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Dissimilatory nitrate reduction to ammonium (DNRA) and denitrification are two nitrate
respiration pathways in the microbial nitrogen cycle. Diversity and abundance of
denitrifying bacteria have been extensively examined in various ecosystems. However,
studies on DNRA bacterial diversity are limited, and the linkage between the structure and
activity of DNRA communities has yet to be discovered. We examined the composition,
diversity, abundance, and activities of DNRA communities at five sites along a salinity
gradient in the New River Estuary, North Carolina, USA, a shallow temporal/lagoonal
estuarine system. Sediment slurry incubation experiments with 15N-nitrate were
conducted to measure potential DNRA rates, while the abundance of DNRA communities
was calculated using quantitative PCR of nrfA genes encoding cytochrome C nitrite
reductase, commonly found in DNRA bacteria. A pyrosequencing method targeting nrfA
genes was developed using an Ion Torrent sequencer to examine the diversity and
composition of DNRA communities within the estuarine sediment community. We found
higher levels of nrfA gene abundance and DNRA activities in sediments with higher
percent organic content. Pyrosequencing analysis of nrfA genes revealed spatial variation
of DNRA communities along the salinity gradient of the New River Estuary. Percent
abundance of dominant populations was found to have significant influence on overall
activities of DNRA communities. Abundance of dominant DNRA bacteria and organic
carbon availability are important regulators of DNRA activities in the eutrophic New River
Estuary.
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INTRODUCTION
Sedimentary nitrogen (N) cycling in rivers and estuaries is
highly dependent on microbial processes. Nitrate can be dis-
similated by denitrification, dissimilatory nitrate reduction
to ammonium (DNRA) and anaerobic ammonium oxidation
(anammox), depending on prevailing environmental conditions.
Denitrification and anammox remove fixed nitrogen by produc-
ing dinitrogen (N2) gas. In comparison, DNRA retains nitrogen
within an ecosystem by recycling nitrate (NO−

3 ) to ammonium
(NH+

4 ). Denitrification and DNRA both compete for NO−
3 as an

electron acceptor and both processes generally rely on organic
carbon and sulfide as the source of electrons in anoxic sediments.

DNRA has been found to be an important nitrogen cycling
pathway in various aquatic ecosystems including estuaries
(Kelly-Gerreyn et al., 2001; An and Gardner, 2002) and salt
marshes (Tobias et al., 2001a; Koop-Jakobsen and Giblin, 2010).
Geochemical and physical features such as high carbon to NO−

3
ratios, high levels of sulfide, elevated temperature and salinity
provide favorable conditions to support DNRA over denitrifica-
tion in estuarine and coastal sediments (An and Gardner, 2002;
Giblin et al., 2010; Dong et al., 2011). However, abundance, com-
position, and diversity of DNRA communities have not been
evaluated as microbial controls of DNRA in an ecosystem.

A diverse group of microorganisms has been shown to
use DNRA as an anaerobic respiratory pathway (Simon and
Klotz, 2013). DNRA is carried out by fermentative bacte-
ria or by chemolithotrophic bacteria, which oxidize sulfide or
other reduced inorganic substrates. The genes and enzymes
involved in the DNRA pathway by fermentative bacteria are
well characterized (Simon, 2002). However, little is known about
chemolithotrophic bacterial DNRA (Giblin et al., 2013).

A pentaheme cytochrome C nitrite reductase (NrfA) is the
central enzyme which catalyzes the reduction of nitrite (NO−

2 )
to NH+

4 (Einsle et al., 1999). The functional gene nrfA is
present in diverse groups of bacteria including Proteobacteria,
Planctomycetes, Bacteroides, and Firmicutes (Mohan et al.,
2004). Some members of the Epsilonproteobacteria, such as
Campylobacter spp. and Nautilia profundicola, are capable of
DNRA in the absence of nrfA genes through the use of a puta-
tive reverse hydroxylamine:ubiquione reductase module path-
way (Hanson et al., 2013). In addition, respiratory metabolism
pathways in DNRA bacteria are diverse, including fermentation,
denitrification, anammox, and sulfate reduction (Simon, 2002;
Kartal et al., 2007). Due to this metabolic versatility, the diver-
sity and abundance of DNRA bacteria might be greater than
other N transforming organisms in sediments. However, DNRA
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community composition in sediments has only been examined in
two previous studies of the Colne River Estuary, based on nrfA
gene analysis (Takeuchi, 2006; Smith et al., 2007). The limitation
of studies examining the diversity and composition of DNRA bac-
teria is due to the lack of proper molecular methods capable of
nrfA gene detection in environmental samples.

In order to gain a better understanding of the microbial
and geochemical factors affecting DNRA processes, we exam-
ined sediment communities along the estuarine gradient of
the New River Estuary, North Carolina, USA. The New River
Estuary is a shallow and microtidal estuary with high anthro-
pogenic N loading. The mesohaline regions of the estuary were
found to have organic and sulfidic sediments, which may sup-
port DNRA (Anderson et al., 2013). In addition, Lisa et al.
(2014) suggested a linkage between DNRA and anammox in
sulfidogenic sediment communities of the estuary. These charac-
teristics make the New River Estuary an ideal place to examine
the importance of DNRA in the estuarine N cycle. Sediment
slurry incubation experiments with 15NO−

3 were conducted to
measure potential DNRA rates, while abundance of DNRA com-
munities was quantified using quantitative PCR (qPCR) of nrfA
genes. A new method utilizing next generation sequencing tech-
niques was developed to examine diversity and composition
of nrfA genes in the sediment communities of the New River
Estuary.

MATERIALS AND METHODS
SITE DESCRIPTION
The New River Estuary is located in southeastern North Carolina,
USA. It is a shallow estuary (<5 m deep) with broad lagoons
connected by narrow channels. The New River watershed encom-
passes a 1436 km2 area and receives drainage from mostly forested
and agricultural lands in the upper regions of the watershed,
while the lower estuary is bordered by extensive intertidal wet-
lands (Burkholder et al., 1997; Mallin et al., 2005). Barrier islands
located at the mouth of the estuary prevent tidal exchange,
contributing to the 64 day mean flushing time in the estuary
(Ensign et al., 2004). Within the watershed are large numbers
of industrialized livestock facilities, the City of Jacksonville and
the United States Marine Corps Base at Camp Lejeune. The estu-
ary has been classified as “a nutrient sensitive” estuary since
1998, with nitrogen being the limiting nutrient (Mallin et al.,
2000). It is a vulnerable ecosystem with various anthropogenic
disturbances.

