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Endoplasmic reticulum (ER) stress is a general term for representing the pathway by
which various stimuli affect ER functions. ER stress induces the evolutionarily conserved
signaling pathways, called the unfolded protein response (UPR), which compromises the
stimulus and then determines whether the cell survives or dies. In recent years, ongoing
research has suggested that these pathways may be linked to the autophagic response,
which plays a key role in the cell’s response to various stressors. Autophagy performs
a self-digestion function, and its activation protects cells against certain pathogens.
However, the link between the UPR and autophagy may be more complicated. These
two systems may act dependently, or the induction of one system may interfere with the
other. Experimental studies have found that different viruses modulate these mechanisms
to allow them to escape the host immune response or, worse, to exploit the host’s
defense to their advantage; thus, this topic is a critical area in antiviral research. In this
review, we summarize the current knowledge about how RNA viruses, including influenza
virus, poliovirus, coxsackievirus, enterovirus 71, Japanese encephalitis virus, hepatitis C
virus, and dengue virus, regulate these processes. We also discuss recent discoveries
and how these will produce novel strategies for antiviral treatment.
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INTRODUCTION
The endoplasmic reticulum (ER) is a eukaryotic organelle in
which an array of cell functions takes place. These include the
transportation of cellular materials, provision of increased sur-
face area for cellular reactions, and the production of proteins,
steroids, and lipids. The ER may be overloaded with molecu-
lar chaperones, folding enzymes, and massive protein products
during normal processes, such as in the differentiation of B
lymphocytes into antibody-secreting plasma cells (Shaffer et al.,
2004; Ma et al., 2010) or in highly specialized cells for secretion
(Harding and Ron, 2002). In addition, dysfunction of the ER,
known as ER stress, results from pathogenic stress signals, such as
hypoxia (Koumenis, 2006), ER–Ca2+ depletion, viral infections,
or agents that affect Ca2+ balance (i.e., thapsigargin), protein gly-
cosylation (i.e., tunicamycin), and ER–Golgi vesicular transport
(i.e., brefeldin A), which lead to accumulation of misfolded and
unfolded proteins (Kaufman, 1999). To reduce the adverse effects
of accumulating misfolded or unfolded proteins, the cell oper-
ates an adaptive response known as the unfolded protein response
(UPR) to reduce the load of newly synthesized proteins within the
ER and eliminate inappropriately folded proteins through upreg-
ulation of ER chaperone expression. In addition, proteins that fail
to correctly fold are then deployed to the distal secretory pathway
from the ER by the ER-associated protein degradation (ERAD)
pathway of the UPR (Hampton, 2000; Yoshida et al., 2003).

There are two ERAD models for protein degradation:
ubiquitin-proteasome ERAD, designated as ERAD (I), and
autophagy-lysosome ERAD, designated as ERAD (II) (Fujita

et al., 2007; Korolchuk et al., 2010). Both models depend on
retrotranslocation of ERAD substrates from the ER back to the
cytoplasm with the help of the Cdc48p–p97 complex. Most
soluble misfolded proteins are cleared through the ubiquitin-
proteasome system, which involves action of a cascade of three
canonical ubiquitin enzymes: E1 ubiquitin-activating enzyme ini-
tiates the reaction by using ATP to covalently activate and then
conjugate the ubiquitin to an E2 ubiquitin-conjugating enzyme.
Ubiquitin is then transferred from the ubiquitin-charged E2 to
the lysine residue of a specific target or a growing ubiquitin chain
by E3 ubiquitin ligase, which results in a multiubiquitin chain-
tagged substrate. Proteins that are ubiquitinated with K48-linked
chains are specifically recognized by the 26S proteasome and sub-
jected to degradation (Hershko et al., 1983). In contrast, ERAD
(II) degrades both soluble and insoluble misfolded protein aggre-
gates in autolysosome. Autophagy receptors and adaptors, called
p62/SQSTM1, NBR1, HDAC6, and ALFY, bind to proteins with
K63-specific monoubiquitination or polyubiquitin chains and
then guide them to the concave side of developing autophago-
somes (Behrends and Fulda, 2012). Notably, p62 also recog-
nizes K48 polyubiquitin-tagged proteins for autophagic clearance
upon proteasome dysfunction. In addition to the protective role
of UPR, prolonged and/or excess ER stress typically activates
caspase-12, an ER-resident caspase, leading to UPR-mediated cell
death (Szegezdi et al., 2006).

Basal autophagy plays a key role in maintaining cellular home-
ostasis through eliminating unwanted proteins and damaged
organelles by cellular self-digestion in the lysosome to fulfill the
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demand for the building blocks required for cell survival (Levine
and Klionsky, 2004; Shintani and Klionsky, 2004). Recently, the
study of autophagy regulation has grown in different research
areas, including regulation of cancer development and progres-
sion (Mahoney et al., 2013a), lipid metabolism (Singh et al.,
2009), degenerative diseases (Wang et al., 2006), and the con-
trol of viral pathogenesis (Jackson et al., 2005). The first step of
autophagy relies on the formation of an isolation membrane at
the so-called preautophagosomal site (PAS) where a system of
evolutionarily conserved proteins (Atg proteins) comes together.
Recent reports have revealed that the ER serves as a subcellular
platform for autophagy initiation (Axe et al., 2008). The elon-
gation of the initial autophagic membrane requires continued
processing by two ubiquitin-like protein-conjugation systems,
the Atg12 and LC3 systems, which modify the autophagy pro-
teins, Atg5 and Atg8/LC3, respectively (Geng and Klionsky, 2008).
The autophagosome then fuses with endosomal and/or lysosomal
vesicles to create an autolysosome, where digestion of intracellu-
lar components occurs (Eskelinen, 2005). In addition, autophagy
can be induced by various physiological and pathological condi-
tions such as nutrient deprivation, oxidative stress, and pathogen
infections. The live-or-dead signal is modulated by UPR and
autophagy and several lines of evidence suggest there is commu-
nication between these two pathways (Bernales et al., 2006; Ogata
et al., 2006; Yorimitsu et al., 2006; Salazar et al., 2009); thus, it
is believed that these two pathways could be a therapeutic tar-
get in certain circumstances (Figure 1). Herein, we review recent
findings, focusing on the regulation of the UPR and autophagy
involved in RNA virus infection as a new antiviral strategy.

