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Taxonomic characterization of environmental microbial communities via high-throughput
DNA sequencing has revealed that patterns in microbial biogeography affect community
structure. However, shifts in functional diversity related to variation in taxonomic
composition are poorly understood. To overcome limitations due to the prohibitive
cost of high-depth metagenomic sequencing, tools to infer functional diversity based
on phylogenetic distributions of functional traits have been developed. In this study
we characterized functional microbial diversity at 11 sites along the Mississippi River
in Minnesota using both metagenomic sequencing and functional-inference-based
(PICRUSt) approaches. This allowed us to determine how distance and variation in land
cover throughout the river influenced the distribution of functional traits, as well as
to validate PICRUSt inferences. The distribution and abundance of functional traits, by
metagenomic analysis, were similar among sites, with a median standard deviation
of 0.0002% among tier 3 functions in KEGG. Overall inferred functional variation was
significantly different (P ≤ 0.035) between two water basins surrounded by agricultural
vs. developed land cover, and abundances of bacterial orders that correlated with
functional traits by metagenomic analysis were greater where abundances of the trait
were inferred to be higher. PICRUSt inferences were significantly correlated (r = 0.147,
P = 1 30.80 × 10− ) with metagenomic annotations. Discrepancies between metagenomic
and PICRUSt taxonomic-functional relationships, however, suggested potential functional
redundancy among abundant and rare taxa that impeded the ability to accurately assess
unique functional traits among rare taxa at this sequencing depth. Results of this study
suggest that a suite of “core functional traits” is conserved throughout the river and
distributions of functional traits, rather than specific taxa, may shift in response to
environmental heterogeneity.
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INTRODUCTION
Over the last 30 years, sequencing of the 16S rRNA gene has
allowed for expansive characterization of microbial biodiversity
from a variety of hosts and habitats (Olsen et al., 1986). Early
reviews of available 16S rDNA datasets, generated primarily from
studies employing random clone libraries, revealed that several
major bacterial phyla, including the α-, β-, and γ -Proteobacteria,
Actinobacteria, Bacteroidetes, and Cyanobacteria, comprised ubiq-
uitous freshwater lineages (Gløckner et al., 2000; Zwart et al.,
2002). More recently, the emergence of next-generation sequenc-
ing technologies has also supported the predominance of these
groups in freshwater riverine ecosystems, and has allowed for
assessments of variability among bacterial communities (Ghai
et al., 2011; Portillo et al., 2012; Staley et al., 2013). These

studies have demonstrated that the taxonomic bacterial commu-
nity structure in aquatic environments is, at least in part, shaped
by gradients of physicochemical and biotic parameters (Gilbert
et al., 2009; Fortunato and Crump, 2011; Fortunato et al., 2012;
Portillo et al., 2012). More recently, however, there is growing
interest in evaluating trait-based patterns of biogeography to bet-
ter understand how and why particular community structures
form and respond to environmental variation (Green et al., 2008;
Boon et al., 2014).

Several important questions have arisen from characteriz-
ing microbial communities in the environment or in a host.
These include: (1) “to what extent does a core microbial com-
munity exist?” and (2) “to what extent is variation in taxo-
nomic community composition meaningful?” (Hamady et al.,
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2008). The size of taxonomic core microbial communities—
those characterized based on the operational taxonomic units
(OTUs) present—is dependent on sequence depth, where greater
coverage results in larger numbers of OTUs associated with
the core community in both environmental and host-associated
samples (Qin et al., 2010; Caporaso et al., 2012b). However,
identification of a core community offers little information as
to the extent of interaction among community members, and
functional redundancy among taxa suggests that taxonomically-
defined communities may not allow for an adequate investigation
of the microbial ecology of the system under study (Shade and
Handelsman, 2012). Furthermore, the extent to which taxonomic
variation influences functional diversity is not clear in the litera-
ture. For example, variation of taxonomic community structure
among soil communities resulted in differences in the rate of
litter decomposition and carbon dioxide production (Strickland
et al., 2009), but trait convergence was observed among dis-
tinctly different communities associated with sponge species to
select for specific functionality (e.g., denitrification) (Fan et al.,
2012).

Functional redundancy among taxa and polyphyletic distri-
bution of functional genes complicate the interpretation of core
microbial communities and community variation when consid-
ering ecological processes and community stability (Boon et al.,
2014). Several studies have failed to identify clear, host- or
habitat-associated, taxonomic core communities (Burke et al.,
2011; Huse et al., 2012), although 70% of functional similar-
ity was observed in one study (Burke et al., 2011). Similarly,
a study of cyanobacterial blooms among three distinct geo-
graphical regions revealed considerable phylogenetic variabil-
ity among the bacterial communities, despite a high degree of
consistency amongst functional traits observed (Steffen et al.,
2012). Conversely, taxonomic core communities, often com-
prised of the most abundant OTUs, have been identified in
several aquatic habitats (Gibbons et al., 2013; Staley et al., 2013).
However, OTUs with low abundance, which have been found
to comprise the majority of taxonomic diversity (Sogin et al.,
2006), have been inferred to be the most active in a freshwa-
ter lake system (Jones and Lennon, 2010). Whether functionality
among rare OTUs in aquatic systems is similar (i.e., minority
members perform the same function) or variable (i.e., differ-
ent minority taxa perform different functions) has been poorly
explored thus far. A recent proposal suggests that intertwined
ecological and evolutionary processes of selection, drift, disper-
sal, and mutation shape microbial biogeography (Hanson et al.,
2012), and such a framework will allow for a better under-
standing of the role of core communities vs. less abundant
taxa.