SEDIMENT SAMPLING
Sampling along nutrient and salinity gradients from the head-
waters to the mouth of the estuary was conducted in April
of 2010 (Figure 1). Five sites were examined and included an
upstream site AA2 (34◦76′N, 77◦45′W), two mid-estuary sites
JAX (34◦73′N, 77◦43′W), M47 (34◦68′N, 77◦39′W), and two
lower estuary sites M31 (34◦59′N, 77◦40′W), M15 (34◦55′N,
77◦35′W). All samples and measurements were collected in the
channel west of the indicated channel markers. Environmental
parameters including sediment characteristics and geochemical
features of porewater and bottom waters were previously reported
by Lisa et al. (2014).

FIGURE 1 | Sampling Sites in the New River Estuary, NC, USA. Five
sites include an upper estuary site (AA2), two mid-estuary sites (JAX and
M47), and two lower estuary sites (M31 and M15).

15N TRACER INCUBATIONS
Sediment slurry incubation experiments with 15N tracer, using
a modified method of Tobias et al. (2001b), were conducted
to measure potential DNRA rates. Sediment slurries contain-
ing two grams of homogenized surface sediment (upper 3 cm)
were incubated anaerobically in helium-purged Exetainer tubes,
following the addition of 15NO−

3 tracer (99at%, 200 nmoles).
Time series samples were sacrificed by adding saturated ZnCl2.
DNRA was calculated from the amount of 15N tracer measured
in the extractable NH+

4 pool. NH+
4 was isolated from the slurry

by alkaline acid trap diffusion (Holmes et al., 1998) following
the addition of 7 ml of 40 ppt NaCl solution, 0.15 g MgO, and
3 µmoles of unlabeled NH+

4 carrier. The mole fraction excess
15NH+

4 (MF) was measured via continuous flow isotope ratio
spectrometry using an elemental analyzer interface. The DNRA
rate was calculated from:

DNRA = MF 15NH4 • [NH4]

MF 15NO3 • t

where MF is the 15N mole fraction excess of either the extractable
ammonium or the added nitrate tracer. The MF15NH4 is corrected
for the mass of the carrier ammonium. The extractable ammo-
nium concentration [NH4] was measured spectrophotometri-
cally using the phenol-hypochlorite method on split sediment
slurries, and “t” represents the incubation time.
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DNA EXTRACTION AND QUANTITATIVE PCR OF nrfA GENES
Sediment DNA was extracted from homogenized sediments using
PowerSoil DNA Kit (Mo-Bio Laboratories, Inc., Carlsbad, CA)
following the manufacturer’s protocol with the following mod-
ifications: wet sediment (0.6 g) was used for the extraction and
Thermo Savant Fast Prep FP 120 Cell Disrupter (Qbiogene Inc.
Carlsbad, CA) was used for cell disruption. qPCR assays of nrfA
genes were carried out to quantify the abundance of DNRA bacte-
ria in the sediment communities. qPCR reactions were carried out
in a volume of 20 uL containing SYBR green using Go-Taq qPCR
Master Mix (Promega Corporation, Madison, WI) with 10 ng of
DNA and the primers nrfAF2aw (CARTGYCAYGTBGARTA) and
nrfAR1 (TWNGGCATRTGRCARTC) (Mohan et al., 2004; Welsh
et al., 2014). The primers target heme-binding motifs, which are
conserved and diagnostic for the nrfA gene. Welsh et al. (2014)
tested specificity of the primers with proteobacterial isolates and
a soil sample. The expected size of the PCR product is 235–
250 bp. PCR conditions were as follows: an initial cycle of 94◦C
for 10 min; 50 cycles of 94◦C for 15 s, 52◦C for 45 s, 72◦C for 20 s,
80◦C for 35 s (data acquisition step); and a dissociation step of
95◦C for 15 s, 52◦C for 1 min, 95◦C for 15 s. Thermal cycling,
fluorescent data collection, and data analysis was carried out
using ABI Prism 7500 Real Time PCR System Sequence Detection
System (Applied Biosystems, Carlsbad, CA).

In order to generate qPCR standards the nrfA gene fragment
in Escherichia coli K-12 was amplified using the primers and PCR
conditions described above. The PCR product was cloned using
the pGEM-T Easy cloning kit (Promega, Madison, WI) following
the manufacturer’s instruction. Plasmid DNA was extracted from
a culture of recombinant E. coli JM109 using the FastPlasmid
Mini kit (5 PRIME, Gaithersburg, MD). The plasmid was lin-
earized using the EcoRI restriction enzyme and purified using the
Wizard SV Gel and PCR Clean-Up System (Promega, Madison,
WI). The purified products were quantified using Qubit DNA
quantitation assay (Life Technologies, Grand Island, NY) follow-
ing the manufacturer’s instructions. A ten-fold serial dilution of
a known copy number of the purified plasmid was prepared for
qPCR standards. The qPCR standard has 92.5% identity of DNA
sequences with the nrfA gene of Escherichia albertii in Figure 3.
qPCR efficiency and the detection limit were evaluated by treat-
ing qPCR standards as unknown samples. The qPCR efficiency
was 98.9%, although the detection limit was 9 × 104 copies of
nrfA genes. qPCR inhibition was not apparent based on an addi-
tional test using a mixture of qPCR standards and sediment
DNA.

ION TORRENT PGM SEQUENCING OF nrfA GENES
Composition and diversity of nrfA genes in sediment samples
were examined with a barcode pyrosequencing method using
the Ion Torrent PGM sequencer. PCR was conducted in dupli-
cate with each 20 µL sample reaction containing the nrfA2Faw
and nrfAR1 primers modified to include 8-bp barcode (for-
ward primers) (Hamady et al., 2008) and adapter sequences
for the Ion Torrent PGM sequencer (Life Technologies, Grand
Island, NY). The primer sequences used for pyrosequencing
are listed in Supplementary Table 1. PCR reactions were car-
ried out using Platinum PCR Supermix (Life Technologies,

Grand Island, NY) with the following PCR cycle: an initial
5 min at 94◦C, 40 cycles of 94◦C for 30 s, 52◦C for 45 s, and
72◦C for 20 s, followed by 5 min at 72◦C. PCR results, gen-
erating 290 base pair fragments, were checked by running an
aliquot on a 2% agarose gel. Duplicate reactions were combined,
and amplicons were purified using UltraClean GelSpin DNA
Purification Kit (Mo-Bio, Carlsbad, CA). The concentration of
purified PCR products was measured using a 2200 TapeStation
instrument and D1K reagents (Agilent Technologies, Santa Clara,
CA) following the manufacturer’s instruction. Pyrosequencing
was conducted using an Ion Torrent PGM sequencer with
barcode samples pooled on 316 chips, following the Ion
Torrent 400 bp sequencing kit protocol (Life Technologies, Grand
Island, NY).

