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Activation of the inflammasome is important for the detection and clearance of cytosolic
pathogens. In contrast to avirulent Francisella novicida (Fn), infection with virulent Fran-
cisella tularensis ssp tularensis does not trigger activation of the host AIM2 inflammasome.
Here we show that differential activation of AIM2 following Francisella infection is due to
sensitivity of each isolate to reactive oxygen species (ROS). ROS present at the outset of
Fn infection contributes to activation of the AIM2 inflammasome, independent of NLRP3
and NADPH oxidase. Rather, mitochondrial ROS (mROS) is critical for Fn stimulation of the
inflalmmasome. This study represents the first demonstration of the importance of mROS
in the activation of the AIM2 inflammasome by bacteria. Our results also demonstrate that
bacterial resistance to mROS is a mechanism of virulence for early evasion of detection by
the host.
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INTRODUCTION

The innate immune system recognizes pathogen associated
molecular patterns (PAMPs) using germline encoded pattern
recognition receptors (PRRs) to initiate immune responses to
pathogens. NOD-like receptors (NLR) and AIM2 are cytoso-
lic PRRs that function as a scaffold to promote assembly of
the inflammasome. The inflammasome is an innate immune
signaling complex which activates caspase-1, resulting in cleav-
age of caspase-1 into two subunits, in response to intracellular
pathogens and danger signals (Franchi etal., 2012). Activation
of caspase-1 results in pyroptosis, a proinflammatory cell death
process, and cleavage and secretion of the proinflammatory
cytokines IL-1p and IL-18. Activation of the inflammasome is
essential for clearance of many intracellular bacteria including
Shigella flexneri, Listeria monocytogenes, Legionella pneumophila,
Salmonella typhimurium, and avirulent Francisella novicida (Fn;
Mariathasan etal., 2005). It is suspected that the ability of fully vir-
ulent cytosolic pathogens, e.g., virulent F. tularensis ssp. tularensis,
to escape detection by the inflammasome is a critical component of
virulence.

The sole known inflammasome activated following infection
of mouse cells with Fn is the AIM2 inflammasome (Fernandes-
Alnemrietal.,2010). Currently, the only known ligand for AIM2 is
DNA (Fernandes-Alnemri etal., 2009). Thus, activation of AIM2
requires ready availability of bacterial DNA to the host cytosol.
It has been suggested that fully virulent strains of F. tularensis,
e.g., SchuS4, evade activating AIM2. Together this implies that
there is a difference in the availability of Fn DNA as compared
to SchuS4 DNA for detection by AIM2. However, there is no
explanation for how Fn DNA becomes available to AIM2 or why
SchuS4 DNA is not accessible for detection by the AIM2 inflam-
masome. In this study we provide clear evidence that activation

of the inflammasome following Fn infection is due to height-
ened sensitivity of Fn to membrane damaging reactive oxygen
species (ROS) as compared to SchuS4. We show that ROS gen-
erated by NADPH oxidase is not the source of ROS required for
detection of Fn. Rather, mitochondrial derived ROS (mROS) is
required for optimal activation of the inflammasome by Fn. This
is the first example of mitochondria playing a role in the activa-
tion of the AIM2 inflammasome and explains the mechanism by
which highly virulent bacteria successfully avoid triggering this
important intracellular defense system.

MATERIALS AND METHODS

MICE AND GENERATION OF BONE MARROW DERIVED MACROPHAGES
(BMM)

Specific pathogen free C57BL/6] mice were purchased from Jack-
son Laboratories (Bar Harbor, ME, USA). gp91/n052_/ ~ were
bred at Rocky Mountain Laboratories (RML). All research involv-
ing animals was conducted in accordance with Animal Care and
Use guidelines under animal protocols approved by the Ani-
mal Care and Use Committee at RML. Bone marrow derived
macrophages (BMM) were generated from femurs of mice as
previously described (Crane etal., 2013).

BACTERIA

Stock cultures of E. tularensis ssp. tularensis strain SchuS4 (Jean-
nine Peterson, CDC, Fort Collins, CO, USA) and Fn strain U112
(Denise Monack, Stanford University, Stanford, CA, USA) were
generated and utilized as previously described (Dreisbach etal.,
2000; Svensson etal., 2012). Briefly, bacteria were grown for
16 h in modified Mueller Hinton (MMH) broth. Then bacteria
were aliquoted into 1 ml samples and frozen at —80°C. Imme-
diately prior to use, bacteria were rapidly thawed and diluted
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to the indicated MOL. Inoculum titers for each experiment were
confirmed by plating the inoculum onto MMH agar, incubating
plates at 37°C and counting individual colonies. Titer of stock cul-
tures varied less than 5% over a 12 month period. All experiments
were performed under approved BSL-2 or BSL-3 safety protocols
at RML.