HOW RNA VIRUS INFECTION CAUSES ER STRESS
Viral virulence is determined by successful entrance, replication
in the host cell, and release of mature virion. During the life cycle,
ER stress may arise from the exploitation of the ER membrane,
accumulation of misfolded proteins, imbalance of calcium con-
centration by viroporin, and the sabotage or depletion of the ER
membrane during virion release. Details of viral effects are given
as follows.

EXPLOITATION OF ER MEMBRANES
Many positive-strand RNA viruses cause the rearrangement of
host intracellular membrane compartments that house repli-
cation complexes. ER, trans-Golgi, or lysosomes are the likely
origin of virally induced membranes (Miller and Krijnse-Locker,
2008; Korolchuk et al., 2010). Upon poliovirus (PV) and cox-
sackievirus B3 (CVB3) infection, clusters of vesicles have been
considered to derive from ER, although other cellular compart-
ment marker proteins also colocalized with viral nonstructural
proteins (Schlegel et al., 1996; Van Kuppeveld et al., 1997).
Consistent with these findings, our previous study indicates that
enterovirus 71 (EV71) nonstructural 2C protein, which partici-
pates in viral replication, is associated with the ER membrane
through direct interaction with ER membrane protein reticu-
lon 3 (RTN3), which is required and sufficient for immediate
early virus replication and translation (Tang et al., 2007). In
the RTN3 siRNA knockdown cells, synthesis of the 2C pro-
tein was ablated. However, in the RTN3 rescue cell line 2A3,

FIGURE 1 | Diagram of the UPR arms and their connection to

autophagy. Alteration of ER functions results from stress signals by RNA
virus infection, by the exploitation of ER membrane for viral replication,
rapid accumulation of viral proteins, imbalance of calcium concentration by
viroporin, and the sabotage or depletion of ER membrane for viral release.
This leads to the accumulation of misfolded and unfolded proteins, which
triggers ER stress. To alleviate this adverse effect, the cells operate an
adaptive UPR to reduce the load of the newly synthesized proteins in the
ER by activating the PERK–eIF2α branch and eliminating inappropriate
protein accumulation by upregulating ER chaperone proteins through IRE1
and ATF6 branches. In addition, the incurable misfolded proteins undergo
retrotranslocation from the ER into cytosol for degradation by an ERAD
mechanism. ER stress can contribute to autophagy via activation of JNK,
XBP1, CHOP, and ATF4. Red dash arrows indicate the final outcome of the
activated pathways, such as apoptosis and autophagy, caused by viral
infection. Red solid arrows indicate the UPR pathways.

the synthesis of viral protein and RNA was restored. Moreover,
the interactions between RTN3 and two EV71 2C homologs
of PV and CVA16 have been confirmed (Tang et al., 2007).
Immunofluorescence studies reveal that replication of Flaviviruses
dengue virus (DENV) and hepatitis C virus (HCV) may take place
on perinuclear ER membranes (El-Hage and Luo, 2003). DENV2
nonstructural protein 2 (NS2A) is a 22-kDa hydrophobic pro-
tein containing five integral transmembrane segments that span
the ER membrane. Functional analysis reveals that NS2A involves
both DENV RNA synthesis and virion assembly/maturation (Xie
et al., 2013). Furthermore, DENV infection induces ROCK-
dependent vimentin rearrangement and subsequent ER redis-
tribution (Lei et al., 2013). In addition, the HCV ER integral
membrane protein, NS4B, is responsible for rearranging the ER
membrane and inducing the formation of new ER-derived mem-
brane structures, and this is possibly negatively regulated by
RTN3-NS4B interaction (Lundin et al., 2003; Wu et al., 2014).

INTERFERENCE WITH HOST PROTEIN GLYCOSYLATION BY VIRUSES
The N-glycosylation pathway in the ER modifies a mass of pro-
teins at the asparagine residue of the consensus sequence Asn-
X-Ser/Thr, where X is any amino acid except Pro (Kornfeld and
Kornfeld, 1985; Gavel and Von Heijne, 1990). The modifica-
tion influences protein folding and attributes various functional
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properties to the protein. Thus, interference with host protein
glycosylation by viral proteins competing for the modification
process may cause ER stress.

Viruses, including influenza A virus (IAV), hepatitis virus,
and Japanese encephalitis virus (JEV), use this host cell pro-
cess to enhance viral pathogenesis through facilitating folding
and trafficking, affecting receptor interaction, and modulating
host immune responses (Tatu et al., 1995; Dubuisson and Rice,
1996; Zai et al., 2013). Hemagglutinin (HA) of IAV is a type
I transmembrane glycoprotein that determines viral antigenic-
ity. Throughout the glycosylation process, HA rapidly associates
with calnexin in a monoglucosylated form. Once folded, the HA
monomers dissociate from calnexin and assemble into trimeric
structures in the ER or in the intermediate compartment (Tatu
et al., 1995). HCV envelope glycoproteins E1 and E2 have been
shown to cooperate for the formation of a functional noncovalent
heterodimer (Dubuisson et al., 1994; Dubuisson and Rice, 1996).
Based on studies of HCV pseudoparticles, coexpression of both
envelope glycoproteins has been shown to be necessary to produce
infectious pseudoparticles (Bartosch et al., 2003). Glycosylation
also occurs in JEV and WNV proteins, namely the precursor of
membrane protein (prM), the envelope protein (E), and the non-
structural protein NS1, which affects the efficiency of virus release
and infection (Hanna et al., 2005; Zai et al., 2013).

VIROPORINS
Typically, viroporins are composed by integral membrane pro-
teins to form a hydrophilic pore, which targets different cellular
compartments and ions, thus affecting various viral functions
(Nieva et al., 2012). For example, IAV M2 reduces the acidity
of vesicular compartments to trigger virus uncoating. It is also
required for viral assembly and release. In the case of ER-targeting
viroporins, rotavirus-encoded NSP4 modifies the calcium home-
ostasis by enhancing the calcium permeability of the ER mem-
brane. This may be associated with virus-induced cell death and
subsequent release of NSP4, which in turn causes activation
of the phospholipase C-IP3 cascade in neighboring noninfected
cells and is responsible for viral pathogenesis (Tian et al., 1995,
1996; Dong et al., 1997). On the other hand, 2B proteins of
picornaviruses also participate in the remodeling of membrane
structures and the formation of replication complexes (De Jong
et al., 2008). Among them, CBV3 2B, PV1, and rhinovirus 2B are
present at the membranes of the ER and Golgi complex and are
responsible for the release of Ca2+ and H+ from these organelles.