BIOINFORMATIC ANALYSIS OF nrfA SEQUENCES
The bioinformatic pipeline of nrfA gene pyrosequences is
outlined in Supplementary Figure 1. The pipeline contains easy-
to-use web based programs and computer based programs. The
FastQ file was downloaded from the Torrent Server after primary
base calling was conducted using Torrent Suite v3.0 software (Life
Technologies). The RDP Pipeline Initial Process (https://pyro.

cme.msu.edu/init/form.spr) was used to sort the nrfA sequences
in 5 libraries based on the barcode sequences. Primer sequences
were trimmed, and sequences shorter than 200 bp and lower
than 25 quality score were removed. Acacia (Bragg et al., 2012)
was used to de-noise the trimmed sequences, and a chimera
check was performed using UCHIME in the FunGene Pipeline
(http://fungene.cme.msu.edu/FunGenePipeline/chimera_check/
form.spr) (Fish et al., 2013). The selected sequences were
translated and compared to NrfA reference sequences using
the FunGene Pipeline Frambot tool (http://fungene.cme.msu/
edu/FunGenePipeline). A total of 383 sequences was used as
reference NrfA sequences after trimming and dereplicating
1690 sequences available in the FunGene repository (http://
fungene.cme.msu.edu). The Frambot translated sequences were
visually inspected to detect and to remove frame-shift errors.
PRINSEQ (http://edwards.sdsu.edu/cgi-bin/prinseq/prinseq.cgi)
(Schmieder and Edwards, 2011) was used to rename each
sequence ID corresponding to the sampling sites. Sequences with
renamed IDs (valid sequences) were used to examine diversity
of NrfA sequences and compare the composition of DNRA
communities.

In order to reduce sequence redundancy in diversity computa-
tion, identical NrfA sequences were dereplicated using PRINSEQ
(Schmieder and Edwards, 2011). Unique NrfA sequences in
each sediment community were aligned by MUSCLE (Edgar,
2004) in MEGA 5.2 (Tamura et al., 2011). The Protdist pro-
gram in Phylogeny Inference Package (PHYLIP) (Felsenstein,
1989) was used to generate a distance matrix of aligned NrfA
sequences with Kimura’s method. Rarefaction, richness esti-
mates, and diversity indices were computed based on a dis-
tance matrix using DOTUR (Schloss and Handelsman, 2005).
Pielou’s evenness was calculated by dividing the Shannon diver-
sity index (H) by the natural log (Ln) of total number of
operational taxonomic units (OTUs) (Pielou, 1966). In order
to select protein distance for OTU determination, a total of
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123 NrfA reference sequences from 123 species and 82 gen-
era were analyzed using DOTUR. A protein distance of 0.1
was found to be the sub-genus level cutoff, while a distance
of 0.2 was at the genus level. The OTUs were determined
based on 0.1 protein distance cutoff, which is approximately
90% amino acid sequence identity. OTUs, determined with
90% amino acid sequence identity, were used in other pyrose-
quencing analyses of functional genes involved in nitrogen
cycling pathways (Mao et al., 2013, 2011; Pereira E Silva et al.,
2013).

The composition of sedimentary DNRA communities at the
five sites was compared using CD-HIT (Li and Godzik, 2006) by
clustering valid NrfA sequences that shared more than 90% iden-
tities. For phylogenetic analysis, a representative OTU sequence
from each cluster was aligned through MEGA 5.2 (Tamura
et al., 2011) using MUSCLE (Edgar, 2004). Normalized weighted
UniFrac (Lozupone et al., 2006) was conducted for PCoA anal-
ysis to compare differences among the five DNRA communities.
The NrfA sequences, found in only one community, were used to
compute percent abundance of endemic sequences and OTUs in
each community. In addition, the OTUs containing more than 1%
of total NrfA sequences in each community were defined as dom-
inant OTUs (or sequences), and percent abundance of the dom-
inant sequences were calculated. The representative sequences of
dominant OTUs, along with the reference NrfA sequences, were
also used for phylogenetic analysis. Bootstrap analysis of 1000
repetitions was used to estimate reliability of phylogenetic recon-
struction with 50% support threshold. In addition, a heat map
was constructed with the percent abundance of dominant OTUs
using Microsoft Excel.

STATISTICAL ANALYSIS
Pearson’s correlation and analysis of variance (ANOVA) were
conducted to identify relationships among DNRA rates, nrfA
gene abundance, diversity, composition, and environmental
parameters using the StatPlus program (AnalystSoft Inc.).
Canonical correspondence analysis (CCA) was also performed
to examine covariance among environmental variables and the
dominant OTUs.

NUCLEOTIDE SEQUENCE ACCESSION NUMBERS
The pyrosequences of nrfA genes were deposited in the ENA Short
Read Archive under submission number PRJEB6248.

RESULTS
PHYSICAL AND GEOCHEMICAL CHARACTERISTICS OF THE NEW RIVER
ESTUARY
Geochemical and physical characteristics of bottom water and
sediment samples at the five sites are reported in Table 1. The
data were obtained from the seasonal study of anammox com-
munities (Lisa et al., 2014). Bottom water salinity ranged from
9.1 to 33.6 ppt along the estuary. AA2 was designated as an oli-
giohaline site, JAX and M47 were both mesohaline, and M31
and M15 were situated in the polyhaline reaches of the estuary.
Bottom water NH+

4 concentration was higher than NO−
3 concen-

tration at all the sampling sites. Higher concentrations of H2S
in porewater were measured in the mesohaline sites JAX and
M47 compared to other sites. Sediment % organic content and
extractable NH+

4 were also higher in these mesohaline sediments
(Table 1).

