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Since ages, architects and artists worldwide have focused on usage of durable stones as
marble and limestone for construction of beautiful and magnificent historic monuments
as European Cathedrals, Roman, and Greek temples, Taj Mahal etc. But survival of
these irreplaceable cultural and historical assets is in question these days due to their
degradation and deterioration caused by number of biotic and abiotic factors. These
causative agents have affected not only the esthetic appearance of these structures, but
also lead to deterioration of their strength and durability. The present review emphasizes
about different causative agents leading to deterioration and application of microbially
induced calcium carbonate precipitation as a novel and potential technology for dealing
with these problems. The study also sheds light on benefits of microbial carbonate binders
over the traditional agents and future directions.

Keywords: limestone, microbial carbonates, bacteria, urease, biofilm, extrapolymeric substances, calcite

INTRODUCTION
Taking a look at our history, beautiful monuments and sculp-
tures of limestone are seen. Be it European Cathedrals (Milan
Cathedral, Italy), Roman and Greek temples, the Taj Mahal
and the Pyramids, limestone is everywhere. Numerous lime-
stone and marble quarries encouraged ancient Greek architects
to build the Acropolis and Roman architects to build magnif-
icent Forum (Corvo et al., 2000). Limestone, consisting almost
entirely of calcite (the most stable polymorph of calcium carbon-
ate) along with a small content of aragonite has been found to
be highly durable building material since ages (Graedel, 2000).
Though known for its great strength, these materials are highly
porous and hydrophilic in nature making them highly suscep-
tible to water (such as acid rain) and environmental pollutants
(Tiano et al., 1999). The water carrying harmful and corro-
sive ions often penetrates into the pores of these stones leading
to their deterioration. Architectural and sculptural stones have
undergone deterioration due to number of factors such as physi-
cal, chemical, and biological weathering (Rodriguez-Navarro and
Sebastian, 1996; Wakefield and Jones, 1998; Rodriguez-Navarro
and Doehne, 1999). Several environmental pollutants, particulate
matters, fly ash, smog and natural causes lead to degradation of
these structures (Fernandes, 2006; Chand and Cameotra, 2011).
Microorganisms inhabiting these structures, upon interaction
with other detrimental biotic and abiotic factors, also promote
weathering and corrosion of these building materials (Fernandes,
2006). All these factors are thereby causing great harm to physi-
cal and esthetic appearance of such structures. Because of all these
reasons, survival of many cultural and historical assets is in threat.
One of such examples is the cave of Lascaux in southwest France
where infection of Fusarium sp. and other molds deteriorated the
floor and banks of main chamber (Rosenbaum, 2006). Paintings

in Altamira cave in Santillana del Mar, Spain, and the earliest
known Christian paintings adorning Roman catacomb walls have
also undergone similar fate.

The problem of deterioration of these historical monuments
has fetched the attention of archeologists, geobiologists and bio-
conservators to preventive and remedial technologies to safeguard
these cultural heritage monuments, which is a big challenging
task. Many attempts have been made to remediate such struc-
tures by application of conservative treatments using organic
and inorganic products (Lazzarini and Laurenzi Tabasso, 1986),
but these agents have not been as effective as expected due
to complex nature of the textures/compositions of materials
encountered. Other drawback is that high amounts of organic
solvents are often wasted in the environment and in few cases,
these treatments even led to detrimental effects on the stone
material in context to its texture, physical strength and esthetic
appearance (González-Muñoz, 2008). None of the tested conven-
tional treatment methods have proved to be satisfactory for the
preservation and consolidation of these deteriorated monuments
(Cappitelli et al., 2007; González-Muñoz, 2008) (Table 1). Hence,
the durability related issues are causing high impact on national
economies as huge sums of money are required for maintenance
and repair of such structures. The short comings of conventional
methods have encouraged the search and development of new
conservation treatments for remediation and protection of these
magnificent materials, based on biological methods (Fernandes,
2006).

Microbial geotechnology, i.e., microbial based technology for
civil structures is an emerging discipline of science which has
developed immensely in the recent years. Microbially induced
carbonate precipitation has successfully emerged as a novel
method to protect and remediate decayed building structures and
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Table 1 | Methodologies for eradication of degradative agents of stone works.