VIRION BUDDING
Rotavirus studies propose that the double-layered particle (DLP)–
VP4–NSP4 complex breaches the ER membrane and penetrates
into the ER. The viral capsid protein, VP7, re-envelopes the
immature particle (DLP) after removal of the ER membrane and
NSP4, and forms the infectious triple-layered particle (Tian et al.,
1996; Trask et al., 2012).

REGULATION OF UPR BY VIRUSES
The induction of individual branches or part of the UPR by
viruses was reported previously. Viruses have also evolved differ-
ent means to modulate the arms of the UPR, which consequently

expanded both the temporal and spatial superiority for virus
replication or completion of the life cycle.

eIF2α PATHWAY
It has been reported that viruses regulate the host translational
machinery to promote viral protein synthesis by inhibiting the
synthesis of proteins involved in host immune responses. In
enteroviruses, 2A and 3C proteases target translation factors such
as eIF4GI and poly(A)-binding protein (PABP) to impede host
translation (Lloyd, 2006). Moreover, modulation of the integrated
stress response (ISR), which is determined by phosphorylation of
eIF2α to attenuate cellular translation, is another strategy for pro-
moting virulence (Figure 2) (Sonenberg and Hinnebusch, 2009).
Four eIF2α kinases have been identified: heme-regulated inhibitor
(HRI), which is a response to heme deficiency (Chen, 2007);
double-stranded RNA-dependent protein kinase (PKR), which is
induced by interferon (IFN) and activated by double-stranded
RNA (dsRNA) during viral infection (Meurs et al., 1990); gen-
eral control nonderepressible-2 (GCN2), which is activated by
serum and amino acid deprivation (Harding et al., 2000); and
finally, PKR-like ER kinase (PERK or PEK), which is activated by
unfolded proteins in the ER (Ron, 2002).

Some researchers consider that eIF2α phosphorylation plays a
role in hampering viral protein synthesis. For example, upon VSV
infection, the induction of activated PERK only correlates with
eIF2α phosphorylation at the later stage of infection. In MEF cells
carrying a phosphorylation-insensitive eIF2α S51A variant, viral
protein synthesis increased compared with a wild-type control,
indicating that eIF2 phosphorylation is inhibitory to viral pro-
tein synthesis. As demonstrated by matrix (M) protein mutant
virus (rM51RM), a viral protein (M protein) is involved in coun-
teracting the antiviral response of the phosphorylation of eIF2α

(Connor and Lyles, 2005). Like VSV infection, Chikungunya

FIGURE 2 | eIF2 pathway under viral infection. The M protein of VSV, the
E2 and NS5A proteins of HCV, and NS2A of JEV counteract the
phosphorylation of eIF2α for viral replication. Blue solid arrows indicate the
direct target of the virus or viral proteins. IAV also targets eIF2α by inducing
P58IPK, a cellular inhibitor of PERK and PKR. IBV upregulates
eIF2α–ATF4–CHOP-mediated apoptosis to benefit viral replication.
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virus (CHIKV) induces PERK activation but delays eIF2α phos-
phorylation. The expression of CHIKV NSP4, which is the
RNA-dependent-RNA polymerase, contributed to suppression of
eIF2α phosphorylation, thus ensuring translation of viral pro-
teins (Rathore et al., 2013). Furthermore, viruses containing type
I or type II internal ribosomal entry sites (IRESs), such as PV,
foot-and-mouth disease virus, mengovirus and EMCV, require
many canonical translation initiation factors for initial replica-
tion (Beales et al., 2003; Sarnow, 2003). It is reported that PV
switches translation mode from an eIF2-dependent to an eIF2-
independent one during the course of infection to ensure efficient
proliferation. Furthermore, studies have shown that the C ter-
minal of the eIF5B fragment, cleavage by 3C proteases, and
proteolytic activity of 2Apro can stimulate virus IRES transla-
tion of enteroviruses (De Breyne et al., 2008; Redondo et al.,
2011). Interestingly, it is reported that phosphorylation of eIF2α

is required for activation of IRES during cell differentiation
(Gerlitz et al., 2002). Thus, whether the phosphorylation level
of eIF2α positively correlates with IRES-dependent viral mRNA
translational efficiency remains to be determined. Some viruses
regulate the eIF2α pathway by interfering with the activation of
eIF2α kinases. HCV NS5A protein, containing an IFN sensitivity-
determining region (ISDR), interferes with PKR activity by bind-
ing to a PKR dimerization domain (PKR residues 244–296) (Gale
et al., 1998), while HCV E2 protein binds to PERK and inhibits
downstream eIF2α phosphorylation by acting as a pseudosub-
strate (Pavio et al., 2003). Interestingly, it is reported that NS5A
stimulates eIF2α phosphorylation in the absence of PKR, imply-
ing that NS5A may activate other eIF-2α kinases to regulate eIF2α

phosphorylation (Tardif et al., 2002). Overexpression of HCV
NS2 induces eIF2α phosphorylation (Von Dem Bussche et al.,
2010). Taken together, these studies indicate that HCV proteins
modulate eIF2α pathway in a complex way, and the effect of
regulation on virus replication cannot be established unequivo-
cally. The N-terminal region of NS2A of JEV contains a sequence
that is highly similar to HCV NS5A ISDR and also inhibits
PKR-induced eIF2α phosphorylation (Tu et al., 2012). DENV2
infection triggers and then suppresses PERK-mediated eIF2α

phosphorylation by elevating the expression of growth arrest
and DNA damage-inducible protein-34 (GADD34), which acts
together with phosphatase 1 (PP1) to dephosphorylate eIF2α-P
(Pena and Harris, 2011). Influenza virus nonstructural protein
NS1 interferes with dsRNA binding to PKR, and the infection
also induces and activates P58IPK, a cellular inhibitor of PKR
and PERK. Both strategies deployed by NS1 and P58IPK prevent
PKR dimerization and autophosphorylation, which limits eIF2α

phosphorylation (Lee et al., 1992; Lu et al., 1995; Yan et al., 2002).
In some circumstances, such as when the host immune sys-

tem specifically recognizes foreign viruses and kills them with
cytotoxic T lymphocytes, or when cell death is directly induced
in virus infected cells to prevent completion of the replication
cycle, apoptotic cell death is considered to be a host strategy for
fighting against viral infections. ATF4 is a transcriptional activa-
tor of the ISR, which is involved in the expression of ISR target
genes such as c/EBP homologous protein (CHOP) and GADD34
(Ma and Hendershot, 2003). CHOP was originally identified
as a transcriptional factor eliciting ER stress-induced apoptosis.