SENSITIVITY TO CHEMICALS

Sodium deoxycholate, SDS, and H,0; (all from Sigma, St. Louis,
MO, USA) and EDTA (Ambion, Grand Island, NY, USA) were
diluted to the indicated concentration in PBS. Bacteria were added
to each solution at a final concentration of 10° bacteria/ml. Bac-
teria were incubated at 37°C for 2 h with constant shaking. Then
bacteria were serially diluted, plated on MMH agar, incubated at
37°C and colonies were enumerated 48 h later.

INFECTION OF BMM

Bone marrow derived macrophages were infected with the indi-
cated multiplicity of infection (MOI) of Fnor SchuS4 as previously
described (Griffin etal., 2013). Briefly, bacteria were diluted
to the indicated MOI and added to BMM. BMM were incu-
bated for 90 min at 37°C/5% CO,. Then, bacteria containing
medium was pipetted off and BMM were incubated with gen-
tamicin (50 pg/ml) for 45 min. BMM were washed extensively
with PBS and incubated in DMEM supplemented with 10% heat
inactivated fetal bovine serum, L-glutamine, non-essential amino
acids, and HEPES (cDMEM,; all from Life Technologies). Intracel-
lular bacteria were enumerated by lysing BMM with water and
plating lysates on MMH agar as previously described (Bauler
etal.,, 2011). Where indicated cells were pretreated with 3 mM
N-aceytlcysteine (NAC; Sigma), | mM L-NMMA (Cayman Chem-
icals, Ann Arbor, MI, USA) or 250 pM mitoTempo (Enzo Life
Sciences, Farmingdale, NY, USA) 16, 24, or 1 h prior to infection,
respectively. Effective concentrations of NAC and L-NMMA used
in this study were determined by their ability to inhibit produc-
tion of ROS and RNS in BMM treated with LPS + IFN-y (Crane,
unpublished data). Various concentrations of mitoTEMPO were
tested in BMM. Only concentrations of 250 wM and above had
any effect on ROS production in cells (Bauler, unpublished data).

WESTERN BLOTTING

Bone marrow derived macrophages lysates were generated using
NuPage LDS Sample Buffer 24 h after infection (Life Technolo-
gies). Lysates were resolved on 4—12% NuPAGE gradient gels and
proteins were transferred to PVDF membranes (Life Technolo-
gies). Membranes were blocked with 5%BSA in Tris Buffered
Saline 4 0.05% Tween 20 (TBST) and then were probed with anti-
bodies to caspase-1 p10 or p20 (M-20, Santa Cruz Biotechnology,
Dallas, TX, USA; MBL International, Woburn, MA, USA, respec-
tively) and p-actin (13E5, Cell Signal Technologies) as previously
described (Jones et al., 2010; Bauler etal., 2011).

ANALYSIS OF IL-18

IL-1P present in cell culture supernatants was assessed by ELISA
24 h after infection using commercially available kits and follow-
ing manufacturer’s instructions (R&D Systems, Minneapolis, MN,
USA).

STATISTICAL ANALYSIS

Values are expressed as the mean of triplicate samples, unless
otherwise noted. Statistical differences between two groups were
determined using a two-tailed Student’s t-test. For comparison
between three or more groups, analysis was done by one-way
ANOVA followed by Tukey’s multiple comparisons test.

RESULTS

VIRULENT F. tularensis DOES NOT ACTIVATE THE INFLAMMASOME
Inflammasomes are important components of innate immunity
that promote secretion of proinflammatory cytokines such as
IL-1f in response to intracellular infection. One mechanism of
virulence of Schu$4 is its ability to escape detection by the host
cell. However, the ability of SchuS4 to evade triggering the host
inflammasome has not been described. Thus, we first determined
if SchuS4 activated the inflammasome in BMM and compared
this response to cells infected with Fn. MOIs of Fn and SchuS4
were adjusted to result in similar uptake (Figure 1A). Fn and
SchuS4 replicated to similar numbers BMM (Figure 1A). In
agreement with previously published data, infection with Fn
resulted in cleavage of caspase-1 as noted by the appearance
of caspase-1 pl0 subunit. Activation of Caspase-1 was fur-
ther confirmed by secretion of IL-1f among Fn infected cells
(Figures 1B,C). In contrast, SchuS4 infection did not induce
cleavage of caspase-1 or secretion of IL-13 (Figures 1B,C). We
also examined inflammasome activation by SchuS4 at multiple
time points after infection, i.e., 8, 16, 24, and 48 h and at var-
ious MOIs from 10 to 1000. At no time or MOI did we detect
cleavage of Caspase-1 or secretion of IL-1f from SchuS4 infected
cells (Crane etal., unpublished data). Together this demonstrated
that virulent SchuS4 does not activate the inflammasome in
resting BMM.