Microbial biogeography studies applying next-generation
sequencing technologies targeting regions of the 16S rDNA have
become relatively commonplace as the costs of next-generation
sequencing rapidly decrease, but metagenomic studies necessary
for characterization of functional diversity and identification of
rare species still remain costly (Gilbert and Dupont, 2011; Knight
et al., 2012). Recent estimates based on bacterial concentrations
and average genome size suggest that metagenomic studies of
seawater have sequenced <0.000001% of total DNA and that

the sequencing of 4–5×109 bp would provide coverage of only
0.001% in a 1L sample (Gilbert and Dupont, 2011). Similarly,
the bacterial metagenome size in 1 g of soil has been estimated
to comprise up to 3 × 1015 bp of DNA (Knight et al., 2012).
Based on these estimates, the minimum sequencing effort to
achieve 1× coverage of the bacterial metagenome of 1 L of sea-
water or 1 g of soil would require >800 and at least 5000 full runs,
respectively, on a HiSeq 2000 platform, given the recently esti-
mated sequence output (Caporaso et al., 2012a). Moreover, this
sequencing effort would cost on the order of tens of millions of
dollars.

Phylogenies of prokaryotes constructed from core genes, those
present in nearly all sequenced members of a clade, are simi-
lar to those constructed from taxonomic marker genes (e.g., 16S
rDNA) (Segata and Huttenhower, 2011). Processes including gene
loss, convergent evolution, and lateral gene transfer complicate
the relationship between phylogeny and function, but, generally,
more complex traits (e.g., methanogenesis) are more likely to be
isolated within only a few deep clades (Martiny et al., 2013). On
the basis of the relationship between phylogeny and function, a
computational approach (PICRUSt, phylogenetic investigation of
communities by reconstruction of unobserved states) was devised
to predict community functionality using 16S rDNA data and a
reference database (Langille et al., 2013). PICRUSt metagenome
predictions were strongly correlated (Spearman r = 0.82) with
metagenome data from the Human Microbiome Project (HMP)
and, while predictions were somewhat limited by sequencing
depth, they were generally accurate even at a shallow depth of 16S
rDNA sequencing (Langille et al., 2013). This subroutine was also
shown to work well for more diverse soil samples which had a
higher nearest sequence taxon index (NSTI x = 0.17 vs. 0.03 for
HMP samples; r = 0.81, P < 0.001).

We previously characterized the taxonomic diversity of the
Upper Mississippi River in Minnesota and found evidence of a
core bacterial community comprised of highly abundant OTUs,
with shifts in abundance potentially associated with variation
in land cover (Staley et al., 2013). In the present study, we
evaluated functional diversity throughout the Upper Mississippi
River in Minnesota during the summer of 2012. Whole genome
shotgun (metagenomic) sequencing was performed and these
data were compared to functional inferences from 16S rRNA
sequences obtained using PICRUSt. We anticipated that the
majority of functional observations and predictions would be
similar throughout the river based on the prevalence of the core
bacterial community. We further hypothesized that fluctuations
in the abundance of specific functional traits might be associated
with variation in land cover types influencing water chemistry
and the bacterial community. Since low sequence coverage was
expected using the metagenomic shotgun approach, PICRUSt was
used to infer functions among less abundant taxa that were likely
to be absent from the metagenomic dataset. PICRUSt inferences
were further compared against the shotgun metagenomic dataset
to determine the accuracy of functional predictions. This study
provides novel insight regarding the distribution of functional
traits occurring within this riverine ecosystem and serves as one
of the first studies to validate the use of PICRUSt in a diverse
ecosystem.
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FIGURE 1 | Relative location of sampling sites along the Mississippi

River and major contributing rivers.

MATERIALS AND METHODS
SAMPLE COLLECTION, PROCESSING, AND SEQUENCING
Samples were collected from May through July in 2012 from 11
sites along the Mississippi River and major contributing rivers
beginning at the headwaters at Lake Itasca to the southern border
of Minnesota, near La Crescent. The relative locations of sam-
pling sites are shown in Figure 1, and exact sampling locations
were previously described (Staley et al., 2013). Briefly, bacteria
were concentrated from 40 L water samples on 0.45-μm-pore-
size filters and elutriated by vortexing in pyrophosphate buffer,
as described previously (Staley et al., 2013). We have previously
compared the effect of filter pore size on the bacterial com-
munity characterized and found that this pore size allows for
efficient filtration of large volumes of water used here (Staley
et al., 2013), with minimal influence on overall estimates of com-
munity composition. A total of six cell pellets per site representing
approximately 6–7 L of water each, were stored at −80◦C until
used. These pellets were used for a variety of experiments, not all
of which are described here. DNA was extracted from cell pellets
from each site (n = 11), 16S rDNA amplification, and sequenc-
ing were performed and reported in detail elsewhere (Staley
et al., 2013), using the Metagenomic DNA Isolation Kit for Water
(Epicentre, Madison, WI) and the 967F/1046R barcoded primer
set (Sogin et al., 2006).