In cells subjected to West Nile virus (WNV) infection, eIF2α

phosphorylation and CHOP-mediated apoptosis were induced.
Both viral protein expression level and virus titer are increased
in CHOP-deficient cells (Medigeshi et al., 2007). On the other
hand, a virus may induce apoptosis to facilitate replication or
the spread of viral progeny. It is reported that coronavirus infec-
tious bronchitis virus (IBV) upregulates eIF2α–ATF4–CHOP
signaling in infected cells and that it relies on PERK or PKR
activation. Knockdown of CHOP reduces IBV-induced apopto-
sis through activation of the extracellular signal-related kinase
(ERK). Viral protein expression level is moderately suppressed
in CHOP-knockdown cells, which suggests that upregulation of
CHOP-mediated apoptosis during IBV infection probably pro-
motes virus replication (Liao et al., 2013).

In addition to regulation of cell death, it is reported that HCV
induces the expression of CHOP at mRNA and protein levels and
is correlated with autophagy induction; knockdown of CHOP
not only increases HCV PAMP-mediated innate immune acti-
vation, but also elevates its inhibitory effect on virus replication
(Ke and Chen, 2011). However, upstream CHOP induction is a
matter of debate. Overexpression of HCV E1 and/or E2 induces
the expression of CHOP in a PERK-dependent manner (Chan
and Egan, 2005); while upon HCV infection, CHOP protein is
upregulated by PERK, activating transcription factor (ATF6), and
inositol-requiring transmembrane kinase/endonuclease 1 (IRE1)
collectively.

ATF6 PATHWAY
ATF6 is a type 2 transmembrane protein of 670 amino acids and
is constitutively expressed as a 90-kDa protein (p90ATF6). Its
C-terminal region is located in the ER, whereas the N-terminal
region is located on the cytosolic side (Figure 3). Upon ER stress,
ATF6 is cleaved to an N-terminal 50-kDa protein (p50ATF6)
sequentially by the Golgi site-1 and site-2 proteases (S1P and S2P)

FIGURE 3 | ATF6 pathway under viral infection. Many RNA viruses
activate the UPR pathway by cleaving ATF6 to release the p50 fragment.
The N-terminal p50 with transcription activity enters the nucleus to activate
the expression of ER stress and ERAD genes, such as GRP78/BiP, CHOP,
XBP1, or EDEM. However, the p50 fragment was not detected in the EV71
infection.
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(Ye et al., 2000). Nuclear translocation of p50ATF6, as a tran-
scription factor, activates expression of ER stress and ERAD genes
including ER chaperones, CHOP (aka GADD153), EDEM1, and
X-box-binding protein 1 (XBP1) by targeting the cis-acting ER
stress response element (ERSE) (CCAAT-N9-CCACG) and UPR
element (UPRE) (GATGACGTG(T/G) NNN(A/T)T), although
ATF6 has a much higher affinity for ERSE (Yoshida et al., 1998). In
addition to directly regulating gene expression, ATF6 also mod-
ulates the innate immune response. Under subtilase cytotoxin
(SubAB) treatment, cleavage and degradation of GRP78/BiP leads
to activation of the AKT–NF-κB pathway through ATF6 activa-
tion (Yamazaki et al., 2009). Based on its pivotal role of connect-
ing the arms of the UPR and converging the UPR and immune
response, many viruses preferentially regulate ATF6 pathways to
benefit replication. In WNV strain Kunjin (WNVKUN)-infected
cells, expression of ATF6-target genes increases, but viral pro-
duction decreases in ATF6 knockout MEF cells. Moreover, in
ATF6 knockout MEF cells, phosphorylation of eIF2α, down-
stream CHOP activity, and Jak–STAT1 phosphorylation induced
by IFNα are upregulated upon infection, which implies that virus-
induced ATF6 activation is a prosurvival mechanism required
for replication and inhibition of the antiviral signaling path-
way (Ambrose and Mackenzie, 2013). However, it is still unclear
whether WNVKUN NS4A and NS4B, potent inducers of the UPR,
inhibit IFNα-induced Jak–STAT signaling in an ATF6-dependent
manner (Ambrose and Mackenzie, 2011). Other Flavivirus infec-
tions, including HCV, JEV, and DENV2, also induce cleavage of
ATF6, nuclear translocalization of ATF6 and increases in chaper-
one proteins expression. In HCV replication, silencing of ATF6
reduces HCV intracellular mRNA levels (Ke and Chen, 2011).
However, in JEV-infected cells, knockdown of the ATF6-targeted
gene, GRP78, by siRNA did not affect JEV viral RNA replica-
tion, although it did impair virus assembly or release. In sucrose
gradient, mature JEV viruses that do not cofractionate with
GPR78 displayed a significant decrease in viral infectivity, indi-
cating that JEV acts with GPR78 to promote its infectivity (Wu
et al., 2011). Notably, DENV2 triggers ATF6 signaling in a cell-
type-specific manner. In A549 cells, nuclear-localized ATF6 was
observed (Umareddy et al., 2007); however, no activating events
can be detected in human fibrosarcoma 2fTGH cells, therefore,
GPR78 upregulation may be mediated in an ATF6-independent
fashion (Pena and Harris, 2011). This cell-type-specific regula-
tion of ATF6, also observed in IAV infection, p50ATF6, and its
target gene ERp57/GRP58 expression (Roberson et al., 2012),
has been shown to increase in murine primary tracheal epithe-
lial cells infected with influenza A/PR/8/34, which is known to
be involved in influenza virus HA protein folding (Solda et al.,
2006). Knockdown of ERp57 abrogates viral progeny produc-
tion. However, ATF6 activity is not induced in infected human
tracheobronchial epithelial (HTBE) cells (Hassan et al., 2012).