ABUNDANCE AND ACTIVITIES OF DNRA COMMUNITIES
Potential rates of DNRA at the five sites ranged from
2.15 to 25.09 nmoles N g−1 h−1 (Table 2). Higher DNRA
rates (>20 nmoles N g−1h−1) were measured in the sed-
iments from JAX, M47, and M31, while the lowest rate
was found at M15. Abundance of DNRA communities based
on nrfA gene detection agreed with rate measurements as
higher abundance of nrfA was also measured in the sedi-
ments of JAX, M47, and M31. Among geochemical character-
istics measured at each site, % organic content and extractable
NH+

4 in sediments positively correlated with nrfA gene abun-
dance and DNRA rates with no significant statistical support
(Supplementary Table 2).

Table 2 | Potential rates of DNRA and nrfA gene abundance in the five

sediment communities of the New River Estuary.

Sampling site DNRA rates nrfA gene

nmoles N g−1 h−1 copies g−1

AA2 13.8 ± 1.8 7.72 × 108 ± 4.76 × 107

JAX 20.7 ± 0.02 2.58 × 109 ± 6.27 × 107

M47 22.6 ± 1.0 1.56 × 109 ± 2.68 × 108

M31 25.1 ± 3.4 2.18 × 109 ± 3.16 × 108

M15 2.2 ± 0.8 2.31 × 108 ± 2.50 × 107

Table 1 | Physical and geochemical characteristics measured at 5 sampling sites in the New River Estuary.

Sampling site Bottom water Sediment

Salinity NO−
3

NH+
4

% organic H2S NO−
x Extractable NH+

4

ppt µM µM µM µM µmol g−1

AA2 9.1 0.44 7.8 15.57 0.90 0.26 0.06

JAX 17.8 0.25 0.75 17.98 486.90 0.23 0.21

M47 16.4 0.37 1.18 18.95 249.87 0.54 0.28

M31 27.0 0.47 1.45 10.19 3.21 0.33 0.20

M15 33.6 0.62 1.32 0.33 0.20 0.72 0.04
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DIVERSITY OF DNRA COMMUNITIES BASED ON nrfA GENE
PYROSEQUENCING
A total of 50,882 sequences was obtained following the initial pro-
cess of filtering the sequences. Total numbers of sequences per site
are listed in Table 3. Denoising and chimera check yielded 47,591
sequences, which were translated to amino acid sequences using
Frambot. After manually removing frame shift errors, 46,165
valid NrfA sequences were used to compare composition and
diversity of DNRA communities (Table 3). After dereplicating
identical NrfA sequences, approximately 2000 sequences were
classified as unique to each site.

Richness and diversity of each DNRA community were evalu-
ated based on the unique NrfA sequences (Table 4). Chao1 and
ACE estimates showed highest richness of NrfA in AA2 sediment,
while the lowest was in M47 community. Shannon index showed
the highest diversity of NrfA in AA2 and the lowest in M47. The
highest sequence evenness was found at M15, where the low-
est DNRA rate was measured (Table 2). The M31 community,
with the highest DNRA rate, was found to have the lowest even-
ness. Among the environmental variables, extractable NH+

4 had
a significant and negative correlation with NrfA sequence diver-
sity (r = −0.94 and p = 0.016, Supplementary Table 2). There
was no clear trend between salinity gradients and NrfA diversity,
although highest richness and diversity of NrfA sequences were
observed at AA2, the oligohaline site (Table 4).

COMPARISON OF DNRA COMMUNITY COMPOSITION BASED ON nrfA
GENE PYROSEQUENCING
Based on 90% identity as a cutoff of sub-genus level, the
valid sequences were clustered into OTUs, and a representative

sequence from each OTU was used for normalized weighted
Unifrac analysis. Figure 2 shows the spatial variation of the
DNRA communities with 75.41% percent variation explained
(sum of the first and second PCoA principal coordinates). The
AA2 community was the most distinct of the DNRA commu-
nities. The composition of JAX and M47 communities were
more similar to each other than to other communities, while
M31 and M15 communities also clustered together. Salinity was
a significant environmental factor (p < 0.05) segregating these
communities along the P1 coordinate, while bottom water NO−

3
concentrations, porewater H2S and extractable NH+

4 became
significant variables (P < 0.05) along the variation of the P2
coordinate.

Cluster analysis revealed that endemic sequences comprised
less than 17% of total NrfA sequences in JAX, M47, and M31
communities and more than 30% in AA2 and M15 (Table 3).
Relative percent of endemic sequences (sequences found in only
one community) was higher in AA2 and M15 communities,
where rates were lowest, than in the mid estuarine commu-
nities. The highest relative percent of endemic sequences was
found in the M15 community with 39.8%, while the JAX com-
munity had the lowest with 11.7% (Table 3). The numbers of
endemic OTUs in each community significantly and positively
correlated with diversity of NrfA sequences (r = 0.95, p < 0.05).
Most of the OTUs with endemic sequences were rare OTUs
(≤0.1% of total sequence) or low abundant OTUs (between
0.1 and 1% of total sequences) in each community. Percent
abundance of endemic sequences was significantly and nega-
tively correlated with the DNRA rates and nrfA gene abun-
dance (r = − 0.93 and r = −0.93, respectively). In contrast, the

Table 3 | Number of nrfA sequences filtered during different steps of bioinformatic analysis.

Sampling site Number of sequences

Initial RDP process Denoise/Chimea Check Frambota Validb Dominantc(%) Endemicd(%)

AA2 7,918 7,557 7,483 7,346 42.3 30.9

JAX 8,821 7,940 7,910 7,852 50.7 11.7

M47 13,870 13,464 13,130 12,952 46.8 13.6

M31 11,197 10,243 10,218 10,000 50.2 16.7

M15 9,076 8,387 8,330 8,015 38.6 39.8

aFrambot converted DNA sequences into amino acid sequences and identified nrfA genes based on the reference sequences.
bValid sequences were defined as amino acid sequences without frame-shift errors.
cDominant sequences were defined as an OTU comprising of more than 1% of total NrfA sequences in each community.
d Endemic sequences were detected at only one site.

Table 4 | Estimates of sedimentary NrfA sequence richness and diversity in the New River Estuary.