Method Advantages Disadvantages References

PHYSICAL METHODS

UV, Gamma, X irradiation Simple, high penetration of gamma and X,
effective on insects, UV effective on
microbes

Application in movable or small scale
objects, poor penetration of UV

Warscheid and Braams,
2000; Salvadori, 2003

Mechanical removal of
biological material by
hand or tool

Traditional and widely used Short lived results, only superficial
mycelium removed, microbes redevelop,
damage stone

Dakal and Cameotra,
2012

Low pressure water
rinsing/ steam cleansing

Effective for removal of algae, mosses,
lichens, no health hazards

Water retained in pores likely to favor
microbial growth

Kumar and Kumar, 1999

CHEMICAL METHODS

Nongaseous biocides Broad and narrow spectrum Health hazards, unwanted side effects,
inadequate timing of application

Kumar and Kumar, 1999;
Salvadori, 2003;
Cappitelli and Sorlini,
2005

Fumigation Highly and rapidly effective in fungi and
insects, organic materials

Very toxic gases (often carcinogenic) Kumar and Kumar, 1999;
Warscheid and Braams,
2000; Salvadori, 2003

Anoxic atmosphere Fungi are susceptible to oxygen depletion Long exposure period, expensive
equipment

Gu, 2003; Salvadori,
2003

materials. The method of use of bacteria for remediating build-
ing materials is mimicry of the nature as many carbonate rocks
have been cemented by precipitation of carbonates induced by
microbes. This technology of application of bacteria for precipi-
tation of carbonates has been successfully used for solving various
durability issues of different construction materials as it is novel
and eco—friendly method to protect and restore the decayed
construction materials (Dhami et al., 2012, 2013).

In the present review, an attempt has been made to pro-
vide an overview of the various agents responsible for dete-
rioration of stone monuments (statues, buildings, paintings
etc.) and the current methods for restoration of the important
stone works with focus on microbially induced carbonate pre-
cipitation as promising technology for bioremediation of such
structures. The aim is to highlight the contribution of Applied
Microbiology and Biotechnology in successfully solving various
problems related to durability issues of historical and important
building materials.

DETERIORATION OF STONE WORKS: CAUSATIVE AGENTS
The deterioration of historic monuments and stone works occurs
due to numerous factors leading to stone dissolution, staining or
color alteration, surface alterations, biocorrosion and transfor-
mations into smaller sized crystals etc. (Chand and Cameotra,
2011). In the last decades, alterations have occurred mainly
due to microbial biofilm production, deposition of organic and
inorganic compounds, formation of black crusts, nitratation, sul-
phatation and, due to residual hydrocarbons and other organic
pollutants in dust (Warscheid and Braams, 2000; Fernandes, 2006;
Di Pippo et al., 2009).

Nitrates
Nitrates, originating from the reaction of numerous oxides of
nitrogen present in atmosphere (N2O, NO, N2O3, NO2, N2O5)
due to pollution formed through oxidation upon reaction with
water vapor produces nitrous acid and more abundant nitric acid
(HNO3) as final products. These acids result in the formation
of acid rain and attack the stone structures causing formation of
calcium nitrate salts on the stone buildings (Ranalli et al., 1999).

Sulfates
Sulfates, which originate from oxidation of sulfur dioxide lead
to the formation of sulfuric acid (H2SO4) resulting in acid rain.
These acid rains cause transformation of insoluble calcium sulfate
posing potential risk not only to buildings but also for humans
(Ranalli et al., 1999).

Black crusts
Black crusts are normally formed as a result of mixing of gypsum
crystals with atmospheric particles (pollen, dusts, spores, partic-
ulate matter called smog etc.) (Saiz-Jimenez, 1991; Saiz-Jimenez
and Garcia del Cura, 1991). Calcium sulfate salt crusts also accu-
mulate particles of soot originating from fossil fuel consumption
and form black crusts (Kumar and Kumar, 1999; Warscheid and
Braams, 2000).

Organic matter
Organic matter is ascribed to the lysis of microbial cells and
presence of hydrocarbons originating from combustion of oil.
This type of deterioration becomes more evident in the buildings
located in the open as atmospheric pollution also contributes to
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add up the degradation process (Ranalli et al., 1999). The for-
mation of all these crusts affect stone’s texture, crystal structure,
composition, coherence, water uptake and strength.