Although ATF6-mediated transcriptional activation is an
ongoing research field, another role for ATF6 in virus infection
has emerged. We have previously demonstrated that EV71 infec-
tion results in the decline of p90ATF6, while the GRP78 promoter
containing classical ERSE sites responsive to p50ATF6 in EV71-
infected cells was not activated (Jheng et al., 2010). Indeed, two
potential 3C cleavage sites (glutamine–glycine; QG) located at

adjacent amino acids 511–512 and 516–517 near the C terminus
of p90ATF6 were computationally predicted. It would be interest-
ing to investigate the role of viral 3C in the regulation of ATF6, for
its possible contribution in manipulating virus infection.

IRE1 PATHWAY
IRE1 is an ER-localized type I transmembrane protein contain-
ing an ER luminal dimerization domain and cytosolic kinase
and RNase domains (Mori et al., 1993; Sidrauski and Walter,
1997). During ER stress, accumulation of unfolded proteins in
the ER stimulates IRE1 oligomerization and autophosphorylation
(Figure 1). Its endoribonuclease activity initiates an unconven-
tional splicing of the XBP1 mRNA, excising a 26-nt sequence and
shifts the reading frame to produce a functional isoform XBP1(S),
which contains a C-terminal transactivation domain absent from
the unspliced form, XBP1(U). XBP1(S) then translocates to the
nucleus where it induces expression of target genes containing
UPRE or ERSE. These target genes are involved in ERAD, chaper-
one protein production, and ER membrane biosynthesis (Shamu
and Walter, 1996; Friedlander et al., 2000).

Studies of the IRE1 signaling pathway demonstrate its signif-
icant role in virus infection (Figure 4). HCV glycoprotein E2 is
an example of a virus-derived ERAD substrate. HCV infection
activates the IRE1–XBP1–EDEM pathway, where EDEM1 and
EDEM3, but not EDEM2, interact with HCV E2 to accelerate
its degradation. Either knockdown of EDEMs or treating cells
with kifunensine (KIF), a potent inhibitor of ER mannosidase,
interferes with the binding of EDEMs with SEL1L, a component
of ERAD complex, stabilizes E2 expression, and enhances virus
replication and viral particle production. However, there is no
interaction between EDEM proteins and the JEV envelope pro-
tein and abolishing the ERAD pathway by KIF does not affect JEV
production (Saeed et al., 2011). The results emphasize the piv-
otal role of the ERAD pathway in the life cycle of specific viruses.
Interestingly, UPRE reporter activity or ERAD of misfolded null
Hong Kong α-antitrypsin is reduced in cells carrying HCV repli-
cons, which lack structural proteins, even though upstream XBP1
splicing occurs (Tardif et al., 2004). This implies that HCV struc-
tural proteins play a key role in XBP1-mediated UPRE activation,
and this is supported by a related study demonstrating that HCV
E1 and/or E2 activates the XBP1–ERAD pathway (Chan and Egan,
2005). Furthermore, the IRE1 signaling pathway also participates
in viral protein retrotranslocation. Hepatitis E virus (HEV) ORF2
is an N-linked glycoprotein which is cotranslationally translo-
cated into the ER while a significant fraction of it is also observed
in the cytoplasm. Based on the results of tunicamycin and KIF
treatment, it is believed that glycosylation and ERAD are essen-
tial for ORF2 retrotranslocation from the ER to the cytoplasm
(Surjit et al., 2007). However, no ubiquitination of ORF2 can be
observed, and retrotranslocated ORF2 protein was stable in the
cytoplasm when the cells were treated with proteasome inhibitor
MG132, which suggests that ERAD is required for ORF2 access
to the cytoplasm. Microarray analysis reveals that ORF2 over-
expression causes upregulation of Hsp70B, Hsp72, and Hsp40.
Hsp72 is an antiapoptotic heat shock protein that directly inter-
acts with ORF2 (John et al., 2011). It is reported that expression
of Hsp72 enhances XBP1 mRNA splicing and protects cells from
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FIGURE 4 | IRE1 pathway under viral infection. In addition to mediating
Xbp1 mRNA splicing, studies demonstrated that Ire1 activates RIDD to
promote the degradation of mRNAs encoding ER-targeted proteins to
reduce the load of ER client proteins during ER stress. The mammalian
IRE1–TRAF2–JNK pathway, independent of XBP1 splicing, may lead to the
activation of apoptosis after prolonged ER stress. HCV and its structural
proteins E1 and E2 play an important role in the activation of the
IRE1–XBP1–ERAD pathway. Overexpression of ORF2 of HEV can
upregulate antiapoptotic protein Hsp72 to activate XBP1 splicing. However,
further study is required to determine whether HEV infection can activate
XBP1 via Hsp72. DENV2 infection activates CHOP and GADD34 expression
downstream of IRE1–XBP1 signaling. However, apoptosis activation by
JNK, but not CHOP, is essential for DENV2 infection.

ER stress-induced apoptosis by association with IRE1 (Gupta
et al., 2010). Thus, further investigation is needed to examine the
correlations of ORF2, IRE1, and Hsp72 in HEV replication.

Under harsh ER stress, the activation of IRE1–XBP1 can also
lead to the induction and expression of CHOP. DENV2 infection
induces CHOP, and GADD34 expression is a downstream event
of IRE1–XBP1 signaling. Of note is that induction of CHOP does
not lead to apoptosis markers such as decreased expression of
Bcl-2 or proteolytic cleavage of pro-caspase-9, pro-caspase-3, or
PARP, which indicates a role beyond guiding cell death in infected
cells (Pena and Harris, 2011). Indeed, it has been reported that
CHOP exhibits protective effects against radiation-induced apop-
tosis or has a role in autophagy induction (Mayerhofer and
Kodym, 2003; Ke and Chen, 2011). Another ER stress-induced
cell death that relies on the IRE1–TRAF2 pathway is implicated
in JNK activation (see Figure 4). The role of this pathway is
emphasized by DENV2 infection; silencing of IRE1 decreases the
virus titer, but the viral progeny output is not affected by silenc-
ing of XBP1 (Pena and Harris, 2011). However, JNK pathway
inhibitors diminished virus yield significantly, which suggests that
activation of JNK is essential for DENV2 infection (Ceballos-
Olvera et al., 2010). Our previous findings also demonstrated
that EV71 phosphorylates IRE1, but inhibits the expression of
XBP1. The overexpression of XBP1 in cells appeared to inhibit

viral entry, and therefore reduce viral RNA and viral particle for-
mation (Jheng et al., 2012). As previous studies have reported that
picornavirus infections induce JNK activation (Kim et al., 2004;
Peng et al., 2014), further detailed studies of the IRE1-JNK acti-
vation in EV71 infection would extend our understanding of the
contributions of IRE1-JNK in the virus life cycle.