Sampling site Unique OTUsa Chao1a ACEa Shannona Evennessb

AA2 2,052 1,012 1,958.6 2,162.3 6.507 0.940

JAX 1,714 827 1,569.5 1,638.0 6.298 0.938

M47 2,022 799 1,237.8 1,381.5 6.188 0.926

M31 2,210 1,005 1,897.8 2,106.9 6.360 0.920

M15 2,157 933 1,489.9 1,603.5 6.446 0.943

aRichness and diversity were determined based on 0.1 protein distance.
bEvenness was calculated by dividing Shannon index by Ln (OTUs).
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FIGURE 2 | Weighted and normalized PcoA plot of the DNRA

communities in the New River Estuary. Unifrac analysis was conducted
with representative NrfA OTUs in the five sediment communities. The black
circles indicate the communities sharing higher composition similarities.

dominant OTUs were more abundant in the mid estuarine com-
munities than the AA2 and M15 communities. More than 50%
of total NrfA sequences in JAX and M31 sites were clustered with
the dominant OTUs (Table 3). Percent abundance of dominant
sequences had significant and positive correlations with activities
and abundance of DNRA communities (r = 0.92 and r = 0.99,
respectively).

COMPARISON OF DOMINANT NrfA OTUS IN SEDIMENT COMMUNITIES
A total of 69 dominant OTUs was found in five sediment commu-
nities. The sequences associated with the dominant OTUs in each
community were included in the heat map analysis, although this
accounted for less than 1% of sequence abundance (Figure 3). A
representative sequence of each OTU was phylogenetically com-
pared with NrfA sequences found in bacterial isolates (Figure 3).
The AA2, JAX, and M15 communities had higher numbers of
dominant OTUs (18, 20, and 19, respectively) than the M47
and M31 communities, which had 16 and 13 dominant OTUs,
respectively (Supplementary Table 3). Most of dominant OTUs
were found in more than one community, with the exception
of 10 OTUs. OTU1 and OTU2 were endemic at AA2, while
OTU27, OTU36, OTU37, OTU46, and OTU47 were only found
in the M15 community. OTU60 and OTU65 were endemic at
M47, and OTU54 was only present at M31. In contrast, OTU11,
OTU23, OTU31, and OTU 55 were cosmopolitan OTUs com-
monly present in all five sediment communities, although none
of them were predominant in any of the five sediment commu-
nities. OTU11 and OTU23 were dominant in the AA2 and JAX
communities, but not in other communities. OTU31 and OTU55
were only dominant in M15.

Among 69 OTUs, OTU53 was the most abundant member
of M31 (28.2%) and M15 (9.1%), but accounted for less than
1% at M47 and was not detectable at AA2 and JAX (Figure 3).
Phylogenetic analysis showed that OTU53 was closely related
to NrfA found in Escherichia albertii, Shewanella oneidensis,

and Aggregatibacter actinomycetemcomitans (Figure 3). The most
abundant member in M47 community was OTU21 (6.1%), while
OTU35 accounted for 5.6 and 14.6% at JAX and M47, respec-
tively. NrfA sequences found in bacterial isolates did not cluster
with these OTUs (Figure 3). OTU19, which is closely related to
Holophaga foetida NrfA, was most abundant, composing 8.1%
in the AA2 community, but contributed less than 1% in JAX,
and not detected in other sites (Figure 3). Phylogenetic analysis
showed that OTU9, dominant in M47, was closely associated with
Sulfurospirillum deleyianum and OTU32, the dominant member
of JAX and M47 communities, was related to Thioalkalivibrio
nitratireducens (Figure 3).

CCA with dominant OTUs showed that the first two CCA axes
(CCA1 and CCA2) explained 67.5% of the cumulative variance
of the DNRA communities in the New River Estuary (Figure 4).
Different environmental variables affected relative abundance of
dominant OTUs in sediment communities. Group A was com-
posed of 24 OTUs that were dominant members of M31 or M15
communities. Salinity significantly and positively influenced the
abundance of OTU49, OTU50, and OTU55 within Group A.
OTU49 and OTU50 were closely related to Planctomyces spp.
(Figure 3). Group B was made up of three OTUs (25, 31, and
56) found in three to five communities. Porewater NO−

x con-
centrations had a positive significant correlation with this group.
The OTUs in Group C were dominant members of JAX or M47
communities. Sulfide concentration was shown to have signif-
icant and positive influences on 10 OTUs (17, 20, 24, 29, 30,
32, 35, 63, and 67) within this group. None was closely related
to NrfA sequences found in bacterial isolates. Group D was
composed of 12 OTUs (1, 2, 10, 13, 15, 16, 18, 19, 22, 26,
45, and 62) found primarily in the AA2 community (Figure 3).
They had a significant and positive correlation with bottom
water NH+

4 concentration. Among these dominant OTUs, OTU1,
OTU16, and OTU19 were closely associated with H. foetida,
while OTU2 showed high similarity to Pelobacter carbinolicus.
Together, the CCA and phylogenetic analyses revealed that dif-
ferent environmental variables contributed to the presence of
the different dominant members in DNRA communities at
oligohaline, mesohaline, and polyhaline reaches of the New
River Estuary.

DISCUSSION
Two dissimilatory NO−

3 reduction pathways, DNRA and den-
itrification, influence the recycling and removal of fixed N
in an aquatic ecosystem. We found that sedimentary DNRA
activities were higher than the reported denitrification activ-
ities collected from AA2, M47, M31, and M15 during the
same time (Supplementary Figure 2; Lisa et al., 2014). DNRA
was responsible for 44–74% of sedimentary dissimilatory NO−

3
reduction. This demonstrates that DNRA was the major dis-
similatory NO−

3 reduction process in the New River Estuary,
as shown in other estuarine ecosystems (Kelly-Gerreyn et al.,
2001; Tobias et al., 2001a,b; An and Gardner, 2002). DNRA
rates measured in the New River Estuary are comparable to
those reported in shallow coastal systems and salt marshes
(Sørensen, 1978; Gardner and McCarthy, 2009; Koop-Jakobsen
and Giblin, 2010).
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FIGURE 3 | Phylogenetic tree and heat map of dominant NrfA OTUs in

the New River Estuary. Dominant OTUs were defined as the OTUs
containing more than 1% of total number of NrfA sequences in each
community. Neighbor-joining tree was constructed from amino acid

sequences and bootstrap analysis with 1000 replicates used to estimate
confidence. Bootstrap values of >50% were listed in the tree. The heat map
was constructed in Microsoft Excel based on the percent relative of each
OTU in each sediment community.