Microorganisms
Microorganisms (Bacteria, Archaea, Fungi, Algae, Lichens), along
with mosses and higher plants, have been reported com-
monly on stoneworks leading to deterioration of several types
of materials as stone works, wood, tapestries, papyrus, can-
vas, paper etc. (Cappitelli and Sorlini, 2005; McNamara and
Mitchell, 2005; Ramírez et al., 2005) (Table 2). These microor-
ganisms are amongst the major players of biodegradation of
several stone work buildings. The photolithoautotrophic nature
of algae and cyanobacteria facilitate colonization of stone by
many other microorganisms (e.g., fungi and bacteria) (Warscheid
and Braams, 2000; McNamara and Mitchell, 2005). The nitri-
fying bacteria (Nitrosomonas spp. and Nitrobacter spp.), capable
of excreting nitrous and nitric acid and sulfur-oxidizing bac-
teria (Thiobacillus spp.) which produce sulfuric acid leads to
biocorrosion of the stone material (Gómez-Alarcón et al., 1995;
Warscheid and Braams, 2000). The acid formed reacts with stone
constituents to produce sulfate-based crusts which upon precip-
itation in pores of stone cause considerable stress in porewalls.
Biocorrosion also occurs by chemoorganothrophic microorgan-
isms, including several bacteria and fungi (Acidithiobacillus fer-
rooxidans, Bacillus spp., Leptospirillum spp., Aureobasidium spp.)
as well as lichens as they excrete organic acids. These acids have
been reported to chelate the metal cations (e.g., Fe, Mg, Mn,
Si, Al, Ca etc.) from minerals to form complexes which are
quite stable with time (Kumar and Kumar, 1999; Warscheid and
Braams, 2000; McNamara and Mitchell, 2005; Rawlings, 2005).
Physical penetration by lichens and fungi also contributes to
degradation. The hyphae of fungus penetrate deeply beneath
the stone surface, causing not only mechanical deterioration
but also transport of water and nutrients through the stone
facilitating colonization of stone interior by bacteria leading
to biochemical deterioration (Gómez-Alarcón and de La Torre,
1994).

Several attempts have been made to decrease the susceptibil-
ity to decay by many conservation treatments which includes
application of surface sealing or consolidating agents to the
substrate resulting in organic/inorganic precipitation of bind-
ing material in the pores of stone (Adeyemi and Gadd, 2005).
These stone consolidants reestablish the binding between the
grains of degraded stone. To protect the stone from water ingress
and weathering agents, water repellents have also been applied.
These chemicals have short efficacy due to their chemical com-
position and thermal expansion coefficient which are quite dif-
ferent from that of the stone (De Muynck et al., 2010). But
due to incompatibility problems with the stone, consolidants as
well as water repellents have been reported to accelerate decay
of the stone material (Clifton and Frohnsdorff, 1982; Delgado
Rodrigues, 2001; Moropoulou et al., 2003). Efforts have been
made to introduce methods based on CaCO3 precipitation into
the pores of limestone by few researchers. Application of satu-
rated solution of calcium hydroxide (Lime-water technique) has
been used on degraded stones so as to impart a slight water

repellent and consolidating effect (Tiano et al., 1999). But, little
success has been achieved till now in consolidation of stone with
inorganic materials. This is because of the tendency of these
materials to generate shallow and hard crusts due to their poor
penetration abilities, growth of precipitated crystals, salts forma-
tion and stone particle binding ability (Clifton and Frohnsdorff,
1982).

To overcome the limitations of these conventional treat-
ments, researchers proposed microbially induced calcium car-
bonate precipitation as an eco-friendly method to protect and
restore degraded ornamental stones (Le Metayer-Levrel et al.,
1999; Stocks-Fischer et al., 1999; Ramachandran et al., 2001;
Ramakrishnan et al., 2001; De Muynck et al., 2008a,b). Although
microorganisms have often been associated with detrimental
effects on the integrity of stone structures, affecting mineral
integrity or exacerbating powerful physical processes of deterio-
ration (Papida et al., 2000), there is an increase of evidence that
they could be used to reverse the deterioration processes on his-
torical objects of art (Atlas et al., 1988; Lal Gauri et al., 1989b;
Orial et al., 1992; Castanier et al., 1999; Perito et al., 1999; Ranalli
et al., 1999).

MICROBIALLY INDUCED CALCIUM CARBONATE PRECIPITATION
Microbially induced calcium carbonate precipitation (MICCP)
is a process where an organism creates a local micro-
environment, with conditions that permits precipitation of
carbonates (Hamilton, 2003). Bacteria isolated from different
natural habitats have been reported for their ability to precipi-
tate calcium carbonate both in natural and laboratory conditions
(Krumbein, 1979; Rodriguez-Navarro et al., 2003). Precipitation
of carbonates varies based on the types of bacteria, abiotic fac-
tors such as salinity and composition of the nutrients in various
environments (Knorre and Krumbein, 2000; Rivadeneyra et al.,
2004). Calcium carbonate precipitation is a chemical process and
influenced by four main factors such as the calcium concentra-
tion, amount of dissolved inorganic carbon (DIC), availability
of nucleation sites and pH (Hammes and Verstraete, 2002).
Sufficient calcium and carbonate ions are required for CaCO3

precipitation so that the ion activity product (IAP) exceeds the
solubility constant (Kso) Equations (1) and (2). From the com-
parison of the IAP with the Kso, the saturation state (�) of the
system can be defined; if � > 1, then the system is oversaturated
and precipitation is likely to occur as mentioned below by Morse
(1983):

