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Many bacteria produce cytolytic toxins that target host cells or other competing microbes.
It is well known that environmental factors control toxin expression, however, recent work
suggests that some bacteria manipulate the fold of these protein toxins to control their
function. The β-sheet rich amyloid fold is a highly stable ordered aggregate that many
toxins form in response to specific environmental conditions. When in the amyloid state,
toxins become inert, losing the cytolytic activity they display in the soluble form. Emerging
evidence suggest that some amyloids function as toxin storage systems until they are
again needed, while other bacteria utilize amyloids as a structural matrix component
of biofilms. This amyloid matrix component facilitates resistance to biofilm disruptive
challenges.The bacterial amyloids discussed in this review reveal an elegant system where
changes in protein fold and solubility dictate the function of proteins in response to the
environment.
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AMYLOIDS
The secondary structure of the amyloid fold is one that is seen
throughout life. Amyloids have long been studied because of
their importance in human neurodegenerative diseases such as
Alzheimer’s and Huntington’s diseases. There have been many
reviews published on disease associated amyloids and they will
not be discussed in this review (Chiti and Dobson, 2006;
Eisenberg and Jucker, 2012). Amyloids were initially described in
the 1850s as deposits in human tissues that stained with iodine,
which was a characteristic of starch. A few years later though, it
was shown that there were no carbohydrates in amyloid deposits
but they consisted of proteins. Since then, amyloids have been
found to be produced in many organisms and the biophysi-
cal and chemical properties of amyloids have been significantly
investigated.

Amyloids are composed of fibrous oligomers of proteins that
are characterized by a cross β-sheet structure running perpendic-
ular to the fiber axis. The core of the amyloid fiber is made of
protein backbones that form many hydrogen bonds between them
leading to strong molecular forces. Because the strength of the
amyloid is mainly independent of the side chains, proteins that
can fold into amyloids do not have any sequence motifs, making
it difficult to predict amyloid forming proteins. Even though they
do not contain sequence homology, amyloids can be identified
using biophysical properties including SDS-insolubility, protease
resistance, and binding to the amyloid specific dyes Thioflavin T
and Congo red (CR).

Amyloids have long been thought to be a result of protein
misfolding, but over the past decade, this view has evolved to
the understanding that some organisms utilize the amyloid fold
for various functions aptly named Functional Amyloids (Table 1;
Chapman et al., 2002). The most well studied functional amyloids

are those made by bacteria that help form microbial communi-
ties called biofilms. These biofilms contain bacterial cells as well
as matrix containing carbohydrates and proteins that hold them
together affixed to a surface. Increasingly, it is being found that
bacteria utilize the strength of the amyloid fold to make the strong
biofilm matrix that resists disruption from stressors. As will be
discuss below, many bacteria have developed toxin systems that
are able to attack niche competitors or the host that can be abro-
gated by sequestering these toxins as amyloids where some have a
second function in biofilm stability.

AMYLOIDS AS STRUCTURAL MOLECULES
CURLI
Curli are the most well studied bacterial functional amyloid.
Through a dedicated pathway, curli form amyloids on the sur-
face of Enterobacteria, such as Escherichia coli, and Salmonella,
that aid bacteria in attaching to surfaces as well as defending
the population from stress (Saldaña et al., 2009; Goulter-Thorsen
et al., 2011; Zhou et al., 2012). Curli are made through a highly
controlled master regulator CsgD, which induces the transcrip-
tion of other curli specific genes (csg) to produce these amyloids
(Figure 1; Brombacher et al., 2003). The major functional subunit
of curli, CsgA, is secreted from the cell in a soluble form, leav-
ing the outer-membrane through the pore formed by a hexamer
of CsgG (Figure 1; Chapman et al., 2002; Robinson et al., 2006;
Epstein et al., 2009). The minor fiber subunit CsgB is linked with
the membrane and facilitates the nucleation of CsgA into amy-
loid fibers (Figure 1; Bian and Normark, 1997; Hammer et al.,
2007). Proper assembly, localization, and regulation of curli fibers
are modulated by CsgC, CsgE, and CsgF (Gibson et al., 2007;
Nenninger et al., 2009, 2011; Evans and Chapman, 2014). Not
only are the curli genes under strict genetic regulation, but it
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Table 1 | Bacterial functional amyloids.

