamics is somewhat speculative. It was
shown before that overnight stagnation in buildings leads to an
increase in TCC and in the percentage of HNA content bacteria
(hence by default a decrease in the percentage of LNA content

bacteria), and also that flushing of taps leads to a decrease in
both these parameters (Lautenschlager et al., 2010; Prest et al.,
2013). This mirrors the general TCC and percentage of LNA con-
tent bacteria behavior seen in Figure 2. While the tap measured
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FIGURE 4 | Baseline data of daily microbiological fluctuations in river

water for total cell concentrations (A) and percentage LNA content

bacteria (B). The data set (n = 740) comprises only data outside of the two
apparent events (Figure 3). Blue and green lines are 15-min averages of all

included days for both parameters. Gray lines represent standard errors for
each point of the average. Horizontal red lines show the average (thick line)
and standard deviations (thin lines) calculated from all data combined
(n = 740). A daily fluctuation is clearly detectable in both parameters.

in the present study was continuously flowing, the remainder of
the building was indeed subject to overnight stagnation. In fact,
there is additional evidence that the FCM patterns followed local-
ized water usage to some degree: (1) a dramatic decrease in TCC
during the morning hours when most people normally arrive
at work; (2) a peak during lunchtime which would correspond
to a change in water usage; (3) the fact that weekends showed
clearly dissimilar patterns to weekdays (Figure S5). All these fluc-
tuations could relate to a combination of regrowth and changes
in bacterial attachment/detachment due to changing hydraulic
conditions on local or regional level (Lehtola et al., 2006). The
dramatic increase in TCC on day 10 was unexpected. Discussions
with the local building managers as well as the regional water
authority yielded no additional information on any specific event
during this period. The high frequency FCM data revealed pre-
viously unknown dynamics in the drinking water and suggests
the investigation of detailed cause-effect relationships in future
studies.

BACTERIAL DYNAMICS IN RIVER WATER
The average TCC measured in this study corresponded to many
previous measurements of this particular river and is in the nor-
mal range of surface water (Wang et al., 2007). The data show
an apparent daily fluctuation (Figures 3, 4) as well as two dra-
matic events linked to rainfall. Sensors for abiotic parameters also
detected daily fluctuations and to some extent the rainfall events
(Figure 5). The occurrence of diurnal fluctuations in the abiotic
parameters (DO, EC, and pH) has been described in detail for
rivers, and is attributed to microbial photosynthetic and respi-
ratory activities coupled to radiation and to subsequent changes
in ion concentrations due to changes in precipitation and disso-
lution of calcite [for details see Vogt et al. (2010) and Hayashi
et al. (2012)]. While we are not aware of any previous studies
on fluctuations in the TCC at a similar time resolution, many of
the processes that drive the abiotic fluctuations are likely to affect
the microbiology as well. It is generally recognized that carbon
compounds released by algae into the water during their daytime
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FIGURE 5 | Sensor data of river water for pH and dissolved oxygen (DO) (A) and electrical conductivity (EC) and temperature (T) (B). Total cell
concentration (TCC) and rainfall data from Figure 3 are shown in simplified form (C) for easier and direct comparison with other sensor data.

activity serve as nutrients for bacteria and thus induce growth
(Sundh and Bell, 1992). Algal mats and biofilms are present in
this shallow river, which are likely to produce substantial amounts
of carbon compounds. In addition, higher temperatures during
the day may also favor increased bacterial growth. The measured
increase in planktonic bacterial concentration is most likely due

to increased detachment from river biofilms that could show
increased growth for the reasons stated above. Figure S3A shows
a clear positive correlation between conductivity and bacterial
cell concentrations in dry periods and during rainfall events.
Such correlations have been described in literature (Krishnamurti
and Kate, 1951), although it is not clear whether the observed
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FIGURE 6 | Heat map of pair-wise Pearson’s correlation coefficients

(PCC) computed between online FCM measurements, i.e., total cell

concentration (TCC) and percentage of LNA content bacteria LNA, and

the abiotic online sensor parameters, i.e., temperature (T), dissolved

oxygen (DO), electric conductivity (EC), and pH in river water

(Chriesbach, Dübendorf, Switzerland). Hierarchical clustering using the
Ward’s algorithm was first applied to reorder all parameters in clusters
according to their correlations as displayed by the dendrograms. The values
and directions of the PCC are displayed according to the color key, i.e.,
positive correlations as green gradients from 0 to 1 and inverse correlations
as red gradients from 0 to −1. Baseline data for these correlations were
calculated based on 4 weekdays (days 6–9, Table S1).

correlation in the present study was due to direct or indirect influ-
ences. Moreover, correlations during rainfall events are likely to
have different causes from correlations during normal periods.
During rainfall events, run-off from the surrounding catchment
(including urban sewers) flows into the river and transports
additional ions but also bacteria into the water body. This can
explain the changes observed in the HNA/LNA pattern observed
in Figure 3. However, during longer rainfall events, a dilution
effect of relatively “pure” rainwater may occur after the initial
peak due to run-off.