Ca2+ + CO2−
3 ↔ CaCO3 (1)

� = a
(
Ca2+)

a
(

CO2−
3

)
/Kso with

Kso calcite,25◦ = 4.8 × 10−9 (2)

As mentioned previously, the amount of carbonate ions is related
to the amount of DIC and pH of a given aquatic system. However,
the amount of DIC depends on several environmental parameters
like temperature and partial pressure of carbon dioxide. The equi-
librium reactions and constants governing the dissolution of CO2

in aqueous media (25◦C and 1 atm) are given below in Equations
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Table 2 | Microorganisms and environmental factors involved in biodeterioration of architectural buildings and artworks (Source: Dakal and

Cameotra, 2012).

Microbial group Microorganisms/ Deterioration type Mechanism

environmental factors

Photoautotrophs Cyanobacteria Esthetic and chemical deterioration Biofilm, color alteration, patina, crust
formation, bioweathering

Lichen Chemical and mechanical
deterioration

Extraction of nutrients from stone surface,
oxalate formation, carbonic acid
production, physical intrusions

Algae Esthetic and chemical deterioration Biofilm, color alteration, black crusts

Mosses and Liverworts Esthetic and chemical deterioration Discoloration, green gray patches,
extraction of minerals

Chemoautotrophs Sulfur oxidizing, Nitrifying bacteria Chemical deterioration Black custs

Chemoheterotrophs Heterotrophic bacteria Esthetic and chemical deterioration Crust formation, patina, exfoliation, color
alteration

Actinomycetes Esthetic deterioration Whitish gray powder, patina, white salt
efflorescence

Fungi Esthetic, chemical, physical and
mechanical deterioration

Fungal diagenesis, color alteration, oxalate
formation, bioweathering, physical
intrusions, destabilization of stone texture

Chemoorganotrophs Sulfur reducing bacteria Chemical deterioration Conversion of sulfate to sulfite

Higher plants Higher plants Mechanical deterioration Intrusion of roots in cracks, pores leading
to collapse and detachment of stone
structure

(3)–(6) as suggested by Stumm and Morgan (1981):

CO2(g) ↔ CO2(aq)
(
pKH = 1.468

)
(3)

CO2(aq) + H2O ↔ H2CO3
∗(pK = 2.84) (4)

H2CO3
∗ ↔ H+ + HCO3−(pK1 = 6.352) (5)

HCO3− ↔ CO2−
3 + H+(pK2 = 10.329) (6)

With H2CO∗
3 = CO2(aq) + H2CO3 (7)

Hammes and Verstraete (2002) suggested that microorganisms
influence precipitation by altering any of the precipitation param-
eters described above, either separately or in various combina-
tions with one another. MICCP has gained increasing interest in
the last 20 years and found to be the primary focus of research in
bio geo civil engineering because of its numerous applications.

There are mainly four groups of microorganisms involved
in the process, which are: (i) photosynthetic organisms such as
cyanobacteria and algae, (ii) sulfate reducing bacteria responsi-
ble for dissimilatory reduction of sulfates, (iii) organisms utilizing
organic acids, and (iv) organisms that are involved in nitrogen
cycle either by ammonification of amino acids/nitrate reduction
or hydrolysis of urea (Stocks-Fischer et al., 1999; Hammes and
Verstraete, 2002; Jargeat et al., 2003).

In aquatic environments, MICCP is primarily caused by pho-
tosynthetic organisms (McConnaughey and Whelan, 1997). Algae
and cyanobacterial metabolic processes utilize dissolved CO2

Equation (8), which is in equilibrium with HCO−
3 and CO−

32

Equation (9). The removal of CO2 induces a shift in this equi-
librium, and results in an increase in pH Equation (10) (Ehrlich,
1998) and in presence of calcium ions, this reaction leads to pre-
cipitation of calcium carbonate as mentioned by Hammes and
Verstraete (2002) Equation (11).