IRE1 has also been linked to the mediation of the selec-
tive degradation of a subset of ER-localized mRNAs in a pro-
cess known as regulated IRE1-dependent degradation (RIDD)
(Hollien and Weissman, 2006). Mutation or removal of the sig-
nal sequences in targeted mRNAs prevents their decay (Kimmig
et al., 2012). However, it has been observed that Drosophila
mRNA Smt3, a homolog of a small ubiquitin-like modifier (aka
SUMO), lacks any ER-targeting sequence, and is a noncanonical
RIDD target, which implies that unknown specific features other
than ER localization are involved in defining the RIDD substrates
(Moore et al., 2013). RIDD has been suggested to play adaptive
roles by reducing protein translocation load, such as decrease of
proinsulin expression in pancreatic beta-cells faced with chronic
high glucose, and protecting liver cells from acetaminophen-
induced hepatotoxicity (Lipson et al., 2008; Hur et al., 2012).
Alternatively, RIDD has also been suggested to play destructive
roles under unmitigated ER stress because continued degrada-
tion of mRNAs encoding secretory cargo proteins and proteins
involved in ER-resident protein folding occurs.

In addition to IRE1–XBP1 activation, JEV also induces activa-
tion of the RIDD cleavage pathway (Bhattacharyya et al., 2014).
The addition of STF083010, a specific inhibitor of IRE1 RNase
activity, to infected cells decreases the Tg-induced Xbp1 splicing
and potential RIDD target transcripts. It also decreases viral pro-
tein expression as well as mature progeny formation, but does not
affect viral RNA synthesis, which indicates that JEV viral RNA is
not a substrate of RIDD, and RIDD activation is beneficial for
viral infectivity.

It is not clear whether other viral infections trigger RIDD.
To extrapolate from the study of HCV, HCV replicons activate
the phosphorylation of IRE1 but impede XBP1 activation (Tardif
et al., 2004). Depletion of IRE1 attenuates replicon translation,
which implies that RIDD may enhance viral protein synthesis.
Thus, the study of HCV replicon may have potential for decipher-
ing the role of RIDD in HCV infection because it could uncouple
XBP1 signaling from IRE1 activation.

AUTOPHAGY
Autophagy is a vesicular process that results in the degrada-
tion of the sequestered component, which can then be recycled
by the cell. In mammalian cells, a complete autophagy includes
the following four steps. (1) Induction. Induction is initiated
by activation of the Unc-51-like kinase 1 (ULK1) complex. The
ULK1 complex contains ULK1, focal adhesion kinase (FAK)-
family-interacting protein of 200 kD (FIP200), Atg13 and Atg101
(Mizushima, 2010). ULK1 complex activity would be, at least,
modulated by mTORC1, Akt, and AMPK (Inoki et al., 2003; Bach
et al., 2011; Egan et al., 2011; Kim et al., 2011). mTORC1 is a ser-
ine/threonine kinase complex, which phosphorylates ULK1 and
Atg13 and also inhibits autophagy. Akt and AMP-activated pro-
tein kinase (AMPK) phosphorylate TSC2 at different residues,
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which results in the GTP hydrolysis of Rheb and indirectly antag-
onizes the mTORC1 signaling pathway. Recently, the combina-
tion of bioinformatic and proteomic approaches has identified
ULK1 as a direct target of AMPK and as involved in autophagy
induction. (2) Vesicle nucleation. The Beclin1–PI3KC3 complex,
generating PI3P, is essential for recruitment of PI3P effectors
including DFCP1, WIPIs upstream of Atg proteins and lipids
recruitment to the PAS, which is required for autophagosome
construction (Proikas-Cezanne et al., 2004; Axe et al., 2008).
Importantly, the activity of the Beclin1–PI3KC3 complex depends
on its subunit composition. Complexes containing Atg14-like
protein (ATG14L or Barkor) or ultraviolet irradiation resistance-
associated gene (UVRAG) activate autophagy (Itakura et al.,
2008); nevertheless, the RUN domain and cysteine-rich domain
containing Beclin 1-interacting protein (Rubicon) act as nega-
tive regulators of autophagy (Matsunaga et al., 2009). (3) Vesicle
expansion and completion. The cytosolic form of LC3 (LC3-I)
is cleaved by the cysteine protease Atg4, followed by conjuga-
tion with phosphatidylethanolamine (PE) assisted by the Atg12–
Atg5–Atg16L complex, which functions as an E3–like enzyme.
LC3-PE leads to PAS expansion, and cytosolic cargos are then
enclosed into double membrane vesicles called autophagosomes
(Geng and Klionsky, 2008). (4) Autophagosome maturation.
An autophagosome matures into an autolysosome by sequen-
tial fusion with endosomes and with lysosomes, the contents of
which are degraded by hydrolases therein. It is reported that
autolysosome formation is related to UVRAG and expression of
lysosomal-associated membrane protein 2 (Lamp-2) (Liang et al.,
2008; Fortunato et al., 2009).

WHY DOES THE RNA VIRUS MODULATE AUTOPHAGY?
Previous studies suggest that autophagy may be an important
antiviral defense mechanism (Talloczy et al., 2006; Orvedahl
et al., 2010); however, the role of autophagy in virus infection
is complicated and may have opposite consequences for the viral
pathogenesis. Many viruses manipulate autophagy for their own
benefit by the following mechanisms.