Organism Protein Functions Reference

Escherichia coli, other

Enterobacteriaceae

CsgA (Curli) Biofilm matrix protein, surface attachment Chapman et al. (2002)

Pseudomonads FapC Biofilm matrix protein Dueholm et al. (2010, 2013)

Mycobacterium

tuberculosis

MTP Binding to human proteins and biofilm formation Alteri et al. (2007), Ramsugit et al. (2013)

Streptococcus mutans Adhesin P1

(antigen I/II, PAc)

Role in dental carries Oli et al. (2012)

Streptomyces coelicolor Chaplin Hydrophobic coat for aerial hyphae de Jong et al. (2009), Claessen et al. (2003)

Staphylococcus aureus

and other Staphylococci

Phenol soluble

modulins (PSMs)

Soluble virulence factor, biofilm dispersal/amyloid

stabilizes biofilms

Wang et al. (2007), Schwartz et al. (2012)

Klebsiella pnumoniae Microcin E492 Bacteriocin that is inactivated by amyloidogenesis Biéler et al. (2005)

Bacillus subtilis TasA Soluble toxin/amyloid necessary for biofilm

architecture

Stover and Driks (1999c), Romero et al. (2010)

Listeria monocytogenes Listeriolysin O (LLO) Forms pores in phagolysosome/inactive by pH

shift in cytosol

Bavdek et al. (2012)

Xanthamonas axonopodis HpaG (Harpins) Triggers hypersensitive response in plants Oh et al. (2007)

has been shown that cellular chaperones can modulate the fold
of CsgA to prevent improper folding in the cells (Evans et al.,
2011).

Curli fibers are important for E. coli surface colonization and
biofilm formation (Chapman et al., 2002; Saldaña et al., 2009;
Crémet et al., 2013; DePas et al., 2013; Giaouris et al., 2013). The
expression of curli is a tightly regulated process in regards to the
environment around the bacteria as well as within a biofilms com-
munity. Recently, it has been shown that there is spatial regulation
within an E. coli rugose biofilms where curli producing cells are
localized to the exterior of the biofilms, whereas cells on the inte-
rior of the community were not producing curli fibers (DePas
et al., 2013; Serra et al., 2013). This bimodal growth allows for a
protective shell of matrix-encased cells that contain a population
of cells that ready to disperse and disseminate when conditions
become favorable.

OTHER FUNCTIONAL AMYLOIDS PRODUCED BY BACTERIA
Emerging evidence suggest that amyloids likely play a structural
role in some naturally occurring environmental biofilms. Recent
work utilizing conformational antibodies that specifically bind to
the amyloid fold, and the amyloid-specific dye thioflavin-T, pro-
vide evidence of amyloids being present in biofilm samples for
fresh water lakes, drinking water, and activated sludge from a
water treatment facility (Larsen et al., 2007). The bacteria present
in these biofilms include representatives from Actinobacteria,
Bacteroidetes, Chloroflexi, and Proteobacteria. Further studies
revealed one member of this community, Pseudomonas fluorescens,
was able to produce an amyloid found in the biofilm matrix
(Dueholm et al., 2010). Proteomic analysis revealed the major sub-
unit of the amyloid to consist of a protein named FapC (Dueholm
et al., 2010). The genes necessary for formation of this amyloid
were traced to the fapA-F operon, which is conserved in many

Pseudomonas species. FapC contains repeat motifs and conserved
Asn/Gln consensus residues similar to curli and the prion and
spider silk amyloid proteins (Dueholm et al., 2010). Further stud-
ies have demonstrated that other Pseudomonads also form Fap
fibrils that result in biofilm formation (Dueholm et al., 2013).
These finding suggest functional amyloids are likely abundant
in naturally occurring biofilms consisting of diverse microbial
members.