Positive correlation between DNRA rates and extractable
NH+

4 in sediments indicates that DNRA is an important pro-
cess for sediment NH+

4 flux, as well as mineralization. Higher
DNRA rates were measured in the mid estuarine sites where
H2S concentration and % organic contents in sediments were
elevated. High H2S may inhibit nitrification and denitrification,

which results in a greater contribution of DNRA to dissim-
ilatory NO−

3 reduction processes. This was also shown in a
shallow estuary in southern Texas (An and Gardner, 2002). In
addition, H2S can be utilized as an electron donor by DNRA
bacteria. Two dominant OTUs in JAX and M47 were closely
related with S. deleyianum and T. nitratireducens. S. deleyianum
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FIGURE 4 | CCA ordination plot deciphering the relationship between

dominant NrfA OTUs and environmental variables in the New River

Estuary. Color circles represent the ordinates of each community based on
dominant OTUs. Some of dominant OTUs were clustered in groups as
indicated with black circles. Group A contains OTUs 27, 31, 34, 36, 37, 38,
40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 66, and 68.
Group B has OTUs25, 31, and 56. Group C carries OTUs 3, 4, 9, 12, 17, 21,
24, 29, 30, 32, 33, 35, 39, 58, 59, 60, 61, 63, 64, 65, and 67. Group D
includes OTUs 1, 2, 10, 13, 15, 16, 18, 19, 22, 26, 45, and 62.

is a mixotrophic bacterium that can utilize organic carbon
and H2S as electron sources (Eisenmann et al., 1995), while
the obligate chemolithoautotrophic bacterium, T. nitratireducens,
reduces NO−

3 coupled to sulfur oxidation (Tikhonova et al.,
2006). The presence of Sulfurosprillum spp. and Thioalkalivibrio
spp. suggests the use of sulfur compounds as reducing
power for dissimilatory NO−

3 reduction in these sediment
communities.

The abundance of bacteria capable of DNRA can be an impor-
tant microbial regulator for the respiratory process in aquatic
ecosystems. However, quantification of DNRA bacteria based
on nrfA gene detection has had limited success. To our knowl-
edge Dong et al. (2009) is the only other study that measured
three subsets of nrfA gene abundance in the Colne River Estuary.
The new primer combination used in this study was able to
amplify nrfA genes in all five of the sediment samples, even
though more than 9x104 copies of nrfA genes were required
for proper detection. This high detection limit might be due to
degeneracy of PCR primers. qPCR success allowed quantifica-
tion of total abundance of nrfA carrying bacteria in estuarine
sediments communities, which were then compared with DNRA
activities. This is the first study reporting a co-occurrence of
higher DNRA rates in the sediment communities with higher
nrfA gene abundance, and suggests the abundance of DNRA
bacteria can act as an important microbial control in estuar-
ine sediments. In addition, nrfA gene abundance may have the

potential to be used as a genetic proxy of DNRA potential in
sediments.

Composition and diversity of DNRA bacteria can be another
microbial regulator of DNRA in aquatic sediments. Differences
in DNRA community composition were found along the salin-
ity gradient of the New River Estuary. Takeuchi (2006) reported
a similar trend in the Colne River Estuary. Endemic popula-
tions accounted for 10–40% of the sediment communities in
the New River Estuary. The increased numbers of an endemic
population supported higher diversity of NrfA sequences, but
negatively influenced the DNRA activities. This finding leads
us to hypothesize that selected members of DNRA communi-
ties become predominant and responsible for overall community
activities. We found that relative abundance of dominant popu-
lations had a significant positive correlation with the rates and
abundance of DNRA communities in the New River Estuary.
Bulow et al. (2008) and Francis et al. (2013) demonstrated the
presence of a few dominant OTUs in denitrifying communities
along the salinity gradient of the Chesapeake Bay, based on the
nirS gene analysis. The dominant nirS OTUs were also highly
expressed in the mesohaline and polyhaline sediment commu-
nities (Bulow et al., 2008), which supports the importance of
dominant populations in in situ community activities. These find-
ings readdress the importance of dominant population and their
roles in overall community activities.

Dominant DNRA populations were influenced by different
geochemical and physical parameters in the New River Estuary.
The dominant members in JAX and M47 communities, posi-
tively influenced by H2S, might be able to oxidize both organic
carbon and sulfide as observed in S. deleyianum (Eisenmann
et al., 1995). Alternatively, DNRA communities in JAX and M47
were more tolerable and adaptive to high sulfidogenic condi-
tions. The dominant members in the oligohaline AA2 community
were positively correlated with bottom water NH+

4 concentration,
while the members in M31 and M15 were influenced by salinity.
This suggests that the dominant populations of each community
are well adapted to different environmental conditions present
in their unique environments. Sun et al. (2013) reported 13
dominant OTUs were mainly responsible for changes in metal
and hydrocarbon contaminants in estuarine sediments based on
16S rRNA gene pyrosequencing analysis. Abundance of differ-
ent dominant populations in each community strongly influences
overall community activities, while geochemical and physical
conditions affect the composition of DNRA communities in the
New River Estuary. This study reveals that the relative abundances
of dominant populations serves as an important microbial con-
trol for community activities, while the abundance of endemic
populations is an important factor for DNRA bacterial diversity
in estuarine sediments.

ACKNOWLEDGMENTS
This study was supported through grants provided by the US
National Science Foundation (DEB1020944, EAR1024662, and
OCE0851435). We acknowledge Ashley Smyth and Ann Arfken
for providing comments and feedback on this manuscript. This
paper is Contribution No. 3393 of the Virginia Institute of Marine
Science, College of William & Mary.

Frontiers in Microbiology | Aquatic Microbiology September 2014 | Volume 5 | Article 460 | 8

http://www.frontiersin.org/Aquatic_Microbiology
http://www.frontiersin.org/Aquatic_Microbiology
http://www.frontiersin.org/Aquatic_Microbiology/archive


Song et al. DNRA rates and nrfA pyrosequencing

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fmicb.2014.