SchuS4 AND Fn EXHIBIT DIFFERENTIAL SENSITIVITY TO MEMBRANE
DAMAGING CHEMICALS

Activation of the AIM2 inflammasome is dependent upon release
of bacterial DNA into the host cytosol. Therefore, there must be
significant perturbations of the bacterial membrane that allow
release of their DNA into the host cytosol. In support of this
hypothesis, it has been shown that defined mutants of Fn and
LVS which trigger activation of the inflammasome above that
observed following infection with wild type (WT) parental strains
rapidly lyse in the cytosol (Peng etal, 2011). This increased
lysis was suggested to be a result of decreased stability of the
bacterial cell membranes. Considering the correlation of poor
membrane stability and activation of the inflammasome by Fn
and LVS, we hypothesized that the differential activation of the
inflammasome by Fn and SchuS4 in our study may be a result of
reduced stability and/or increased sensitivity of Fn membranes
to membrane perturbing compounds. To test this hypothesis,
we exposed Fn and SchuS4 to various detergents and chemicals
that are known to disturb bacterial membrane integrity. SchuS4
exhibited greater sensitivity to detergents sodium deoxycholate
and SDS (Figures 2A,B). Neither SchuS4 nor Fn exhibited sig-
nificant sensitivity to calcium and magnesium chelator EDTA
(Figure 2C). In addition to detergents and other lysis induc-
ing agents, ROS are known to destabilize bacterial membranes
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FIGURE 1 | Evasion of the inflammasome by virulent Francisella in
bone marrow macrophages (BMM). BMM were infected with Fn MOI
250 and SchuS4 MOI 150. MOI were selected to match uptake of Fn and
SchuS4. (A) Intracellular bacteria were enumerated at the indicated times
after infection. (B) Western blots of cell lysates were probed for caspase-1
p10 and actin. (C) Culture supernatants were assessed for IL-18 by ELISA.
Error bars represent SD. ns, not significant, BLD, below level of detection,
*p < 0.05 compared to all other groups. Data are representative of two
independent experiments.

(Fang, 2004). Further, ROS are an important part of host defense
and are produced by host cells via a variety of mechanisms to
control microbes. The relative sensitivity of Fn to HyO, com-
pared to virulent SchuS4 is not known. Thus, we compared the
ability of H,O; to kill Fn versus SchuS4. SchuS4 was signifi-
cantly more resistant to HyO, than Fn (Figure 2D). Since Fn
was more resistant to sodium deoxycholate and SDS compared
to SchuS4, the heightened sensitivity of Fn to the ROS H;0,;
was not due to a general defect in membrane integrity of this
bacterium.

INHIBITION OF ROS HINDERS Fn DRIVEN INFLAMMASOME
ACTIVATION

Given the increased sensitivity of Fn to ROS compared to Schu$4,
we postulated that interaction of ROS with Fn may contribute
to the presence of AIM2 activating DNA. To test this idea we

inhibited ROS among Fn infected cells and assessed inflamma-
some activation via cleavage of caspase-1 and secretion of IL-1f
into culture supernatants. Treatment of BMM with the ROS
inhibitor NAC did not significantly affect uptake or replication
of Fn (Figure 3A). Inhibition of ROS markedly reduced cleav-
age of caspase-1 and significantly reduced the amount of IL-1f
secreted by Fn infected cells (Figures 3B,C). Reactive nitrogen
species (RNS) have also been implicated in disrupting bacterial cell
membranes which could allow release of bacterial DNA. There-
fore, we also inhibited RNS in Fn infected cells and measured
inflammasome activation. Similar to cells treated with NAC, the
RNS inhibitor .-NMMA had no effect on uptake or replication
of Fnin BMM (Figure 3A). Interference with RNS did not alter
the presence of caspase-1 pl0 nor secretion of IL-1f among Fn
infected cells (Figures 3B,C). Thus, sensitivity to ROS, but not
RNS, contributes to the ability of Fn to drive activation of the
inflammasome.