The pathogens Mycobacterium tuberculosis and Streptococcus
mutans have also been found to produce functional amyloids. In
the case of M. tuberculosis, thin, aggregative flexible pili, named
MTP, were observed during human infection (Alteri et al., 2007).
These pili possess biophysical and morphological characteristics
of amyloids and bind to the human extracellular matrix compo-
nent, laminin. Proteomic analysis suggests the structural subunit
of MTP is a proteolytically processed version of a 10.5 kDa protein
encoded by the open reading frame Rv3312A (mtp) in M. tuber-
culosis strain H37Rv (Alteri et al., 2007). In addition, serum from
tuberculosis patients contained antibodies that specifically recog-
nized MTP,suggesting a role for MTP during infection (Alteri et al.,
2007). MTP was also found to be important in the formation of
biofilms by M. tuberculosis (Ramsugit et al., 2013). S. mutans is a
member of the oral microbiome and is linked to the disease dental
caries because of it’s ability to produce acid from the utilization
of dietary sugars. Recent work suggests that the S. mutans adhesin
P1 (antigen I/II, PAc) is an amyloid-forming protein (Oli et al.,
2012). During biofilm growth S. mutans displayed amyloid fibers
as evidenced by transmission electron microscopy, bound the amy-
loidophilic dyes CR and Thioflavin T (ThT), and possessed green
birefringent properties of CR-stained protein aggregates when
viewed under cross-polarized light (Oli et al., 2012). Importantly,
human dental plaques contain microbial amyloids, suggesting a
role for this protein fold in dental carries (Oli et al., 2012).
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FIGURE 1 | Curli biogenesis model. The curli system in Escherichia coli
is a highly controlled process that only expressed the curli amyloid under
conditions that promote biofilm formation. The system is transcriptionally
controlled by the master regulator CsgD which increases the transcription of
the major and minor subunits CsgA and CsgB. All Csg proteins other than

CsgD are secreted through the Sec secretion pathway into the periplasm
where CsgA, CsgB, and CsgF are then transclocated outside of the cell
through the CsgG pore complex. CsgE and CsgF aid in proper export and
localization of the structural components while CsgC has a less well
understood role in the periplasm.

Chaplins are a class of hydrophobic proteins that sponta-
neously self-assemble into amyloid fibrils (Claessen et al., 2003).
The spore-forming filamentous bacterium S. coelicolor uses chap-
lin amyloids to complete its lifecycle progression (Claessen et al.,
2003). Under starvation conditions S. coelicolor produces aerial
hyphae that extend upward out of the soil. Spores are pro-
duced in these hyphae and they are release once the soil sur-
face has been breached. Vegetative S. coelicolor cell surfaces are
hydrophilic, so to break the soil/air interface, the cells must first
develop a hydrophobic coat. To this end, S. coelicolor secretes
monomeric chaplin proteins (encoded by chpA-H ; Claessen et al.,
2003; Elliot et al., 2003). These hydrophobic proteins have been
shown to form β-sheet rich amyloid fibers on contact with
air, therefore chaplin amyloids are essential for S. coelicolor to
complete its lifecycle from vegetative cells to spore containing
hyphae.

BIFUNCTIONAL PROTEINS
PHENOL SOLUBLE MODULINS
Phenol soluble modulins (PSMs) are a family of proteins that
are found in Staphylococci, most notably the significant human