CONSIDERATIONS ON INSTRUMENT ARTIFACTS
Although the aim of the present study was not explicitly to assess
cause-effect relationships in the studied ecosystems, one logic
question is whether the cyclic patterns that we observed were
actual events, or unexplained instrumental artifacts of the FCM
or staining robot. We believe that the latter was not the case.
Firstly, the changes in TCC in the river water do not follow the
same pattern as the changes in the tap water (Figures 2, 4, Figure
S6). Secondly, the relationship between the percentage of LNA
content bacteria and TCC are different in the two ecosystems.
Whereas in the tap water the percentage of LNA content bac-
teria tended to decrease with increasing TCC, the river water
showed an opposite tendency (Figures 3, 4). Thirdly, the week-
end did not show the same behavior in the tap water compared to
weekdays (Figure S5). Finally, the sensors for abiotic parameters

measuring the river water showed cyclic events as well (Figure 5
and Figure S4, discussed above). In addition, we did a compari-
son of automated FCM measurements with conventional manual
FCM measurements, which showed similar data measured with
both approaches (Figure S7). All these points strongly suggest that
the changes/patterns were real and inherent to the ecosystems that
were investigated.

ADVANTAGES OF AUTOMATED ONLINE FCM MEASUREMENTS
The experiments demonstrated several advantages of online FCM
in monitoring:

(i) Long-term measurements allowed for the detection of stable
phases, cyclic patterns and unexpected events, which would
either be missed or incorrectly characterized by occasional
grab sampling (Figures 1, 3). Events are not necessarily pre-
dictable in time and magnitude. It is thus ideal to use such
long-term data to establish baselines that enable the identifi-
cation and characterization of events as deviations from that
baseline. As was shown in the basic data processing above,
this can give a clear indication of critical time periods to be
sampled/analyzed in more detail.

(ii) Frequent measurements allow for detailed analysis of events
and fluctuations (Figures 2, 4). This is, for example, cru-
cial when analyzing a flood event and comparing width and
height of peaking curves of different parameters (Stadler
et al., 2008; Butscher et al., 2011) or the relationship
between different microbial parameters (e.g., TCC and the
fluorescence fingerprint as highlighted for both experiments
above).

(iii) Automated measurements allow for the recording of expected
or unexpected events (e.g., snowmelt, rainfall) independent
of the availability of personnel on location (Figure 3). Major
events of interest may be rare or untimely and thus reliable
automated systems increase the chance of measuring such
events, even in remote locations (Stadler et al., 2008). In addi-
tion, automated systems free up human resources for other
(non-automated) measurements in parallel during an event
(e.g., conventional plating, ATP-measurements).

(iv) Online measurements allow real-time, in-situ monitoring of a
variety of aquatic ecosystems that display temporal variability
at different time scales, concentration ranges, and microbial
community compositions. With both daily variations and
specific events, two types of dynamics could be monitored
in this study. Measurements were in the range of 105 and
106 cell mL−1 respectively and based on an earlier evalua-
tion of FCM can be assumed to be accurate and sensitive
(Hammes et al., 2012). The percentage of LNA content bac-
teria, as one simplistic form of FCM fingerprinting (SLMB,
2012; Prest et al., 2013), differed clearly between the two
investigated ecosystems and within cycles and events. More
advanced analysis of differences between systems and in time
can be applied for example through extended fingerprinting
methods (Koch et al., 2013a).

(v) Multi-parameter measurements, i.e., online FCM combined
with other online sensors (e.g., temperature, conductivity),
allow for robust differentiation between aquatic ecosystems
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and/or their respective conditions as well as identification of
stability and deviations from it (Figures 2, 4). The combined
biotic and abiotic data sets for the river water show interest-
ing correlations and offer first insights into cause-and-effect
relationships within the ecosystem (Section Correlations with
Abiotic Sensor Data and Bacterial Dynamics in River Water,
Figures 5, 6, and Figure S3).