00460/abstract

REFERENCES
An, S., and Gardner, W. (2002). Dissimilatory nitrate reduction to ammonium

(DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estu-
ary (Laguna Madre/Baffin Bay, Texas). Mar. Ecol. Prog. Ser. 237, 41–50. doi:
10.3354/meps237041

Anderson, I. C., Brush, M. J., Piehler, M. F., Currin, C. A., Stanhope, J. W., Smyth,
A. R., et al. (2013). Impacts of climate-related drivers on the benthic nutrient
filter in a shallow photic estuary. Estuar. Coasts 37, 46–62. doi: 10.1007/s12237-
013-9665-5

Bragg, L., Stone, G., Imelfort, M., Hugenholtz, P., and Tyson, G. W. (2012).
Fast, accurate error-correction of amplicon pyrosequences using Acacia. Nat.
Methods 9, 425–426. doi: 10.1038/nmeth.1990

Bulow, S. E., Francis, C. A., Jackson, G. A., and Ward, B. B. (2008). Sediment
denitrifier community composition and nirS gene expression investigated
with functional gene microarrays. Environ. Microbiol. 10, 3057–3069. doi:
10.1111/j.1462-2920.2008.01765.x

Burkholder, J. M., Mallin, M. A., Glasgow, H. B. Jr., Larsen, L. M., McIver, M. R.,
Shank, G. C., et al. (1997). Impacts to a coastal river and estuary from rup-
ture of a swine waste holding lagoon. J. Environ. Qual. 26, 1451–1466. doi:
10.2134/jeq1997.00472425002600060003x

Dong, L. F., Naqasima Sobey, M., Smith, C. J., Rusmana, I., Phillips, W.,
Stott, A., et al. (2011). Dissimilatory reduction of nitrate to ammonium,
not denitrification or anammox, dominates benthic nitrate reduction in
tropical estuaries. Limnol. Oceanogr. 56, 279–291. doi: 10.4319/lo.2011.56.
1.0279

Dong, L. F., Smith, C. J., Papaspyrou, S., Stott, A., Osborn, A. M., and Nedwell, D. B.
(2009). Changes in benthic denitrification, nitrate ammonification, and anam-
mox process rates and nitrate and nitrite reductase gene abundances along an
estuarine nutrient gradient (the Colne estuary, United Kingdom). Appl. Environ.
Microbiol. 75, 3171–3179. doi: 10.1128/AEM.02511-08

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accu-
racy and high throughput. Nucleic Acids Res. 32, 1792–1797. doi: 10.1093/nar/
gkh340

Einsle, O., Messerschmidt, A., Stach, P., Bourenkov, G. P., Bartunik, H. D., Huber,
R., et al. (1999). Structure of cytochrome c nitrite reductase. Nature 400,
476–480. doi: 10.1038/22802

Eisenmann, E., Beuerie, J., Sulger, K., Kroneck, P. M. H., and Schumacher, W.
(1995). Lithotrophic growth of Sulforosprillum delianum with sulfide as electron
donor coupled to respiratory reduction of nitrate to ammonia. Arch. Microbiol.
164, 180–185. doi: 10.1007/BF02529969

Ensign, S. H., Halls, J. N., and Mallin, M. A. (2004). Application of digital
bathymetry data in an analysis of flushing times of two large estuaries. Comput.
Geosci. 30, 501–511. doi: 10.1016/j.cageo.2004.03.015

Felsenstein, J. (1989). PHYLIP – Phylogeny Inference Package (Version 3.2).
Cladistics 5, 164–166

Fish, J. A., Chai, B., Wang, Q., Sun, Y., Brown, C. T., Tiedje, J. M., et al. (2013).
FunGene: the functional gene pipeline and repository. Front. Microbiol. 4:291.
doi: 10.3389/fmicb.2013.00291

Francis, C. A., O’Mullan, G. D., Cornwell, J. C., and Ward, B. B. (2013). Transitions
in nirS-type denitrifier diversity, community composition, and biogeochem-
ical activity along the Chesapeake Bay estuary. Front. Microbiol. 4:237. doi:
10.3389/fmicb.2013.00237

Gardner, W. S., and McCarthy, M. J. (2009). Nitrogen dynamics at the sediment-
water interface in shallow, sub-tropical Florida Bay: why denitrification
efficiency may decrease with increased eutrophication. Biogeochemistry 95,
185–198. doi: 10.1007/s10533-009-9329-5

Giblin, A. E., Tobias, C. R., Song, B., Weston, N., and Banta, G. T. (2013).
The importance of dissimilatory nitrate reduction to ammonium (DNRA)
in the nitrogen cycle of coastal ecosystems. Oceanography 26, 124–131. doi:
10.5670/oceanog.2013.54

Giblin, A. E., Weston, N. B., Banta, G. T., Tucker, J., and Hopkinson, C. S. (2010).
The effects of salinity on nitrogen losses from an oligohaline estuarine sediment.
Estuar. Coasts 33, 1054–1068. doi: 10.1007/s12237-010-9280-7

Hamady, M., Walker, J. J., Harris, J. K., Gold, N. J., and Knight, R. (2008).
Error-correcting barcoded primers for pyrosequencing hundreds of samples in
multiplex. Nat. Methods 5, 235–237. doi: 10.1038/nmeth.1184

Hanson, T. E., Campbell, B. J., Kalis, K. M., Campbell, M. A., and Klotz, M. G.
(2013). Nitrate ammonification by Nautilia profundicola AmH: experimental
evidence consistent with a free hyroxylamine intermediate. Front. Microbiol.
4:180. doi: 10.3389/fmicb.2013.00180

Holmes, R., McClelland, J., Sigman, D., Fry, B., and Peterson, B. (1998).
Measuring –NH+

4 in marine, estuarine and fresh waters: an adaptation of the
ammonia diffusion method for samples with low ammonium concentrations.
Mar. Chem. 60, 235–243. doi: 10.1016/S0304-4203(97)00099-6

Kartal, B., Kuypers, M. M. M., Lavik, G., Schalk, J., Op den Camp, H. J. M., Jetten,
M. S. M., et al. (2007). Anammox bacteria disguised as denitrifiers: nitrate
reduction to dinitrogen gas via nitrite and ammonium. Environ. Microbiol. 9,
635–642. doi: 10.1111/j.1462-2920.2006.01183.x

Kelly-Gerreyn, B. A., Trimmer, M., and Hydes, D. J. (2001). A diagenetic model dis-
criminating denitrification and dissimilatory nitrate reduction to ammonium in
a temperate estuarine sediment. Mar. Ecol. Prog. Ser. 220, 33–46.