pathogen Staphylococcus aureus and the human commensal
Staphylococcus epidermidis (Mehlin et al., 1999; Wang et al.,
2007). S. aureus has nine characterized PSM peptides that are
all regulated by the accessory gene regulator (AGR) quorum sens-
ing system (Janzon et al., 1989; Wang et al., 2007). There are four
PSMα, two PSMβ, and δ-toxin that are present in three separate
regions of the chromosome. The newest member to this family
is the N-terminal signal sequence of the AgrD molecule N-AgrD
(Schwartz et al., 2014). This sequence is critical for localization
of the propeptide to the membrane and once cleaved from the
rest of the AgrD molecule has many structural and functional
similarities to the other PSMs (Schwartz et al., 2014). In addi-
tion, some stains of S. aureus contain a pathogenicity island that
harbors an ninth PSM called PSM-mec (Queck et al., 2009). The
PSMs are secreted from the cells by a dedicated, essential secretion
system called phenol-soluble modulin transporter (PMT; Chat-
terjee et al., 2013). These PSM peptides are amphipathic α-helices,
meaning that one face of the helix in hydrophobic while the other
is hydrophilic (Wang et al., 2007). This shared property is thought
to allow for them to form pores in the membranes of competing
microbes and host cells to invade tissues and evade immune cells.
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FIGURE 2 | Phenol soluble modulins as bifunctional proteins.

(A) Staphylococcus aureus produces Phenol soluble modulins (PSM)
proteins that have been found to have many diverse functions. As soluble
molecules, they are able to stimulate chemotaxis of neutrophils as well
as aid S. aureus escape from the phagolysosome upon phagocytosis.
Additionally, soluble PSMs can disperse biofilms as well as be
proteolytically processed into PSM derivatives of phenol-soluble modulins

(dPSMs) that can kill niche competing bacteria. Once polymerized into
amyloid fibers, PSMs provide functional support to the biofilm community
that prevents degradation by biofilm dispersing enzymes. The interactions
between PSM fibers and immune cells have yet to be characterized.
(B) Transmission electron microscopy of a S. aureus biofilm that is
producing PSM amyloids fibers. (C) S. aureus biofilm cells under conditions
where amyloid fibers are not detected.

Phenol soluble modulins have been shown to be critical deter-
minants of S. aureus to cause skin abscesses and wounds in murine
models as well as aiding in the survival of S. aureus in murine bac-
teremia models (Wang et al., 2007). PSMs stimulate neutrophil
chemotaxis through the human formyl peptide receptor 2 (FPR2),
at nanomolar concentrations, independent of the formylation
state of the peptides (Figure 2; Kretschmer et al., 2010). Once the
neutrophils are in close proximity, PSMs are able to infiltrate cells
and cause cell death (Figure 2; Wang et al., 2007). Recently though,
the field has shifted toward the hypothesis that in the host, PSMs
may be important in virulence once S. aureus is phagocytosed by

neutrophils (Surewaard et al., 2012). This hypothesis is supported
by data demonstrating the serum lipoproteins are able to bind
to and inactivate PSMs, meaning that they would be unable to
function in the presence of serum in the host (Surewaard et al.,
2012). Secondly, once phagocytosed by neutrophils, S. aureus
cells highly upregulate the production of PSM peptides which aid
in escaping from the phagolysosome (Figure 2; Surewaard et al.,
2012).

Phenol soluble modulins are not only reported to be impor-
tant for S. aureus pathogenesis and virulence against the host.
PSMs have also been shown to be antimicrobial against potential
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competitors. PSMs were first determined to have antimicrobial
effects from S. epidermidis (Cogen et al., 2010). PSMs share struc-
tural similarity to mammalian antimicrobial peptides such as
LL-37, thus it was tested to determine if S. epidermidis PSMs
were able to kill mammalian pathogens (Cogen et al., 2010).
Two PSMs from S. epidermidis were found to have antimicro-
bial effects against S. aureus as well as group A Streptococcus
(GAS) and worked in conjunction with LL-37 to have synergy
(Cogen et al., 2010). Focus then turned to determine if and how
S. aureus PSMs may act against niche competing bacteria. It was
found that full length PSM peptides possessed little antimicro-
bial activity but derivatives of PSMs (dPSMs), PSMs that have
been proteolytically processed to be missing the first few amino
acids, have strong antimicrobial properties against S. pyrogenes,
S. epidermidis, and GAS (Figure 2; Joo et al., 2011; Gonzalez
et al., 2012). Furthermore, when a colony of S. aureus is grown
in close proximity to S. epidermidis or GAS, dPSMs are localized
to the zone of inhibition of the competing bacteria (Gonzalez et al.,
2012).