CHALLENGES WITH RESPECT TO IMPLEMENTATION AND METHOD
ESTABLISHMENT
FCM analysis of aquatic microorganisms has evolved consider-
ably during the last decade (Hammes and Egli, 2010). However,
despite the described advantages and the proof-of-concept data
shown here (Figures 1, 3) and elsewhere (Hammes et al., 2012;
Brognaux et al., 2013), routine application of online FCM is
not yet reality. Several challenges with respect to implementation
remain, and these differ for applications as a laboratory research
tool and for application as a routine monitoring/sensor tool for
water utilities.

Firstly, conventional FCM hardware is still relatively expen-
sive (20–50 kUSD) today, although it is expected to decrease in
price in the future. For the system described herein, we esti-
mated operating costs of approximately 0.1 USD per measure-
ment (thus < 10.0 USD per day), excluding instrument purchase
(Table S8). The automated staining robot used herein was a
prototype that is not currently commercially available, but con-
struction of similar systems is clearly feasible (Hammes et al.,
2012; Brognaux et al., 2013).

Secondly, the applicability of the automated system to different
aquatic ecosystems is limited with respect to cell concentrations
and background levels in the samples of interest. Commercially
available bench top flow cytometers typically measure in a range
of 103–106 cells mL−1 (Hammes et al., 2008, 2012), which is
suitable for a variety of aquatic ecosystems such as groundwa-
ter, tap water, and rivers and lakes (Wang et al., 2007). However,
for more concentrated samples [e.g., in bioreactors or activated
sludge settings (Koch et al., 2013b)], extensive dilution tech-
niques would need to be included (Abu-Absi et al., 2003; Broger
et al., 2011). This potentially adds costs and measurement error
to the system. In general, none-bacterial particles may cause clog-
ging of instruments and overlaying of background and bacterial
signals (Hammes and Egli, 2010). Although we experienced no
problems in the current study, this may be of particular impor-
tance in event monitoring, where for example rain events may
cause substantial turbidity in the sampled water (Pronk et al.,
2006).

Thirdly, monitoring with automated online FCM generates
data sets comprising hundreds-to-thousands of data points for
several parameters (e.g., TCC, green/red fluorescence intensity,
forward/sideward scatter). It has previously been shown that stan-
dardization throughout the FCM analysis train (including data
processing) is essential for high quality data (SLMB, 2012; Prest
et al., 2013). Efficient, standardized data processing and analy-
sis will be crucial to make optimal use of the newly available
richness in microbial data. Our data sets were already so large
that we required custom software for processing and extension
of this can include advanced fingerprinting methods (Koch et al.,

2013a; Prest et al., 2013) and time series analysis (Pomati et al.,
2013). Through the quantification of microbial variability (e.g.,
temporal, geographical), relationships between observed patterns
and potential drivers (e.g., biofilm attachment and detachment,
contamination, mixing, treatment methods, temperature) can be
tested systematically.

APPLICATIONS
We envisage a broad range of future applications of fully auto-
mated online FCM. Firstly, in treatment process optimization but
also routine operation of drinking water/wastewater treatment
plants, online microbial monitoring can help to investigate dif-
ferent modes of operation or the influence of diurnal process
changes or changing raw water quality (Hammes et al., 2008;
Vital et al., 2012). Similar applications can be of value in related
industries such as bottled water production, beer brewing or
the production of ultra-pure water. Secondly, in environmental
aquatic ecosystems, interactions between abiotic and biotic fac-
tors both for regular and event-based dynamics can be studied
with considerable detail using this approach (Pronk et al., 2006;
Stadler et al., 2010; Butscher et al., 2011). Thirdly, automated
measuring of microbial parameters renders event monitoring for
quantitative microbial risk assessment considerably much more
feasible (Signor and Ashbolt, 2006). Finally, a large variety of
laboratory-based research can benefit from high temporal resolu-
tion and automation. Straightforward examples are experiments
on bacterial batch growth or continuous cultures under different
conditions (e.g., different media, inhibiting agents) or experi-
ments looking at different types and intensities of disinfection
(Arnoldini et al., 2013).

CONCLUSIONS
Our results demonstrate that automated in-situ FCM analysis is
feasible for the investigation of dynamic aquatic ecosystems at
high temporal resolution during multiple days.

The resulting large sets of reliable, quantitative microbiological
data considerably improved characterization of dynamic fluctu-
ations, which in turn enhances our understanding of complex
engineered and environmental ecosystems.

The data revealed both daily fluctuations and specific events
in the drinking water and river water ecosystems, suggesting that
temporal variations should be carefully taken into consideration
during sampling and analysis of aquatic ecosystems.

Automated FCM allows for the combination of microbial data
at high temporal resolution with conventional online param-
eters, thus expanding the horizon toward a complete sensing
approach.
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