CO2 + H2O −→ (CH2O) + O2 (8)

2 HCO−
3 ↔ CO2 + CO2−

3 + H2O (9)

CO2−
3 + H2O ↔ HCO−

3 + OH
−

(10)

Ca2+ + HCO−
3 + OH− → CaCO3 + 2H2O (11)

Calcium carbonate precipitation via this pathway occurs in sea
water, geological formations (Packman et al., 1999; Machel,
2001), in landfill leachates (Maliva et al., 2000) and even dur-
ing the biological treatment of acid mine drainage (Kaufman
et al., 1996). Chiefly, in several of the described examples for this
pathway, instead of calcite, dolomite and aragonite are the pre-
dominant minerals to precipitate (Packman et al., 1999; Wright,
1999; Warthmann et al., 2000; Machel, 2001).

Calcium carbonates can also be precipitated by heterotrophic
organisms, by the production of carbonate or bicarbonate and
modification of the environment to favor precipitation (Castanier
et al., 1999). The abiotic dissolution of gypsum (CaSO4.2H2O)
Equation (12) provides an environment that is rich in both sulfate
and calcium ions. In the presence of organic matter and absence
of oxygen, sulfate reducing bacteria can reduce sulfate to H2S
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and release HCO−
3 Equation (13) (Ehrlich, 1998; Castanier et al.,

1999; Wright, 1999). If H2S then degasses from the environment,
this results in an increase in pH and favors the precipitation of
calcium carbonate Equation (11) (Castanier et al., 1999).

CaSO4·2H2O → Ca2+ + SO2−
4 + 2H2O (12)

2 (CH2O)+SO2−
4 → HS−+HCO−

3 +CO2+H2O (13)

Third pathway includes bacteria which use organic acids as their
only source of carbon and energy wherein some common species
of soil bacteria are included. Such acids include oxalate, acetate,
citrate, glyoxylate, succinate and malate. The consumption of
these acids results in pH increase, which leads to precipitation of
carbonates in the presence of calcium ions Equations (14)–(16)
(Knorre and Krumbein, 2000; Braissant et al., 2002)

CH3COO− + 2O2 → CO2 + H2O + OH− (14)

2CO2 + OH− → CO2 + HCO−
3 (15)

2HCO−
3 + Ca2+ → CaCO3 + CO2 + H2O (16)

Numerous heterogenous bacterial groups are linked to this pre-
cipitation mechanism. Braissant et al. (2002) speculated that this
pathway might be extremely common in natural environments
due to the abundance of such low molecular weight acids in the
soils (produced by fungi and plants).

MICROBIALLY INDUCED CALCIUM CARBONATE PRECIPITATION VIA
UREA HYDROLYSIS
The precipitation of carbonates by bacteria through urea hydroly-
sis is the most straightforward and easily controlled mechanism of
MICCP with precipitation of high amounts of carbonates in less
time. Stocks-Fischer et al. (1999) suggested that during micro-
bial urease activity, 1 mol of urea is hydrolyzed intracellularly to
1 mol of ammonia and 1 mol of carbonate Equation (17), which
spontaneously hydrolyzes to form additional 1 mol of ammonia
and carbonic acid Equation (18). These products equilibrate in
water to form bicarbonate, 1 mol of ammonium and hydroxide
ions which increases the pH. The above information is men-
tioned below through equations as reported by Stocks-Fischer
et al. (1999)

CO(NH2)2 + H2O
bacteria−→ NH2COOH + NH3 (17)

NH2COOH + H2O −→ NH3 + H2CO3 (18)

H2CO3 −→2H+ + 2CO2−
3 (19)

NH3 + H2O−→NH4+ + OH− (20)

Ca2+ + CO2−
3 −→CaCO3(KSP = 3.8 × 10−9) (21)

KSP is the solubility product in Equation (21).
The main role of bacteria has been ascribed to their ability

to create an alkaline environment through various physiological
activities. The surface of bacteria plays an important role in pre-
cipitation of calcium (Fortin et al., 1997). At a neutral pH, the

metal ions which are positively charged get bound on the sur-
faces bacteria due to presence of several negatively charged groups
which favors heterogenous nucleation (Douglas and Beveridge,
1998; Bäuerlein, 2003). Generally, the precipitation of carbonates
on the external surface of bacterial cells occurs by successive strat-
ification (Pentecost and Bauld, 1988; Castanier et al., 1999) and
these bacterial cells get embedded in growing carbonate crystals
(Rivadeneyra et al., 1998) (Figure 1).

Biochemical reactions which take place in the urea-CaCl2
medium leading to precipitation of CaCO3 at the cell surface
(Stocks-Fischer et al., 1999) and act as binders in between the
substrate particles can be listed as:

Ca2++Cell−→Cell − Ca2+ (22)

Cl− + HCO3− + NH3−→NH4Cl + CO2−
3 (23)

Cell − Ca2+ + CO2−
3 −→Cell − CaCO3 (24)

So, mineralizing activities of microorganisms can now be
harnessed positively, making them essential to the existence of
ecology of Earth. The use of microbially induced carbonate
biominerals is becoming increasingly popular day by day. From
removal of heavy metals and radio nucleotides, removal of cal-
cium from wastewater and biodegradation of pollutants, atmo-
spheric CO2 sequestration, modifying the properties of soil and
filler in rubber and plastics to fluorescent markers in stationery
ink and remediation of building materials, bacterial carbonates
are serving many fields (Dhami et al., 2013).