Along with their role as toxins, the biophysical properties of
PSMs give them several unique properties in modulating S. aureus
communities. First these are the ability of S. aureus PSMα and
PSMβ to facilitate dissemination and spreading of a colony over
soft agar plates (Tsompanidou et al., 2011). This suggests that
some PSMs are able to act with surfactant-like properties lowering
hydropathy and allowing for S. aureus to spread (Tsompanidou
et al., 2013). Additionally, PSMs have been shown to be important
for the formation of biofilms. The PSMs are important biosurfac-
tants that aid in the characteristic waves of dissemination of parts
of the biofilms to colonize other areas (Figure 2; Periasamy et al.,
2012).

Along with these properties attributed to the soluble PSM
peptides, they are able to form amyloid fibers which stabilize S.
aureus biofilms (Schwartz et al., 2012). This switch changes the
soluble α-helical peptides into β-sheet rich protein aggregates
(Schwartz et al., 2012). This aggregation, like other amyloids, is
through a self-templating mechanism that facilitates the trans-
formation of other nearby proteins to adopt this amyloid fold.
The PSMs formed amyloid fibers in biofilms that were grown
in a non-standard rich media containing peptone, glucose, and
NaCl. These biofilms were completely resistant to known biofilm
dispersing enzymes Proteinase K, DNase, and Dispersin B, sug-
gesting that the PSM amyloids are able to structurally stabilize the
biofilm against enzymatic targeting of the previously characterized
matrix components (Figure 2; Schwartz et al., 2012). Importantly,
PSMs were demonstrated to have bifunctional abilities to either
strengthen biofilms or disperse them dependent on their sec-
ondary structure (Figure 2). If monomeric PSMs were added to an
established biofilm they exhibits surfactant like properties, dispers-
ing the biofilms in a concentration dependent manner, whereas
PSM fiber addition does not disperse biofilms (Schwartz et al.,
2012).

Further studies are needed to investigate the flexibility of the
PSM peptides to switch from soluble peptides to amyloid fibers and
if this change is irreversible or only temporary. Interestingly, where
PSMα and PSMβ peptides were shown to be essential for S. aureus
colony spreading, it has been shown that colony spreading can be

inhibited by δ-toxin (Omae et al., 2012). This may suggest a role
in amyloid nucleation by δ-toxin on the other PSMs that inhibit
their ability to act as surfactants. It is tempting to speculate that
these fibers may be reservoirs of toxins that S. aureus can utilize to
both defend itself while also causing the population to disseminate
and escape. It would also be interesting to see if the aggregation
of these peptides into amyloids fibers is able to abrogate neu-
trophil chemotaxis thus acting as a way to hide from the immune
system when forming biofilms in the host. Much more work is
needed to fully understand how S. aureus and other Staphylococ-
cal species utilize the fold of these PSM peptides to modulate their
function.

MICROCIN E492
Microcin E492 (MccE492) is part of a large family of bacteri-
ocins that are antimicrobials secreted by bacteria to kill niche
competitors. In general, bacteriocins are pore-forming proteins
that kill competitor microbes by forming pores in their mem-
branes, decreasing membrane potential (de Lorenzo and Pugsley,
1985). MccE492 is produced by Klebsiella pnumoniae that is
able to target many Enterobacteria species such as E. coli, and
Salmonella (de Lorenzo and Pugsley, 1985; Destoumieux-Garzón
et al., 2003). MccE492 is found as both an unmodified pep-
tide as well as a posttranslationally modified molecule with a
catechol-type siderophore molecule (Thomas et al., 2004). This
post translational modification allows for microcin to be recog-
nized by siderophore catecholate receptors of target organisms
that cause an uptake of the mature MccE492 molecule into the
periplasm (Destoumieux-Garzón et al., 2003). The exact mecha-
nism of cell death is unknown due to the fact that there needs
to be much more MccE492 present for antimicrobial activity
compared to the amount needed for membrane permeabilization
(Destoumieux-Garzón et al., 2003).