Whole genome shotgun sequences were generated using DNA
extracted from separate cell pellets from each site (n = 11) using

the MoBio PowerSoil® DNA Isolation Kit (Carlsbad, CA) accord-
ing to the manufacturer’s instructions. This kit was used to avoid
inhibitors present in DNA prepared with the Epicentre kit and
provided DNA at concentrations ranging from 10.7–44.7 ng μl−1.
Where possible, samples were normalized to 20 ng μl−1 and
2 μg total DNA was submitted for sequencing. Sample quan-
tities were normalized in libraries created at the University of
Minnesota Genomics Center (UMGC) and libraries were paired-
end sequenced at a read length of 100 bp and average insert size
between 260 and 320 bp over two lanes on the HiSeq 2000 plat-
form by the UMGC (St. Paul, MN). All sequences are deposited
in the NCBI Sequence Read Archive under accession number
SRP018728.

SEQUENCE PROCESSING AND ANALYSIS
Metagenomic taxonomic data were exported directly from MG-
RAST as summary tables of abundances of bacterial orders
(Meyer et al., 2008). Taxonomic data from 16S sequences were
derived using Mothur ver. 1.29 and our previously described pro-
cessing pipeline (Schloss et al., 2009; Staley et al., 2013). Briefly,
sequence reads were quality-trimmed using the following crite-
ria: quality scores ≥35 in a 50 nt window, no ambiguous bases,
and homopolymers ≤8 nt. Sequences containing primer mis-
matches were removed, as were singleton sequences. Chimeras
were identified and removed using UCHIME (Edgar et al., 2011).
Sequences were aligned against the SILVA database (Pruesse et al.,
2007), OTUs were clustered at 97% similarity using the furthest-
neighbor algorithm, and taxonomic assignment was performed
using the Ribosomal Database Project ver. 9 database release (Cole
et al., 2009).

Metagenomic sequence data was quality trimmed as described
above (with the exception of primer matching and singleton
removal) using Mothur software ver. 1.29 (Schloss et al., 2009).
Quality-trimmed sequence data (mean 1.41 ± 0.36 Gb per sam-
ple) were uploaded to MG-RAST for taxonomic and functional
annotations (Meyer et al., 2008), and these annotations are pub-
lically available in Project 3190. Due to higher sequence quality,
only the forward read was used for analysis. Hierarchical func-
tional predictions were performed using the KEGG Orthology
(KO) database and default settings. The KO assignments were
made in up to four tiers, where each tier is a more specific
functional assignment. Data were exported as a QIIME report
(Caporaso et al., 2010). To compare functional differences among
sampling sites, abundances of predicted functions were nor-
malized as percentages of the total number of predicted func-
tions from the KO database (mean 2.89 ± 0.80 × 106 reads per
sample).

The 16S rDNA data were analyzed as indicated by the PICRUSt
genome prediction software [http://picrust.github.io/picrust/]
from raw sequence reads in the following environment: NumPy
(1.7.1), biom-format (1.3.1), PyCogent (1.5.3), PICRUSt (1.0.0-
dev), and PICRUSt script (1.0.0-dev). The number of reads per
site was normalized by random subsample to 352,108 reads
per sample, for both taxonomic and functional characterization.
OTUs were assigned at 97% similarity, and 90.4% were mapped
to the Greengenes ver. 13.5 database for functional prediction,
with normalization to control for differences in 16S rDNA copy
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number among OTUs. Functional predictions were assigned up
to KO tier 3 for all genes. To simplify analysis, however, only tier
1 functions of “metabolism,” “genetic information processing,”
“environmental information processing,” and “cellular processes”
were analyzed further, as the categories of “organismal systems”
and “human disease” were thought to be poorly relevant to envi-
ronmental samples. Results from the MG-RAST QIIME report
were compared with predictions from PICRUSt using the “com-
pare_biom.py” subroutine with normalization and observations
not in the “expected data” file ignored. Results were compared
using both shotgun metagenomic and PICRUSt predictions as the
expected data.

STATISTICAL ANALYSES
Spearman correlations relating abundances of shotgun metage-
nomic functional annotations, inferred functional abundances
from PICRUSt, and taxonomic order abundances were performed
using SPSS Statistics software ver. 19.0 (IBM, Armonk, NY).
Taxonomic assignment was not performed to a more specific
level (e.g., family or genus) because these assignments have been
shown to be <90% accurate using short sequence reads (Mizrahi-
Man et al., 2013). Comparisons of functional vs. taxonomic
abundances were considered using data from the same source.
Thus, shotgun metagenomic functional annotations were com-
pared against taxonomic abundances derived from metagenome
sequence data and functional inferences were compared against
16S rDNA taxonomic data. Differences in functional abundance
between water basins containing more than one sampling site
(n = 2–3) were compared via ANOVA, using the Statistical
Analysis of Metagenomic Profiles (STAMP) software (Parks and
Beiko, 2010). ANOVA analyses of differences in taxonomic order

abundance were performed using SPSS software. All statistical
analyses were evaluated at α = 0.05.