MICROBIAL CARBONATES: REMEDIATION OF LIMESTONE
Boquet et al. (1973) firstly demonstrated the precipitation of
calcium carbonate by soil bacteria under laboratory condi-
tions. Previous researchers showed precipitation of carbonates
by marine bacteria only in liquid media while Drew (1911)
and Shinano (1972), investigated the carbonate precipitation by
soil bacteria on solid media and obtained best results with B4
medium. Among the organisms tested, several Bacillus strains
and Pseudomonas aeruginosa were observed to form crystals.
Castanier et al. (1999) reported the microbial origin of lime-
stone while Adolphe et al. (1989) further demonstrated the
bacterial origin of the calcite crusts and found great resis-
tance against erosion by this calcite layer. Adolphe et al. (1990)
applied patent for the treatment of artificial surfaces by sur-
face coatings produced by microorganisms and formed a com-
pany “Calcite Bioconcept.” The promising results of “Calcite
Bioconcept” encouraged many researchers to look for different
approaches for bioremediation of stone by microbial carbonates.
First approach was based on usage of different microbes and
metabolic pathways or delivery systems to overcome limitations
of “Calcite Bioconcept” technique while in second approach, no
microbes were applied directly rather inducing macromolecules
along with supersaturated solution of calcium carbonate and car-
bonate precipitation by microbiota inhabiting the stone were
investigated.

The carbonate precipitation ability of bacteria had been
demonstrated under laboratory but further experiments are
required to assess the viability and carbonate precipitation ability
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FIGURE 1 | Bacteria serving as nucleation site for CaCO3 precipitation in

the substrate particles. Calcium ions in the solution are attracted to the
bacterial cell wall due to its negative charge. When urea is added to bacteria,
dissolved inorganic carbon (DIC) and ammonium (AMM) are released in the

microenvironment of the bacteria. In the presence of calcium ions, this leads
to local supersaturation and finally there is precipitation of calcium carbonates
which act as binder between loose substrate particles (Source: DeJong et al.,
2010).

of these bacteria in situ. The collaboration between the University
of Nantes, the Laboratory for the research of historic monuments
(LRMH) and the “Calcite Bioconcept” (Le Metayer-Levrel et al.,
1999) led to the optimization and industrialization of this con-
cept. Upon investigating different bacteria, Castanier et al. (1999)
reported the highest performance by B. cereus which was fur-
ther selected for in situ applications (Orial, 2000). This paved
way to optimization of the nutrient media with source of pro-
teins for the oxidative deamination of amino acids by aerobiosis
and nitrogen source for the dissimilatory reduction of nitrate in
anaerobiosis and microaerophilic conditions along with a fungi-
cide to prevent undesirable growth of fungi on the stone (Orial
et al., 2002). The first application in situ was carried out in 1993
in Thouars on the tower of the Saint Médard Church. It was
reported that presence of the biocalcin reduced water absorption
rate to five time s and did not affect the esthetic appearance (Le
Metayer-Levrel et al., 1999). But Orial (2000) suggested that after
every 10 years a new biocalcin treatment was needed to restore
its protective effect. This technology was also applied on lime-
stone statuaries in different climatic environments where it was
found to be highly successful even after 4 years of application.
Addition of natural pigments into the nutritional medium created
a surficial patina with the biodeposition treatment. The pigments
integrated into the biocalcin resulted a persistent light color-
ing to the stone. This technique concealed some newly replaced
stones on a monument (Le Metayer-Levrel et al., 1999). Alhough
B. cereus was quite effective in bioconsolidation, but the layer
of new cement induced was very thin, just a few microns—
thick. Formation of endospores and formation of uncontrolled
biofilm by Bacillus species provides a drawback in stone conser-
vation. Hence, Rodriguez-Navarro et al. (2003) proposed the use
of Myxococcus Xanthus, which is Gram-negative, nonpathogenic

soil bacteria. This bacterium is known to induce the precipita-
tion of carbonates, sulfates and phosphates in wide range of solid
and liquid media (González-Muñoz et al., 1993, 1996; Ben Omar
et al., 1995, 1998; Ben Chekroun et al., 2004; Rodriguez-Navarro
et al., 2007). Application of this bacterial suspension on stone
specimens showed no fruiting bodies and no uncontrolled bac-
terial growth. Calcium carbonate precipitation was observed up
to a depth of several 100 µm (>500 µm) without plugging or
blocking of the pores. Plugging mainly occurs due to biofilm for-
mation through extracellular polymeric substance (EPS) (Tiano
et al., 1999).