Microcin E492 is unique to known microcins in that it is pro-
duced through exponential and stationary phase, whereas other
microcins are only produced in stationary phase. Interestingly,
MccE492 loses its antimicrobial activity when the population
enters stationary phase even though the protein is still present
at high levels (Corsini et al., 2002). This observation led to the
discovery that in stationary phase, MccE492 aggregates to form
amyloid fibers (Biéler et al., 2005). Aggregation into an amyloid
abolishes the toxic effects of this peptide (Biéler et al., 2005). The
aggregation of the peptide is modulated by many environmental
factors as well as the state of posttranslational modification of the
peptides.

MccE492 is produced in both the unmodified and modified
forms in culture. The modified, antimicrobial MccE492 is the
predominant form while the bacteria are growing in exponential
phase of the culture (Marcoleta et al., 2013). When the bacteria
begin to enter stationary phase, they decrease the production
of the modified form making the unmodified MccE492 more
prevalent in the population (Marcoleta et al., 2013). Unmodified
MccE492 polymerizes faster than the modified peptide in form-
ing amyloid fibers leading them to hypothesis that the bacteria
may begin to produce more unmodified peptide in stationary
phase is to begin to detoxify the environment by sequestering
these peptides in inert amyloids (Marcoleta et al., 2013). Even
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though the unmodified form is more efficient in polymerizing,
the modified MccE492 is found in fibers with the unmodified form
(Marcoleta et al., 2013). Moreover, polymerization of the modified
MccE492 is accelerated in the presence of unmodified seeds, small
amyloids that can nucleate amyloid elongation (Marcoleta et al.,
2013).

Apart from the influence of posttranslational modification on
MccE492 polymerization, the environment has a profound effect
of the rate of polymerization and can even cause disassembly of
MccE492 amyloids (Shahnawaz and Soto, 2012). Basic pH, low
ionic strength, and dilution of the fibers all led to fiber disassem-
bly in two hours (Shahnawaz and Soto, 2012). These disassembled
fibers regained their antimicrobial activity that was absent while
in amyloid fibers (Shahnawaz and Soto, 2012). Even more striking
was the ability of these disassembled toxins to reform amyloids
when the environment was again changed (Shahnawaz and Soto,
2012). These data demonstrate that in the case of MccE492, there
are many factors that influence the toxicity of the peptides sug-
gesting that the Klebsiella pneumonia has evolved a mechanism of
efficiently modulating the toxicity of MccE942. This data also leads
to the exciting hypothesis that other amyloids may have conditions
that lead to the disassembly of the amyloid fiber.

TasA
TasA was originally described as a protein in Bacillus subtilis that
was involved in sporulation but was later found to be expressed
in stationary phase cells (Stover and Driks, 1999b,c). It has been
demonstrated to have widespread antimicrobial activities against
both plant and animal pathogens and commensal bacteria (Stover
and Driks, 1999c). Recently though, TasA has been shown to pro-
duce amyloid fibers in B. subtilis biofilms that contributes heavily
to the formation of complex community architecture similar to
curli in E. coli (Romero et al., 2010). TasA is part of an operon
that also encodes for TapA, the minor amyloid subunit and fiber
anchor, and SipW, the signal peptidase that processes TapA and
TasA (Stover and Driks, 1999a,c). It has been proposed that the
antimicrobial effects of TasA may be due to the formation of
toxic oligomers that many amyloidogenic proteins generate, but to
our knowledge, this has not yet been investigated (Romero et al.,
2010).