RESULTS
TAXONOMIC CHARACTERIZATION OF BACTERIAL COMMUNITIES
Bacterial communities characterized by both shotgun metage-
nomic analyses and 16S rDNA were similar and were domi-
nated primarily by Burkholderiales and Actinobacteria (Figure 2).
Relative abundances of orders of the α- and γ -Proteobacteria
and the Bacteroidetes differed depending upon the sequenc-
ing method, but were also among the most numerous in all
samples. The increased relative abundance of Pseudomonadales
at the Twin Cities and Minnesota River sampling sites, as
observed using 16S rDNA, was also observed, albeit to a lesser
extent, in the metagenomic data. As expected, a higher per-
centage of sequence reads could not be classified to a specific
order in the shotgun metagenomic dataset relative to the rDNA
dataset. Non-bacterial orders, consisting primarily of orders
belonging to the kingdoms Plantae and Protista and the phy-
lum Arthropoda, were also identified in the metagenomic data,
but these were present at very low abundances (<0.1% mean
abundance among all samples). Bacterial community coverage
using 16S rDNA was estimated at 99.0 ± 0.2% with a mean
of 6752 ± 1589 OTUs at each site and a mean Shannon index
of 4.33 ± 0.46. Notably, lower diversity was observed at the
Twin Cities and Minnesota River sites (Shannon indices of 3.67
and 3.88).

FUNCTIONAL CHARACTERIZATION OF BACTERIAL COMMUNITIES
The greatest number of genes (>40%) that were assigned a
function encoded proteins involved in “metabolism” among tier

FIGURE 2 | Distribution of abundant orders determined by metagenomic shotgun sequencing (A) or 16S rRNA sequencing (B).
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1 KO categories in both metagenomic and PICRUSt datasets
(Table 1 and Figure 3). Annotation of the shotgun metage-
nomic dataset revealed >30% and ∼10% of sequences encoded
proteins involved in “environmental information processing”
and “genetic information processing,” respectively (Figure 3).
However, PICRUSt functional inferences revealed approximately
the same percentages of genes in both of these functional cate-
gories, with 18.01 ± 0.16% and 18.88 ± 0.37% sequence reads
per site for environmental and genetic information processing,
respectively (Figure 3).

Notably, among sampling sites, shotgun metagenomic
sequences showed little variation in the abundances and
distributions of second- and third-tier KO functional gene
annotations (Table 1). Among all sites, the highest standard
deviation observed within a tier 2 functional category was 0.46%
of sequence reads with a median of 0.02%. When third-tier
functional categories were compared, the maximum standard
deviation for a category, among all sites, was reduced to 0.42%
with a median of 0.0002%. For PICRUSt predictions, median
standard deviations were slightly higher—0.04 and 0.0057% for
tier 2 and tier 3, respectively, with maxima of 0.46 and 0.70%.

TAXONOMIC AND LAND COVER ASSOCIATIONS WITH FUNCTIONAL
TRAITS
To determine which bacterial orders may be contributing to dif-
ferences in functional traits among sites, correlation analyses were
performed using both the shotgun metagenomic and PICRUSt
datasets relating the 100 most abundant orders with second-tier
functional classifications (Table S1). With the exception of trans-
lation, transcription, and membrane transport, a greater number
of significant correlations (P < 0.05) were observed between
functional and taxonomic abundances using PICRUSt functional
predictions than were found using the shotgun metagenomic
data, especially among low abundance orders. The majority of
the PICRUSt correlations were positive, while the abundances of
most functional classes in the metagenomic data (e.g., secondary
metabolite biosynthesis and membrane transport) were nega-
tively correlated with taxonomic abundance. Positive taxonomic-
functional correlations among the PICRUSt data, however, are
likely a result of autocorrelations as functional traits were pre-
dicted from taxonomic information. Although the abundances
of many less abundant orders were positively correlated with
PICRUSt-inferred functions, abundances of every second-tier

Table 1 | Percentages of predicted sequences assigned to second tier KO categories in the metagenomic dataset.
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Metabolism† 0.46 0.46 0.45 0.46 0.50 0.50 0.47 0.44 0.48 0.45 0.47
Amino acid metabolism 0.85 0.86 0.86 0.75 0.79 0.84 0.81 0.84 0.86 0.83 0.81
Biosynthesis of other secondary metabolites 5.63 5.48 5.49 5.37 5.46 5.61 5.50 5.44 5.53 5.53 5.59
Carbohydrate metabolism 11.36 11.38 11.36 11.08 11.35 11.30 11.11 11.08 11.35 11.11 11.17
Energy metabolism 1.99 1.96 1.99 1.96 1.98 2.07 2.06 2.03 1.98 2.03 2.01
Enzyme families 1.64 1.50 1.53 1.60 1.48 1.50 1.49 1.49 1.52 1.55 1.50
Glycan biosynthesis and metabolism 5.11 5.01 5.03 4.90 4.84 4.95 4.98 5.10 4.94 5.02 5.13
Metabolism of cofactors and vitamins 6.00 5.93 6.02 5.97 6.04 6.15 6.33 6.26 6.00 6.21 5.99
Metabolism of other amino acids 4.93 5.73 5.59 5.51 5.44 5.18 5.02 5.19 5.44 5.08 5.10
Nucleotide metabolism 4.16 3.73 3.80 3.87 3.79 3.98 4.11 4.07 3.88 4.09 4.10
Xenobiotics biodegradation and metabolism 0.21 0.32 0.32 0.36 0.38 0.29 0.22 0.25 0.34 0.22 0.30