Tiano et al. (1999) studied the effect of microbial calcite crys-
tals on Pietra di Lecce bioclastic limestone by Micrococcus spp. and
Bacillus subtilis and their results showed a significant reduction
in water absorption. The authors also commented some negative
consequences, such as (i) the formation of new products due to
chemical reactions between stone minerals and some by-products
originating from the metabolism of bacteria, and (ii) the forma-
tion of stained patches because of the growth of air-borne fungi.
To avoid such short comings, the authors used some natural and
synthetic polypeptides to control the calcite crystal growth in
the pores. Use of organic matrix macromolecules (OMM) iso-
lated from Mytilus californianus shells was proposed to induce
the precipitation of calcium carbonate within the pores of the
stone (Tiano et al., 1992; Tiano, 1995). Slight decrease in poros-
ity and water absorption by capillarity was observed in this case
(Tiano, 1995). This method was not much beneficial due to the
complexity of isolation procedure as well as less yield of usable
product (Tiano et al., 1999). Hence, in place of this bio induc-
ing macromolecules (BIM) rich in aspartic acid groups, Tiano
et al. (2006) proposed to use acid functionalized proteins such as
polyaspartic acid. Calcium and carbonate ions were supplied for
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FIGURE 2 | Colonies of 6 different strains of B. sphaericus and B. lentus on agar plates and their ability to encrust themselves in calcium carbonate

(Source: Dick et al., 2006).
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FIGURE 3 | Scanning electron microscopy (SEM) observations of Carbogel without (left) and with (right) D. vulgaris subsp. vulgaris ATCC 29579 cells

(Source: Cappitelli et al., 2006).

Table 3 | Overview of different methodologies where microbial calcite has been deposited as a layer on surface of stone.

Experimental methods Application procedure Authors

Inoculum Bacteria Nutrients Evaluation procedures

Culture in exponential
phase: 107–109 cells/ml

Spraying Spraying (5 times) Water absorption, SEM analysis,
surface roughness, colorimetery
and plate count

Calcite bioconcept
Le Metayer-Levrel
et al., 1999

Overnight culture 106

cells cm−2
Brushing on water saturated
specimens

Wetting every day for 15
days

Water absorption, colorimeteric
measurements, stone cohesion

Tiano et al., 1999

2% inoculums Immersion in growing bacterial
culture (shaking or stationary
conditions ) for 30 days

Stone cohesion, weight increase,
XRD and SEM analysis,
porosimetery analysis

Rodriguez-Navarro
et al., 2003

1% inoculums Immersion in growing bacterial
culture (intermediate wetting) for
28 days

Water absorption, SEM analysis Dick et al., 2006

108 cells ml−1 Spraying In Carbogel Water absorption and drying due
to evaporation

May, 2005

n.d.* n.d.* Immersion in test
solution or spraying (in
situ) tests

Water absorption, colorimeteric
measurements, stone cohesion,
staining of newly formed calcite
with Alizarin Red S and Calcein

Tiano et al., 2006

Overnight culture 107 –
109 cells ml−1

Immersion for 1 day Immersion for 4 days Weight increase, water
absorption, gas permeability,
chloride migration, carbonation,
freezing and thawing, SEM and
XRD analysis

De Muynck et al.,
2008a

*n.d., not defined.

calcite crystal growth, by addition of ammonium carbonate and
calcium chloride solution or a solution of saturated bicarbonate.
The consolidating effect was observed to be very low compared to
ethylsilicates (Tiano et al., 2006). Dick et al. (2006) observed 50%

reduction in water absorption by treating limestone cubes with
two strains of B. sphaericus (Figure 2).

To improve the methodologies for delivering bacterial cells to
stone surfaces and also to control the side effects of bacteria to
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the stone, various carrier materials were looked upon. Ranalli
et al. (1997) used sepiolite for delivering Desulfovibrio vulgaris and
D. desulfuricans, as it provides anaerobic conditions, humidity
and shorten the treatment time. Cappitelli et al. (2006) proposed
Carbogel as a delivery system for bacteria due to its high retention
of viable bacteria and less time to entrap cells (Figure 3). Different
methodologies where microbial calcite has been deposited as a
layer on surface of stone is presented in Table 3.