LISTERIOLYSIN O
Listeriolysin O (LLO) of Listeria monocytogenes is a cholesterol-
dependent cytolysin whose activity is dependent on pH. LLO
formed pores in the membrane of phagolysosome allowing for
L. monocytogenes to escape and carry out its replicative phase in
the host cell cytosol (Portnoy et al., 1988; Cossart et al., 1989). The
pH dependent activity of LLO was shown to be due to an irre-
versible structural change in the protein that lead to a decreased
ability in hemolytic activity (Schuerch et al., 2005). Later, it was
appreciated that this structural change was actually the result of
LLO forming an amyloid (Bavdek et al., 2012). This pH change of
the protein into an amyloid suggests that this proteins has evolved
to form pores while the bacteria is trapped in a phagolysosome,
but once it escapes into the cytosol, the higher pH inactivates
the proteins by triggering amyloidogenesis (Bavdek et al., 2012).
This amyloidogenesis may prevent the LLO toxin from lysing

the infected cell while L. monocytogenes replicates in the host
cell. It is unknown if LLO amyloids demonstrate any activity
intracellularly.

HARPINS
Harpins are a class of proteins that are produced by gram-negative
plant pathogens. They are characterized by being glycine rich,
heat stable proteins that are secreted by a type III secretion sys-
tem that can trigger a hypersensitive response (HR) in plants and
are predicted to have α-helical regions (Wei et al., 1992). Harpins
trigger this HR when they are present in the intercellular space.
The plant cells detect these proteins and respond using the early
defense response through an apoptosis-like cell death. Pathogens
lacking harpins, such as HpaG of Xanthomonas axonopodis, have
decreased virulence (Kim et al., 2003, 2004). The mechanism
by which harpins trigger HR in plants in not fully understood,
but there is some data supporting harpins interacting with and
disrupting cell membranes leading to depolarization (Lee et al.,
2001).

In 2007, a harpin from Xanthamonas, HpaG, was characterized
biochemically (Oh et al., 2007). This group found that under con-
ditions that mimic plant apoplasts, HpaG formed amyloid fibers
(Oh et al., 2007). A mutant of the proteins (L50P) that did not trig-
ger HR in plants and was also unable to form amyloid fibers (Oh
et al., 2007). From this, the authors suggest that the transition to
amyloid fibers is an important step in triggering HR. Furthermore,
harpins from other plant pathogens, Ercinia amylovora, and Pseu-
domonas syringae also formed amyloid fibers in plant apoplast-like
conditions (Oh et al., 2007). More detailed studies on harpins are
needed to determine exactly what properties can be attributed to
soluble and amyloid forms of these proteins.

AMYLOID INHIBITORS
An exciting field is emerging that is trying to speed up or slow
down the formation of amyloid fibers using small molecules. The
idea is that for many amyloidogenic proteins, the toxicity is due to
the formation of intermediate oligomers that can disrupt mem-
branes. By accelerating the polymerization of amyloid subunits,
we may be able to bypass the toxic, degenerative affect of amyloids
slowing the progression of neurodegenerative disease. Along sim-
ilar lines, since many bacterial amyloids have been shown to aid in
adherence to surfaces, if we use small molecules to interfere with
the polymerization, bacteria may not be able to anchor themselves
to the host in infections leading to faster clearance of pathogens.
Conversely, in cases like the PSMs of S. aureus, since the solu-
ble form is a toxin that is able to disrupt the immune response,
by causing polymerization of the monomers could prevent their
toxic function to cells allowing the immune system to clear the
infection.

Curlicides and pilicides are ring-fused 2-pyridone molecules
that are designed to look like peptide backbones. They have
been designed to mimic a proteins backbone and interact with
proteins that form amyloids by either disrupting their ability to
polymerize, or nucleating and accelerating the amyloid matura-
tion (Andersson et al., 2013). They have so far been characterized
with their interaction with E. coli curli and type 1 pili (Andersson
et al., 2013). These molecules are not only able to influence the
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in vitro polymerization of CsgA, but they are able to affect the
biogenesis of curli and pili in E. coli biofilms (Andersson et al.,
2013). Additionally, uropathogenic E. coli treated with curlicides
were attenuated in a murine model of a urinary tract infection
(Cegelski et al., 2009). Other groups have taken the approach of
designing small, non-natural peptides that can disrupt amyloid
formation (Sievers et al., 2011). This has been shown to be suc-
cessful in vitro with disease associated amyloids (Sievers et al.,
2011). Recently, TasA has been proposed to be model amyloid
for screening molecules with widespread activity against amyloids
necessary for biofilm formation (Romero et al., 2013). Ongoing
research is increasing the efficacy of these molecules as well as
characterizing their ability to modulate the biogenesis of other
amyloids.