Genetic information processing† 0.96 1.09 1.11 1.09 1.06 1.00 1.00 1.04 1.07 1.00 1.01
Folding, sorting and degradation 6.69 7.60 7.44 7.55 7.57 6.73 6.57 6.90 7.08 6.46 6.47
Replication and repair 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Transcription 1.61 1.98 1.96 1.99 1.79 1.72 1.64 1.75 1.91 1.63 1.67
Translation 0.43 0.42 0.41 0.40 0.46 0.45 0.45 0.42 0.43 0.44 0.44

Environmental adaptation 0.95 0.97 0.96 1.00 1.02 0.95 0.93 0.85 0.98 0.90 0.95
Membrane transport 21.78 20.96 21.12 21.65 21.26 21.35 21.57 21.41 21.36 21.79 21.77
Signaling molecules and interaction 10.82 10.38 10.50 10.13 10.50 10.86 10.84 10.57 10.60 10.90 11.00

Cell communication 0.55 0.74 0.72 0.82 0.73 0.54 0.51 0.57 0.64 0.51 0.56
Cell growth and death 3.60 3.97 3.95 4.29 4.24 3.81 3.69 3.68 3.92 3.67 3.89
Cell motility 1.68 2.47 2.29 1.92 1.98 1.79 1.58 1.80 2.03 1.64 1.71

Thick lines separate tier 1 KO categories.
*Functional categories for which no reads were assigned are omitted.
†Predicted function only assigned at the first tier.
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FIGURE 3 | Percentages of tier 1 KO functions among all shotgun

metagenomic (left) and PICRUSt functional predictions (right).

Functional categories for organismal systems and human diseases were

omitted. Gray diamonds reflect the total number of annotated functional
genes or PICRUSt predictions for all functional categories inferred at tier 2
(right y-axis).

function were also correlated with abundances of at least one of
the most abundant orders identified in either dataset (Figure 2),
most notably the Actinomycetales and Flavobacteriales.

Differences in functional community profiles from shotgun
metagenomic data as well as those inferred from PICRUSt were
further examined between water basins 070203 (St. Cloud and
Clearwater sites; primarily agricultural land coverage) and 070206
(Twin Cities, Confluence, and Hastings; primarily developed or
urbanized land coverage). Land cover for these basins was deter-
mined using the National Land Cover Database (Fry et al., 2011).
These basins were the only ones containing multiple sites for
statistical comparisons.

Among second-tier functional categories, the functional abun-
dance of “amino acid metabolism” was significantly greater
(P = 0.034) in the developed basin than the agricultural one
(means of 21.52 and 21.04%, respectively), while the abun-
dance of “glycan biosynthesis and metabolism” was greater in
the agricultural basin (P = 0.024; developed mean of 1.76%
vs. 2.38%), among shotgun metagenomic annotations. In con-
trast, by PICRUSt inference, the functional abundance of “glycan
biosynthesis and metabolism” was significantly greater (P =
0.020) in the primarily agricultural basin vs. the developed
one (means of 1.74 and 1.65% of genes inferred by PICRUSt,
respectively). Significantly lower (P ≤ 0.035) functional abun-
dance was observed for “amino acid metabolism,” “metabolism
of terpenoids and polyketides,” and “protein folding, sort-
ing and degradation” in the agricultural basin vs. the devel-
oped (means 10.97, 2.47, and 2.24% vs. 11.21, 2.60, 2.27%,
respectively).

Abundances of bacterial orders that were correlated with func-
tional traits which varied significantly in abundance between
basins were further evaluated. Taxonomic-functional correla-
tions observed among the shotgun metagenomic data (Table S1)
were generally supported—greater abundance of a functional
trait corresponded with significantly greater abundance of the
taxa that were correlated with that trait. However, this was not
observed among PICRUSt-inferred taxonomic-functional cor-
relations (Table S1), and orders that were correlated with a
functional trait were generally not more abundant in the basin
favoring the trait. For example, Actinomycetales, Bifidobacteriales,
and Solirubrobacterales were positively correlated with “amino
acid metabolism” by shotgun metagenomic analyses, and all of
these orders were significantly (P ≤ 0.043) more abundant in the
developed basin. However, of the six orders inferred to be corre-
lated with amino acid metabolism using PICRUSt, none of the
orders were significantly different between basins based on 16S
rDNA characterization.

COMPARISON OF METAGENOMIC AND PICRUSt FUNCTIONAL
PREDICTION
Correlation analyses were performed to evaluate the relation-
ship between percent abundances of second-tier functional gene
categories in the shotgun metagenomic dataset and the percent
abundances of genes inferred from PICRUSt. Site-specific dif-
ferences in abundances of functional assignments were observed
using PICRUSt, despite normalization to 352,108 sequence reads,
with the log number of inferred functional assignments rang-
ing from 8.06 to 8.76 per site (Figure 3). These differences in
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numbers of assignments are likely due to differences in copy
number among the species identified at each site. Only six func-
tional traits, “amino acid metabolism,” “energy metabolism,”
“glycan biosynthesis and metabolism,” “transcription,” “signal
transduction,” and “cell motility,” were significantly positively
correlated between shotgun metagenomic and PICRUSt datasets
(r = 0.696–0.825, P ≤ 0.032; Table 2). Notably, “enzyme fami-
lies,” “genetic information processing,” “signaling molecules and
interaction,” and “cellular processes and signaling” were identi-
fied by PICRUSt but not in the metagenomic dataset, and “cell
communication” was the only functional trait identified in the
shotgun metagenomic dataset but not by PICRUSt (Table 2). The
percent abundances of all second-tier functional traits were sig-
nificantly different between datasets via ANOVA (P ≤ 0.006).
Among traits that differed by >5% between methods, “amino
acid metabolism” and “translation” were higher in the shotgun
metagenomic dataset, while PICRUSt inferred greater abundance
of “membrane transport.”