Precipitation of calcite crystals by fresh water bacteria on lime-
stone significantly reduced the pore sizes of the stone (Zamarreno
et al., 2009). Calcite crystals were deposited around and inside
open pore spaces. Application of calcite crystals filled 43–49%
of the open pore spaces which was 20% higher than the appli-
cation of the medium alone. De Muynck et al. (2012) reported
B. sphaericus to be very efficient strain for consolidation of lime-
stone specimens at range of temperatures (10, 20, 28, 37◦C). This
isolate led to 64% lower weight loss upon sonication and 46%
decreased sorptivity in treated limestone specimens compared to
the control specimens. De Muynck et al. (2011) recently applied
bacterial calcite in two types of stones: microporous and macro-
porous. They reported that application of bacterial carbonates is
more successful in macroporous stone where it occurs to a larger
extent and at greater depths than in microporous stone. It has also
been shown on laboratory scale that several bacterial strains (such
as Pseudomonas stutzeri, P. aeruginosa, D. vulgaris, and D. desul-
furicans) are not only able to denitrify and desulfuricate harmful
masonry salts such as nitrate and sulfate (Lal Gauri et al., 1989a;
Heselmeyer et al., 1991; Ranalli et al., 1999) but also mineralize
organic residues or pollutants like carbohydrates, waxes or hydro-
carbons that commonly occur in crusts on stonework (Warscheid
et al., 1991; Saiz-Jimenez, 1997; Ranalli et al., 1999).

From the above mentioned applications, microbial concrete
seems to bring a new revolution in the civil industry. Use of bac-
teria to improve the durability of building materials has drawn
the attention of research groups all over the world. But several
challenges have to be met before acceptance of this technology by
conservators.

LIMITATIONS AND CHALLENGES
Though there are many advantages of MICCP technology for
bioremediation of several stone structures but there are a few
limitations also. In comparison to chemical treatments, biobased
treatments are found to be more complex because the microbial
activity depends on many environmental factors such as temper-
ature, pH, concentrations of donors and acceptors of electrons,
concentrations and diffusion rates of nutrients and metabolites.
Design of experiments for biodeposition treatments require a
huge data of the biological processes (growth, biosynthesis, spe-
cific enzymatic activities), chemical reactions accompanied with
formation of insoluble compounds, physic—chemical processes
as precipitation, crystallization, and adhesion.

Due to this complexity, its usage at large-scale has not been
so encouraging. The inconvenient application procedures also are
major gaps for successful commercialization. The precipitation
of carbonates mainly depends on time required for carbon-
ate formation. If precipitation time increases, then the amounts
of EPS production increases, and hence plugging but multiple

applications of nutrients and usage of carrier materials have
significant influence on the total cost of treatment (Le Metayer-
Levrel et al., 1999; May, 2005). Production of ammonia during
hydrolysis of urea poses environmental as well as leads to dis-
coloration of stone (Sutton et al., 2008; Tobler et al., 2011).
Ammonium is also converted to nitric acid due to the action of
denitrifying bacteria which results in significant damage to the
stone. Additional research is necessary to overcome this problem.
As the amounts of carbonate precipitates formed are dependent
on amount of calcium added, increased concentration of cal-
cium leads to accumulation of salts and paves way to efflorescence
and damage to crystallization. The survival of bacteria within the
stone material also influences the extent of calcification. As the
laboratory grade nutrient media limit the economical usage of
this technology for commercial scales, there is great need to look
for alternative economical and cheap medium ingredients as corn
steep liquor and lactose mother liquor (Achal et al., 2009, 2010).
Large scale production of bacterial cultures is also a hindrance in
the path of success of this technology over traditional treatments.
The above mentioned concerns limit the use of MICCP for practi-
cal applications in various fields in comparison to the traditional
methods.

CONCLUSION
Microbially induced calcium carbonate precipitation technol-
ogy has been found to be highly promising with potential to
successfully remediate and protect several stone structures. The
eco–friendly, self-healing and highly durable nature of these bio-
binders encourage their biotechnological applications for sev-
eral purposes. Carbonate formation by this technology has been
found to be very easy and convenient. The potential of these bio-
binders has brought a new revolution in field of civil engineering
but still there has been much to explore in order to bring this
environmentally safe, cost effective and convenient technology
from lab to field scales. There is need to assess the long term effi-
cacy of microbial carbonates and compared to chemical binders.
As the success of this technology needs experts from varying
sectors from Microbiologists to Geologists to Civil Engineers,
researchers from all around the globe should work together to
make this multi-disciplinary research move toward commercial
scale applications at a higher pace.
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