ABSENCE OF NADPH OXIDASE DOES NOT AFFECT Fn INFLAMMASOME
ACTIVATION

One of the most common sources of ROS in host cells is that
derived from activity of the NADPH oxidase system. Frn has been
shown to inhibit NADPH assembly and function, arguing against
a role for this host complex in generating ROS that contributes to
Fn mediated inflammasome activation (Mohapatra etal., 2010).
However, it is possible that this process may be inefficient allow-
ing for some ROS producing NADPH complexes to form which
could damage bacterial membranes, resulting in inflammasome
activation. To determine if ROS derived from NADPH oxidase
contributed to Fn driven inflammasome activation, we infected
macrophages deficient for the gp91 subunit of NADPH oxidase
(gp91’/ ~) which cannot assemble functional NADPH oxidase
complexes. WT and gp91~/~ BMM phagocytosed and supported
replication of Fn similarly (Figure 4A). Absence of gp91 did
not impact the ability of Fn to provoke cleavage of caspase-1 or
secretion of IL-1B (Figures 4B,C). Therefore, NADPH oxidase
derived ROS does not contribute to Fn mediated inflammasome
activation.

mROS IS REQUIRED FOR ACTIVATION OF INFLAMMASOME BY Fn

In addition to the NADPH oxidase complex, mitochondria serve
as an important source of ROS in host cells (West etal., 2011b).
Since NADPH oxidase derived ROS did not play a role in Fn medi-
ated inflammasome activation, we hypothesized that mROS may
contribute to this process. We tested this hypothesis by compar-
ing activation of the inflammasome in Fn infected cells treated
with the mitochondrial specific ROS scavenger mitoTEMPO to
mock treated controls (Dikalova etal., 2010). Treatment with
mitoTEMPO had no effect on the uptake or replication of Fn in
BMM (Figure 5A). However, inhibition of mROS reduced cleav-
age of caspase-1 and significantly reduced secretion of IL-1f by
Fn infected cells (Figures 5B,C). mROS has also been impli-
cated in activation of the NLRP3 inflammsome (Heid etal.,
2013). Others have routinely demonstrated that activation of the
inflammasome by Fn in mouse cells is mediated exclusively by
AIM2 and not NLRP3 (Fernandes-Alnemri etal., 2010; Atianand
etal.,, 2011). Nevertheless, given the association of mROS with
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FIGURE 2 | Francisella novicida exhibits greater sensitivity to H,0,
than SchuS4. Bacteria (108/ml) were added to solutions of (A) sodium
deoxycholate, (B) SDS, (C) EDTA, or (D) H,O, incubated at 37°C for
2 h. Then, bacteria were serially diluted and plated on MMH agar to
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enumerate colonies. Dashed lines represent the limit of detection. Error
bars represent SD. *p < 0.05 compared to Fn. **p < 0.05 compared
to SchuS4. Data are representative of two experiments of similar
design.

the NLRP3 inflammasome, we also assessed if NLRP3 con-
tributed to cleavage of caspase-1 and secretion of IL-1p among
Fn infected cells. Fn infection resulted in similar activation
cleavage of caspase-1 and secretion of IL-18 in NLRP3 defi-
cient BMM compared to WT BMM. Thus, in agreement with
previously published work, NLRP3 did not contribute to inflam-
masome activation among Fn infected cells (Bauler and Bosio,
unpublished data). This confirmed that the inhibition of mROS
in Fn infected cells was not be due to interference with NLRP3
driven inflammasome activation. Thus, mROS is required for
optimal activation of the AIM2 inflammasome following Fn
infection.

DISCUSSION

Data presented herein demonstrate that mROS indirectly con-
tributes to the activation of the AIM2 inflammasome following
Fn infection. We proposed that the mechanism by which ROS
contributes to AIM2 inflammasome activation was by destabi-
lizing bacterial membranes allowing release of the AIM2 ligand,
bacterial DNA, into the cytosol. This hypothesis was first sup-
ported by our observation that Fn was significantly more sensitive
to the ROS H,0, compared to SchuS4. Differential sensitiv-
ity to HyO, among virulent SchuS4, F. tularensis ssp. holarctica
strain FSC200, and attenuated live vaccine strain (LVS) has been
previously reported (Lindgren etal., 2007, 2011). Increased sen-
sitivity of FSC200 and LVS to H,O, compared to SchuS4 was
not correlated with differential expression of genes known to
neutralize ROC, e.g., katG and super oxide dismutase (SOD).
Rather, sensitivity of FSC200 and LVS to H,O, was attributed to
their ability to take up and store higher amounts of iron, since
iron uptake enhances toxicity of H,O, (Lindgren etal., 2011).
The specific genes mediating differences in iron uptake among

FSC200, LVS, and SchuS4 that contribute to H,O, toxicity have
not been identified, nor has direct comparison of iron acquisi-
tion among Fn and SchuS4 been reported. Thus, it is possible
that the increased sensitivity of Fn to H,O, observed herein
could be attributed to the ability of the bacterium to collect
iron more efficiently than SchuS4. Fn possess similar operons
and genes required for iron acquisition as SchuS4 (Ramakr-
ishnan etal., 2012). Thus, identification of the potential role
for iron uptake or other regulators of sensitivity to H,O, will
likely require screening libraries of defined Fn and SchuS4
mutants.