The mean nearest sequence taxon index (NSTI) of samples
evaluated here was 0.11 ± 0.01, indicating PICRUSt inferences

were likely to be better correlated with metagenomic data than
the previously analyzed sediment dataset, that had a mean
NSTI of 0.17 and correlation coefficient of 0.81 (Langille et al.,
2013). Comparison of the accuracy of functional annotations
among all sites using the “compare_biom.py” subroutine and the
metagenomic dataset as the expected result revealed poor corre-
lations between the two methods, and these correlations differed
in direction among sampling sites (−0.017 ≤ r ≤ 0.022, mean
P = 0.484 ± 0.227). PICRUSt had a mean sensitivity of 0.42 ±
0.01 and specificity of 0.58 ± 0.01 against the metagenomic
results, suggesting only a moderate ability of PICRUSt to iden-
tify genes in the metagenomic dataset, while at the same time
predicting many genes not found in metagenomic data. When
metagenome data was validated against PICRUSt inferences,
however, Spearman correlations were significant and positive for
all sample sites (r = 0.135–0.165, P = 1.80 ± 5.31 × 10−30). The
sensitivity of metagenomic annotations was 0.23 ± 0.02 and
annotations were 0.88 ± 0.01 specific to PICRUSt inferences,
indicating that most metagenomic functional annotations were
included in the PICRUSt inferences and further revealing that

Table 2 | Correlations of predicted second-tier functional abundances between metagenomic and PICRUSt annotations.

Function Metagenome (%)* PICRUSt (%)† Spearman r P-value

1st tier 2nd tier

Metabolism Amino acid metabolism 21.46 ± 0.28 11.15 ± 0.15 0.825 0.032

Biosynthesis of other secondary metabolites 0.83 ± 0.03 0.96 ± 0.10 0.111 0.746

Carbohydrate metabolism 11.24 ± 0.13 10.36 ± 0.34 −0.330 0.321

Energy metabolism 6.08 ± 0.13 5.50 ± 0.15 0.696 0.017

Enzyme families ND 1.79 ± 0.04 NA NA

Glycan biosynthesis and metabolism 1.90 ± 0.28 1.63 ± 0.08 0.797 0.003

Lipid metabolism 1.79 ± 0.15 4.28 ± 0.07 −0.023 0.947

Metabolism of cofactors and vitamins 5.29 ± 0.26 4.12 ± 0.15 −0.513 0.107

Metabolism of other amino acids 1.04 ± 0.05 2.07 ± 0.05 0.388 0.238

Metabolism of terpenoids and polyketides 1.53 ± 0.05 2.57 ± 0.08 0.065 0.851

Nucleotide metabolism 5.00 ± 0.09 3.01 ± 0.10 0.155 0.650

Xenobiotics biodegradation and metabolism 0.63 ± 0.11 4.66 ± 0.23 0.425 0.193

Genetic Information Processing Folding, sorting, and degradation 3.96 ± 0.15 2.23 ± 0.04 −0.220 0.516

Genetic information processing ND 2.06 ± 0.07 NA NA

Replication and repair 5.51 ± 0.08 6.76 ± 0.23 0.410 0.210

Transcription 2.79 ± 0.09 2.32 ± 0.06 0.741 0.009

Translation 10.64 ± 0.26 4.01 ± 0.11 0.256 0.447

Environmental Information Processing Membrane transport 7.01 ± 0.46 12.40 ± 0.35 0.064 0.853

Signaling molecules and interaction ND 0.18 ± 0.01 NA NA

Signal transduction 3.88 ± 0.23 2.21 ± 0.16 0.811 0.002

Cellular Processes Cell communication 0.01 ± 0.00 ND NA NA

Cell growth and death 2.01 ± 0.04 0.44 ± 0.01 −0.081 0.813

Cell motility 0.29 ± 0.06 2.49 ± 0.38 0.804 0.003

Cellular processes and signaling ND 3.27 ± 0.33 NA NA

Transport and catabolism 0.95 ± 0.05 0.37 ± 0.01 0.533 0.092

*Mean percent abundance of the functional trait among all samples by metagenomic analysis.
†Mean percent abundance of the functional trait among all samples by PICRUSt inference.
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FIGURE 4 | Principal component analysis comparing 2nd tier KO

functional traits derived from shotgun metagenomic analysis (circles)

and PICRUSt-inference (squares). Traits were normalized as percentages
of total genes assigned for both methods.

only a small number of the PICRUSt inferences were accounted
for by metagenomic analysis. Shotgun metagenomic data were
further compared to PICRUSt-inferences via principal compo-
nent analysis using all second-tier functional categories common
to both datasets (Figure 4), and clear grouping of samples was
observed based on the sequencing method used to determine the
distribution of functional traits among samples.