FORMING THE MEMBRANE-BOUNDED REPLICATION COMPARTMENTS
FOR VIRAL REPLICATION, OR ARRAYING AUTOPHAGIC VESICLES FOR
VIRAL PARTICLE ASSEMBLY OR SHEDDING
The exploitation of autophagy has been identified in many RNA
viruses including PV, CVB3, JEV, and HCV (Jackson et al., 2005;
Wong et al., 2008; Tanida et al., 2009; Ke and Chen, 2011; Li
et al., 2012). Increased amounts of autophagosomes, as well as
colocalization of the autophagy marker protein LC3 and viral
protein, were observed in virus-infected cells. In addition, cells
treated with an autophagy inhibitor, or transfected with siRNA
specifically obstructed autophagic processes, which reduced virus
replication or virus titer. For example, in PV infection, virus yield
was correlated with the induction of autophagy. Treating cells
with siRNA targeting LC3 or Atg12 to block autophagy leads
to reduced virus yield (Jackson et al., 2005). In addition, based
on the topology of a double membrane compartment, diges-
tion of the inner membrane under the autolysosome formation
would allow efficient fusion of the autophagosomal membrane
with the cytoplasm membrane. Thus, an emerging concept is

that autophagy may also involve the nonlytic release of cytoplasm
under autophagosome maturation, namely autophagic exit with-
out lysis (AWOL), which may participate in the release of PV
(Kirkegaard and Jackson, 2005; Taylor et al., 2009).

INCREASED VIRAL INFECTIVITY BY BLOCKING AUTOPHAGIC FLUX
Virus-induced uncompleted autophagy was reported for CVB3-,
rotavirus-, and IVA- infected cells (Gannage et al., 2009; Kemball
et al., 2010; Alirezaei et al., 2012; Crawford et al., 2012). In CVB3-
infected pancreatic acinar cells, an increase in the number of
double-membraned autophagy-like vesicles was observed upon
infection. However, the accumulation of autophagy substrate p62
and the formation of large autophagy-related structures named
megaphagosomes indicate that CVB3 blocks a later stage of the
autophagic pathway (Kemball et al., 2010). Further results high-
light the impact of autophagy on CVB3 RNA replication and
translation (Alirezaei et al., 2012). It was reported that rotavirus
NSP4 viroporin initiates autophagy to transport viral proteins
to sites of virus replication for assembly of mature particles,
which involves an increase of cytoplasmic calcium and subse-
quent activation of the CaMKK-β–AMPK pathway. Rotavirus also
interferes with autophagy maturation; however, the mechanism is
still unknown (Crawford et al., 2012). Accumulated studies reveal
that M2, HA, and NS1 proteins of IAV are involved in the induc-
tion of autophagy, while only M2 has been identified as playing
a critical role in impeding fusion of autophagosomes with lyso-
somes (Gannage et al., 2009; Sun et al., 2012; Zhirnov and Klenk,
2013).

ESCAPING THE HOST IMMUNE RESPONSE
Autophagy-mediated immune responses that benefit virus repli-
cation have been reported in VSV, HCV, DENV, and JEV (Jounai
et al., 2007; Ke and Chen, 2011; Jin et al., 2013). In VSV infec-
tion, the Atg5–Atg12 conjugate targets RIG-I/MDA5–MAVS-
dependent type I IFN production by directly interacting with
the MAVS and RIG-I, and negatively regulates MAVS-mediated
NF-κB and type I IFN promoters, and permits VSV replica-
tion. Furthermore, through an unknown mechanism, HCV- or
DENV-induced complete autophagy negatively regulates type I
IFN production and promotes HCV replication (Ke and Chen,
2011). Recently, research about JEV has shown that in autophagy-
impaired cells, virus infection induces aggregates of MAVS and
activation of IFN regulatory factor 3 (IRF3), markers for activa-
tion of innate immune responses, which suggests that autophagy-
mediated immune responses are required for viral replication (Jin
et al., 2013).

UPR AND AUTOPHAGY
As ER proliferation, which paradoxically commits the cell to cell
death or survival, is observed both in UPR and autophagy, it is
reasonable to propose a possible link between UPR pathways and
the autophagic response. Indeed, many UPR-related transcrip-
tion factors manage Atg expression (Table 1). As demonstrated
previously, yeasts with mutations in the GCN2-signaling path-
way are defective in starvation-induced autophagy. GCN4, which
undertakes GCN2-dependent transcriptional activation, is essen-
tial for autophagy induction (Talloczy et al., 2002). Recently,
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Table 1 | Exploitation of autophagy by modulation of UPR

transcription factors.

Transcription Target protein References

factor

ATF4 LC3, p62/SQSTM1, and
ULK1

Milani et al., 2009; Rouschop
et al., 2010; B’Chir et al., 2013;
Pike et al., 2013

CHOP ATG5, LC3, and p62/
SQSTM1

Rouschop et al., 2010; B’Chir
et al., 2013; Wang et al., 2014

ATF6 DAPK1 Gade et al., 2012

C/EBPβ DAPK1, ATG4B, and
ULK1

Gade et al., 2008; Ma et al.,
2011; Guo et al., 2013

SREBP2 LC3, ATG4B and ATG4D Seo et al., 2011

XBP1 Beclin1 and Bcl2 Gomez et al., 2007; Margariti
et al., 2013

results of multiple genetic models showed that the PERK–eIF2α–
ATF4 pathway affects cMyc-dependent tumorigenesis by evoking
cytoprotective autophagy; while pharmacologic or genetic inhi-
bition of autophagy resulted in enhanced Myc-dependent apop-
tosis (Hart et al., 2012). Thus, UPR inhibition could provide
new targets for the treatment of malignancies, characterized by
cMyc overexpression. In addition, IRE1 also mediates autophagy
in Huntington’s disease under ER stress. Clearance of mutant
huntingtin aggregates through autophagic flux was impaired via
IRE1–TRAF2 signaling, which results in neuronal cytotoxicity
(Lee et al., 2012). Although studies on UPR autophagy mainly
focus on the regulation of eIF2α kinase and IRE1, transcrip-
tional regulation of autophagic genes by ATF6 and SREBP2, a
membrane-bound transcription factor activated through prote-
olytic processing upon ER stress, was noticed recently (Ogata
et al., 2006; Seo et al., 2011; Gade et al., 2012). Death-associated
protein kinase 1 (DAPK1), a positive mediator of IFN-regulated
growth suppressor, is principally regulated by transcription fac-
tor C/EBP-β, one of the genes that increases expression during ER
stress (Chen et al., 2004). DAPK1 promotes autophagy by phos-
phorylating Beclin 1, and therefore dissociating it from autophagy
negative regulator Bcl2. An investigation found that activated
ATF6 could directly interact with C/EBP-β carrying an ERK1/2
target site; this heterodimer then coacts to activate the DAPK1
promoter, which in turn induces autophagy. Additionally, XBP1,
a downstream target of ATF6, is essential for C/EBP-β expression
(Chen et al., 2004). The role of SREBP2 in autophagy was dis-
closed through gene ontology analysis (Seo et al., 2011). Further
study shows that SREBP-2 activates autophagy gene expression,
such as LC3B, ATG4B, and ATG4D, accompanied by increased
LC3 puncta formation, while SREBP-2 deficiency obtains an
opposite result.