In addition to a role for iron in sensitivity to H,O,, differ-
ence in the expression of antioxidants among Fn and SchuS4 may
explain their varied resistance to HyO,. Frnand SchuS4 carry genes
that encode an array of antioxidants capable of neutralizing ROS
and there are no apparent differences in the presence or absence of
these genes between Fn or SchuS4. However, it is possible that
SchuS4 may express higher concentrations of one or more of
these proteins compared to Fn at the outset of infection. ROS
can also affect bacterial viability via oxidation of bacterial lipids
and/or misfolding of membrane proteins resulting in perturbation
of bacteria membranes (Nathan and Cunningham-Bussel, 2013).
We have shown that lipids isolated from Fn differ in their ability
to provoke cytokine responses in macrophages compared to lipids
isolated from SchuS4 (Crane et al., 2013). This suggested that lipid
species present in Fn are different than those found in SchuS4.
Thus, it is possible that lipids or lipoproteins found in Fn mem-
branes are more susceptible to oxidation by ROS than those found
in SchuS4. Alternatively, there may be variation in key membrane
associated proteins among Frn as compared to SchuS4 that are mis-
folded in the presence ROS resulting in disruption of membrane
integrity.
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FIGURE 3 | Inhibition of ROS suppresses Fn driven inflammasome
activation. As indicated, BMM were treated with NAC (3 mM), L-NMMA
(1 mM) or water (vehicle control; mock) 16 or 24 h prior to infection with Fn
MOI 250, respectively. (A) Intracellular bacteria were enumerated at the
indicated times after infection. (B) Western blots of cell lysates were
probed for caspase-1 p10 and actin. (C) Culture supernatants were
assessed for IL-18 by ELISA. Error bars depict SD. ns, no significant
difference between mock and L-NMMA treated cells. *p < 0.05 compared
to mock and L-NMMA treated cells. Data are representative of three
experiments of similar design.

Regardless of the specific bacterial features that contribute
to the increased sensitivity of Fn to ROS compared to SchuS4,
we demonstrate that ROS plays an integral role in Fn medi-
ate activation of the inflammasome, as measured by cleavage of
Capsase-1. We also established that the source of ROS in host
cells that contributed to activation of the AIM2 inflammasome
was mROS. Initially, a role for mROS in Fn driven inflamma-
some activation was unexpected. However, it has been suggested
that mROS is important for combatting infection mediated by
intracellular pathogens (Arsenijevic etal., 2000). Further, mROS
can be activated following ligation of TLR2 or TLR4 (West etal.,
2011a). Fn mediated inflammatory responses are largely depen-
dent on TLR2, whereas SchuS4 fails to trigger pro-inflammatory
responses (Bosio etal., 2007; Bauler etal., 2011). Therefore, we
hypothesize that the inflammatory nature of Fn, likely trigger-
ing through TLR2 or other PRRs, contributes to the presence
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FIGURE 4 | NADPH oxidase does not contribute to Fn mediated
activation of the inflammasome. BMM from wild type (WT) or
gp91/nos2~/~ (gp91~/~) mice were infected with Fn MOI 250.

(A) Intracellular bacteria were enumerated at the indicated times after
infection. (B) Western blots of cell lysates were probed for caspase-1 p10
and actin. (C) Culture supernatants were assessed for IL-18 by ELISA. Error
bars depict SD. ns, not significant. Data are representative of three
experiments of similar design.

of mROS. Alternatively, low levels of mROS may be present
in the host cell prior to infection. Regardless of the means by
which mROS is made available, we propose that mROS acts
to destabilize Fn membranes allowing release of bacterial DNA
into the cytosol subsequently resulting in AIM2 inflammasome
activation.

Together these data describe an unexpected and important
difference in the ability of avirulent Fn and virulent SchuS4 to
trigger inflammasome activation. Furthermore, our data also
suggest that the inability of SchuS4 to trigger inflammasome acti-
vation is directly associated with its enhanced resistance to ROS
compared to Fn. Identification of the deficiencies in Fn result-
ing in its susceptibility to ROS and/or the molecules present in
Schu$4 that augment its resistance to ROS may reveal novel targets
for effective therapeutics against tularemia or other intracellular
pathogens.
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