DISCUSSION
We previously indicated that taxonomic characterization by
sequencing of 16S rDNA suggests that the Mississippi River
contains a stable, core bacterial community that was dominant
throughout our study area in Minnesota (Staley et al., 2013).
The metagenomic and PICRUSt-inferred data presented here fur-
ther supports that the presence and distribution of functional
traits are well conserved in this river system over a distance
of >400 km. Due to the relatively low shotgun metagenomic
coverage, however, it is likely that these “core functional genes”
represent primarily those of the core bacterial community of
highly abundant OTUs because functional genes of rare taxa were
unlikely to be captured by shotgun sequencing. The high degree
of matching (>90%) of 16S rDNA sequences to the GreenGenes
database, though, suggests that at least some rare taxa were likely
included in the functional inferences. Furthermore, a statistically
significant correlation between PICRUSt inferences and shotgun
metagenomic functional characterization, as well as nearly com-
plete 16S rDNA coverage of samples, further supports that there
were limited differences in the distribution of functional genes
among sites. It should be noted that the ∼10% of sequences that
did not match the database may also possess unique functional
genes important to highly-specialized processes occurring in this
system.

Application of previous estimates of aquatic bacterial diver-
sity (Gilbert and Dupont, 2011) to the sequence data generated
here suggest that, at most, 0.00005% of the community DNA was
annotated in this study. This estimate is likely very generous in

relation to bacterial community coverage, specifically, as the DNA
sequenced also included minor contributions from the Archaea
and Eukarya that would further reduce coverage of the bacterial
community alone. These contributions are nevertheless impor-
tant as interactions among a large number of taxa at various
trophic levels will impact specific bacterial responses (Verreydt
et al., 2012), and several non-bacterial groups were significantly
associated with the functional traits reported here.

Similar to shotgun metagenomic analysis, PICRUSt inferred
relatively little functional variation among sampling sites.
However, variation in specific functional traits inferred from
PICRUSt was observed between two basins which varied greatly
with respect to land coverage type, although only a few functional
traits could be specifically associated with differences between the
basins. A previous study of stream sediment bacterial communi-
ties found that the degree of urbanization, determined primarily
as percentage of impervious cover, had significant impacts on
community composition as well as functionality, measured as
denitrification potential (Wang et al., 2011). Furthermore, this
study found a link between the specific denitrifiers present and the
community’s ability to utilize various carbon substrates, suggest-
ing functional variation may be due to both community member-
ship and the influence of various land cover types. Similarly, in the
present study, we hypothesize that functional variation between
these basins may suggest that community functionality shifts in
response to shifts in water chemistry associated with runoff from
different land cover types. It was recently demonstrated, though,
that land cover was related to water quality in an urban setting
(Tu, 2011), so further study is necessary to better characterize land
cover influences on microbial community function.

Interestingly, the least taxonomic bacterial diversity was
observed at the Twin Cities and Minnesota River sites where
the fewest functional predictions were determined via PICRUSt.
It should be noted, however, that a decline in functionality at
these sites should be interpreted cautiously as PICRUSt pre-
dictions were derived from taxonomic data (Langille et al.,
2013). Lower taxonomic and, potentially, functional diversity,
may be a result of biotic homogenization due to major pollu-
tant discharges or introduction of non-indigenous bacteria in
this more highly urbanized area, as was previously suggested for
communities impacted by wastewater treatment effluent (Drury
et al., 2013). However, another previous study also reported a
correlation between 16S rDNA copy number and rapidity of
response to resource availability among phylogenetically diverse
taxa (Klappenbach et al., 2000), suggesting that high-copy-
number (>5 copies) taxa are able to respond more rapidly to
shifts in the environment. Furthermore, fewer functional predic-
tions would be expected by PICRUSt for high-copy-number taxa
due to normalization to copy number, although we cannot defi-
nitely conclude this is the reason for fewer functional predictions
at these sites.

Interestingly, spikes in the relative abundance of the order
Pseudomonadales were also observed at the Twin Cities and
Minnesota River sites, and Pseudomonas spp. have been reported
to have between 4 and 7 rRNA operons (Bodilis et al., 2012).
It is possible that alteration in nutrient availability or intro-
duction of highly competitive pseudomonads at these sites is
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the reason for the decreased taxonomic and functional diver-
sity observed at these sites, although no significant differences
in the abundance of discrete functional traits were observed
at these sites by either sequencing method. Natural biological
interactions may also explain the lower diversity observed, as
eukaryotic activity was suggested to be associated with a Vibrio
bloom in the English Channel that upset the usual seasonal com-
munity dynamics (Gilbert et al., 2012). Furthermore, similar
Pseudomonadales spikes were observed at two upstream sites the
previous year (data not shown), suggesting that this bloom may
be a naturally-occurring phenomenon in this ecosystem in the
early summer. The extent to which this bloom may impact the
functional characteristics of the community remains to be stud-
ied, as the metagenomic sequencing depth here was too shallow
to elucidate functions from less abundant taxa.

Despite the low shotgun metagenomic sequencing coverage,
the abundances of minority orders were correlated with certain
functional traits, most commonly those associated with transcrip-
tion and translation. This finding suggests that these low abun-
dance orders may be actively synthesizing proteins. Absence of a
relationship between these orders and metabolic or environmen-
tal functions, though, may be due to low sequence coverage, as
suggested above, or may indicate the presence of novel genes that
are not yet represented in databases. The role of these low abun-
dance taxa in community-level processes is likely to remain poorly
understood for years to come, as the cost of next-generation
sequencing remains prohibitively high to allow for much greater
metagenomic coverage.