FUNCTIONAL AMYLOIDS IN OTHER KINGDOMS OF LIFE
Eukaryotic amyloids have been the subject of many recent reviews
(Liebman and Chernoff, 2012; Watt et al., 2013; Wickner et al.,
2013). Importantly, functional amyloids are not exclusive to bac-
teria. They have been found to be important in diverse eukaryotes
from yeast to humans. It has recently become appreciated that
humans have several functional amyloids. The protein Pmel17,
a protein made in melanosomes for mammalian pigmentation,
forms amyloids fibers (Fowler et al., 2005). The production of
this amyloids is highly regulated with cells utilizing proteolytic
processing to mature the proteins into a form that can form amy-
loids (Berson et al., 2001; Kummer et al., 2009). These processing
steps prevent the proteins from forming amyloids in other cellu-
lar compartments preventing the toxicity that is associated with
disease-associated amyloids. Additionally, it has been found that
peptide hormones that are stored in the secretory granules of the
mammalian pituitary form amyloids (Maji et al., 2009). It was
found that in vitro, 31 of 42 studied hormones were able to form
amyloids fibers (Maji et al., 2009). Mouse pituitary’s also contained
amyloid fibers using various approaches to identify amyloids (Maji
et al., 2009). It is thought that these peptide hormones are stored
in secretary granules as amyloids until they are needed. The cells
can then secrete the granules and dilution of the amyloids causes
disassociation and activation of the peptide hormones (Maji et al.,
2009).

Many yeast form prions, self-propagating amyloids that are her-
itable elements. This method of non-mendelian inheritance was
first proposed for [URE3] (Wickner, 1994). It was shown that the
cytoplasmically inherited [URE3] element has the opposite effect
on ureidosuccinate metabolism as the Ure2 protein and that cells
cured of [URE3] were able to regain the element when Ure2 is
overexpressed (Aigle and Lacroute, 1975; Wickner, 1994). This
lead Wickner to the hypothesis that cytoplasmically inherited ele-
ments in yeast were prions (Wickner, 1994). Since then, several
yeast proteins have been shown to form prions that, in most cases,
abrogate the function of proteins.

CONCLUDING REMARKS
It is becoming ever more appreciated that the amyloid fold is
not just a product of protein misfolding, but it is a ubiquitously
used protein fold throughout the kingdoms of life. Amyloids pro-
vide structure or control availability of proteins such as toxins

or signaling molecules. Even more exciting is the discovery that
some of these proteins have been found to have different functions
when they are in their soluble or insoluble forms. The production
of functional amyloids is a highly controlled and regulated pro-
cess that is controlled on several levels including transcriptional,
translational, and posttranslational. The difficulty associated with
breaking up these proteins is the property that has made them
so valuable for many organisms. In the case of many bacteria,
these amyloids provide a structural component that keep the
community protected against mechanical and enzymatic disrup-
tion (Schwartz et al., 2012). In others, they are used as reservoirs
of toxins that are ready to become active once the environment
changes (Shahnawaz and Soto, 2012). This field is only begin-
ning to look at the effect that these functional amyloids play in
the dynamic relationships between bacterial species as well as how
these proteins may be involved in bacterial interactions with the
host at a commensal or pathogenic level. It will be exciting to
see where this field of bifunctional bacterial proteins goes as well
as targeting these proteins to disperse biofilms or to sequester
toxins.
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