In virus infection, HCV is a well-documented model illustrat-
ing UPR autophagy regulation. Induction of UPR and incom-
plete autophagy was observed in cells transfected with HCV
JFH1 RNA. Cells treated with siRNA targeting PERK, IRE1,
and ATF6 showed a suppression of LC3 conversion and a
decrease of HCV RNA replication (Sir et al., 2008). In the
HCV infection system, HCV induces complete autophagy and

Table 2 | Compounds affecting UPR and autophagy.

Inhibitors/Inducers Mode-of-action References

UPR

GRP78/BiP inducer X
(BIX)

GRP78 upregulation Kudo et al., 2008

Tauroursodeoxycholic
acid
(TUDCA)

Reduces UPR Ozcan et al., 2006

Salubrinal Inhibitor of eIF2α

dephosphorylation
Boyce et al., 2005

3,5-dibromosalicy-
laldehyde

Inhibits the RNase activity
of IRE1αs

Volkmann et al., 2011

Sunitinib Inhibits IRE1α

trans-autophosphorylation,
but promotes
oligomerization and
activates the RNase
domain
Inhibitor of PKR

Korennykh et al.,
2009; Jha et al., 2011

STF083010 Inhibits the RNase activity
of IRE1α

Papandreou et al.,
2011

Nelfinavir Induces UPR autophagy Mahoney et al.,
2013b

Sorafenib Induces UPR autophagy Shi et al., 2011

AUTOPHAGY

Rapamycin Induces autophagy Ravikumar et al.,
2002

Chloroquine Inhibits autophagic flux Yoon et al., 2010

Bafilomycin A1 Inhibits autophagic flux Van Deurs et al.,
1996

Nelfinavir Induces UPR autophagy Mahoney et al.,
2013b

Sorafenib Induces UPR autophagy Shi et al., 2011

Evodiamine Impairs autophagy Dai et al., 2012

23-(S)-2-Amino-3-
phenylpropanoyl-
silybin

Impairs autophagy Dai et al., 2013

CHOP plays a leading role in UPR autophagy signaling (Ke
and Chen, 2011). Further efforts to decipher how HCV activates
autophagy revealed that PERK–eIF2α–ATF4 and ATF6 pathways
activated CHOP expression in HCV core protein-transfected
cells where the core protein had not been demonstrated to
induce ER stress previously. Moreover, HCV core protein may
promote ATG12 and LC3 protein expression through transcrip-
tional control by ATF4 and CHOP, respectively (Wang et al.,
2014).

Recent studies suggest that completed autophagy induced
by CHIKV infection is mediated by the independent induc-
tion of the endoplasmic reticulum and oxidative stress pathways.
Knockdown of IRE1 or treated cells with the ROS inhibitor N-
acetyl-l-cysteine inhibits formation of autophagosomes as well
as the conversion of LC3-I to LC3-II. Moreover, an additive
inhibitory effect on autophagosome formation was observed
in infected cells silenced for IRE1mRNA and treated with
N-acetyl-l-cysteine (Joubert et al., 2012).
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TARGETING UPR OR AUTOPHAGY AS POTENTIAL THERAPY
IN VIRUS INFECTION
Because UPR and autophagy play a role in viral pathogenesis,
the regulation of UPR and autophagy may be an important strat-
egy for the future development of new therapeutic approaches to
combat viruses. For example, we have demonstrated that overex-
pression of GRP78 to relieve ER stress decreases EV71 replication
(Jheng et al., 2010). Thus, agents such as GRP78/BiP inducer X
(BIX) (Kudo et al., 2008) or chemical chaperone, tauroursodeoxy-
cholic acid (TUDCA) (Ozcan et al., 2006), will be potentially
useful in the treatment of EV71 (Table 2).

There are other established strategies to inhibit viruses by
modulating UPR target eIF2α phosphorylation or IRE1, e.g., salu-
brinal is a small molecule that prevents dephosphorylation of
eIF2α and 3,5-dibromosalicylaldehyde, an IRE1 inhibitor, may
cause restriction of IVA (Boyce et al., 2005; Volkmann et al.,
2011).

There is emerging evidence that pharmacological agents that
directly activate or deactivate autophagy influence virus replica-
tion. Evodiamine and 3-(S)-2-amino-3-phenylpropanoyl-silybin
have been identified as anti-IVA agents aimed at multiple
processes of autophagy (Dai et al., 2012, 2013). Additionally,
chloroquine-suppressed HCV replication has been proved (Mizui
et al., 2010).

Because UPR and autophagy are closely related, combination
treatment may show a synergistic effect of their application, which
was demonstrated in cancer research. The combination of nelfi-
navir (which induces UPR autophagy) and chloroquine enhances
cytotoxicity against cancer cells (Mahoney et al., 2013b); there-
fore, the use of combination treatment with improved efficacy
and decreased toxicity represents a promising strategy to fight
viruses.

PERSPECTIVES
Although UPR autophagy has been discussed in many research
areas, its integrated response to virus infection is only now begin-
ning to emerge. It needs to be experimentally proven whether
virus-induced autophagy is associated with UPR. Furthermore,
given what we know about the various means that viruses
use to modulate UPR or autophagy to advantage their own
virulence, the development of specific inducers or inhibitors
for these molecules is one of the major challenges in this
field.
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