Tools such as PICRUSt, that are able to infer the distribu-
tion of functional traits among bacterial communities, offer an
immediately-available method by which to evaluate community-
level processes, but such tools should be well validated and
interpretations of inferred results considered carefully. Results of
the initial validation of PICRUSt suggested the tool was not effec-
tive in certain, high-diversity environments such as a hypersaline
microbial mat that had a mean NSTI value of 0.23 and a poor cor-
relation with metagenomic results (Spearman r = 0.25) (Langille
et al., 2013). NSTI values for samples in this study indicated
better suitability for PICRUSt analysis than sediment samples
included in the initial validation, but correlation with metage-
nomic data was poorer than that observed for the hypersaline mat
samples. Differences in sequence read length or sequencing tar-
get may explain the discrepancy between the previous study and
the results presented here, as the majority of data used in the ini-
tial validation of PICRUSt targeted the V3–V5 region providing a
longer read length (mean of 448 bp) compared to the V6 region
sequenced here (<80 bp). In the current study, we found that
PICRUSt showed imperfect sensitivity to metagenomic results.
We suggest that this is a result of PICRUSt casting a wider
net than did low-coverage metagenomic analysis—PICRUSt pre-
dicted potential functional traits of taxa from a 16S rDNA dataset
and was more likely to capture minority members. However, due
to their low abundance, the presence and potential functional
traits of these rare taxa were less likely to be identified by the
shallow metagenomic sequencing we performed.

It is difficult to determine if low correlations between datasets
represent errors in PICRUSt inference or accurate functional

predictions not detectable at shallow shotgun sequencing depth
without more thorough metagenomic characterization. Due to
the inherent uncertainty in inference-based functional annota-
tion, tools such as PICRUSt may not be useful for high-resolution
studies of functional biogeography in diverse ecosystems until
their accuracy is better evaluated and/or databases are improved.
Furthermore, differences in relative abundance between PICRUSt
inferences and shotgun metagenomic data for every second-
tier functional trait potentially indicate the PICRUSt inferences
may not allow for accurate quantitative assessment of the dis-
tribution of functional traits in this ecosystem and those sim-
ilar, although this should again be interpreted cautiously as
greater metagenomic sequencing depth may have mitigated these
differences.

Based on comparisons of taxonomic-functional correlations
between annotation methods, the data presented here suggest the
potential for a relatively high frequency of functional redundancy
among members of this riverine bacterial community. A previ-
ous study characterizing functional and taxonomic diversity of
carbon metabolism among freshwater habitats found that func-
tional traits were primarily linked with nutrient concentrations,
while taxonomic composition was more closely associated with
habitat type (Comte and del Giorgio, 2009), similarly suggest-
ing that functional redundancy exists among freshwater bacte-
rial communities. Furthermore, among communities associated
with the macroalga Ulva australis, 70% of functional similar-
ity was maintained among several taxonomically diverse com-
munities (Burke et al., 2011). Similarly, taxonomic community
composition was shown to be variable in disparate freshwater
cyanobacterial blooms, although the distribution of functional
genes reminded highly consistent (Steffen et al., 2012). While
the data gathered here do not allow assessment of differences in
gene expression among community members, it seems reason-
able that if an OTU performed a unique function, it would be
found at increased abundance when the DNA associated with that
function was more abundant. Considerably more bacterial orders
were significantly and positively associated with function based
on PICRUSt inference than were observed in the metagenomic
data, and every functional trait inferred by PICRUSt was corre-
lated with a high-abundance order. However, conclusions regard-
ing taxonomic-functional correlations evaluated from PICRUSt
inference should be interpreted cautiously as they potentially
reflect an autocorrelation resulting from calculating taxonomic
and functional abundances from a single dataset. As metagenomic
sequencing was unlikely to reveal the presence of functional
genes in low abundance orders, the potential for redundancy
can only be hypothesized here and in light of previous stud-
ies (Comte and del Giorgio, 2009; Burke et al., 2011; Fan et al.,
2012). Furthermore, the functional diversity within a single order
can be very diverse, and better taxonomic resolution, resulting
from longer sequence read lengths as next-generation sequenc-
ing technologies improve, may soon allow for more accurate
family- or genus-level taxonomic assignment to better interrogate
taxonomic-functional relationships.

Results of this study demonstrate that, at a relatively shal-
low sequencing depth, a core bacterial community maintains a
high level of functional consistency in this riverine community.
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Although limited variation in the distribution of functional
traits was observed among sampling sites and between water
basins, high taxonomic diversity and functional redundancy may
have limited our ability to detect and quantify differences in
the distribution of functional traits among less abundant taxa.
Nevertheless, slight, but significant, shifts were inferred in the
distributions of community functional traits as a result of loca-
tion, land coverage impacts, and/or other species sorting (envi-
ronmental selection) dynamics, which appear to be influencing
functional traits rather than specific taxa. Further investigation
and validation of functional inference tools are necessary as
metagenomic data continue to build in literature. As the costs of
complete metagenomic community characterization remain pro-
hibitively high, though, these tools may offer an important next
step in evaluating major trends in trait-based microbial biogeog-
raphy if databases can be expanded and taxonomic resolution
improved.
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