Koop-Jakobsen, K., and Giblin, A. E. (2010). The effect of increased
nitrate loading on nitrate reduction via denitrification and DNRA in salt
marsh sediments. Limnol. Oceanogr. 55, 789–802. doi: 10.4319/lo.2009.55.
2.0789

Li, W., and Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing
large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659. doi:
10.1093/bioinformatics/btl158

Lisa, J., Song, B., Tobias, C., and Duernberger, K. (2014). Impacts of freshwater
flushing on anammox community structure and activities in the New River
Estuary, USA. Aquat. Microb. Ecol. 72, 17–31. doi: 10.3354/ame01682

Lozupone, C., Hamady, M., and Knight, R. (2006). UniFrac–an online tool for
comparing microbial community diversity in a phylogenetic context. BMC
Bioinformatics 7:371. doi: 10.1186/1471-2105-7-371

Mallin, M. A., Burkholder, J. M., Cahoon, L. B., and Posey, M. H. (2000). North
and South Carolina Coasts. Mar. Pollut. Bull. 41, 56–75. doi: 10.1016/S0025-
326X(00)00102-8

Mallin, M. A., McIver, M. R., Wells, H. A., Parsons, D. C., and Johnson, V. L.
(2005). Reversal of eutrophication following sewage treatment upgrades in the
New River Estuary, North Carolina. Estuaries 28, 750–760. doi: 10.1007/BF02
732912

Mao, Y., Yannarell, A. C., Davis, S. C., and Mackie, R. I. (2013). Impact of
different bioenergy crops on N-cycling bacterial and archaeal communi-
ties in soil. Environ. Microbiol. 15, 928–942. doi: 10.1111/j.1462-2920.2012.
02844.x

Mao, Y., Yannarell, A. C., and Mackie, R. I. (2011). Changes in N-transforming
archaea and bacteria in soil during the establishment of bioenergy crops. PLoS
ONE 6:e24750. doi: 10.1371/journal.pone.0024750

Mohan, S. B., Schmid, M., Jetten, M., and Cole, J. (2004). Detection and
widespread distribution of the nrfA gene encoding nitrite reduction to ammo-
nia, a short circuit in the biological nitrogen cycle that competes with den-
itrification. FEMS Microbiol. Ecol. 49, 433–443. doi: 10.1016/j.femsec.2004.
04.012

Pereira E Silva, M. C., Schloter-Hai, B., Schloter, M., van Elsas, J. D., and Salles, J. F.
(2013). Temporal dynamics of abundance and composition of nitrogen-fixing
communities across agricultural soils. PLoS ONE 8:e74500. doi: 10.1371/jour-
nal.pone.0074500

Pielou, E. (1966). The measurement of diversity in different types of biological
collections. J. Theor. Biol. 13, 131–144. doi: 10.1016/0022-5193(66)90013-0

Schloss, P. D., and Handelsman, J. (2005). Introducing DOTUR, a computer
program for defining operational taxonomic units and estimating species
richness. Appl. Environ. Microbiol. 71, 1501–1506. doi: 10.1128/AEM.71.3.1501-
1506.2005

Schmieder, R., and Edwards, R. (2011). Quality control and preprocessing of
metagenomic datasets. Bioinformatics 27, 863–864. doi: 10.1093/bioinformat-
ics/btr026

Simon, J. (2002). Enzymology and bioenergetics of respiratory nitrite ammonifi-
cation. FEMS Microbiol. Rev. 26, 285–309. doi: 10.1111/j.1574-6976.2002.tb0
0616.x

Simon, J., and Klotz, M. G. (2013). Diversity and evolution of bioenergetic systems
involved in microbial nitrogen coupound transformations. Biochim. Biosphy.
Acta 1827, 114–135. doi: 10.1016/j.bbabio.2012.07.005

www.frontiersin.org September 2014 | Volume 5 | Article 460 | 9

http://www.frontiersin.org/journal/10.3389/fmicb.2014.00460/abstract
http://www.frontiersin.org/journal/10.3389/fmicb.2014.00460/abstract
http://www.frontiersin.org
http://www.frontiersin.org/Aquatic_Microbiology/archive


Song et al. DNRA rates and nrfA pyrosequencing

Smith, C. J., Nedwell, D. B., Dong, L. F., Osborn, A. M., Park, W., Sciences, P., et al.
(2007). Diversity and abundance of nitrate reductase (narG and napA), and
nitrite reductase (nirS and nrfA) genes and transcripts in estuarine sediments.
Appl. Environ. Microbiol. 73, 3612–3622. doi: 10.1128/AEM.02894-06

Sørensen, J. (1978). Capacity for denitrification and reduction of nitrate to ammo-
nia in a coastal marine sediment. Appl. Environ. Microbiol. 35, 301–305.

Sun, M. Y., Dafforn, K. A., Johnston, E. L., and Brown, M. V. (2013). Core sed-
iment bacteria drive community response to anthropogenic contamination
over multiple environmental gradients. Environ. Microbiol. 15, 2517–2531. doi:
10.1111/1462-2920.12133

Takeuchi, J. (2006). Habitat segregation of a functional gene encoding nitrate
ammonification in estuarine sediments. Geomicrobiol. J. 23, 75–87. doi:
10.1080/01490450500533866

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011).
MEGA5: molecular evolutionary genetics analysis using maximum likelihood,
evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28,
2731–2739. doi: 10.1093/molbev/msr121

Tikhonova, T. V., Slutsky, A., Antipov, A. N., Boyko, K. M., Polyakov, K. M.,
Sorokin, D. Y., et al. (2006). Molecular and catalytic properties of a novel
cytochrome c nitrite reductase from nitrate-reducing haloalkaliphilic sulfur-
oxidizing bacterium Thioalkalivibrio nitratireducens. Biochim. Biophys. Acta
1764, 715–723. doi: 10.1016/j.bbapap.2005.12.021

Tobias, C. R., Anderson, I. C., Canuel, E. A., and Macko, S. A. (2001b). Nitrogen
cycling through a fringing marsh-aquifer ecotone. Mar. Ecol. Prog. Ser. 210,
25–39. doi: 10.3354/meps210025

Tobias, C. R., Macko, S. A., Anderson, I. C., Canuel, E. A., and Harvey, J. W. (2001a).
Tracking the fate of a high concentration groundwater nitrate plume through a
fringing marsh: a combined groundwater tracer and in situ isotope enrichment
study. Limnol. Oceanogr. 46, 1977–1989. doi: 10.4319/lo.2001.46.8.1977

Welsh, A., Chee-Sanford, J. C., Connor, L. M., Löffler, F. E., and Sanford, R. A.
(2014). Refined NrfA phylogeny improves PCR-based nrfA gene detection.
Appl. Environ. Microbiol. 80, 2110–2119. doi: 10.1128/AEM.03443-13

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 30 April 2014; accepted: 13 August 2014; published online: 03 September
2014.
Citation: Song B, Lisa JA and Tobias CR (2014) Linking DNRA community struc-
ture and activity in a shallow lagoonal estuarine system. Front. Microbiol. 5:460. doi:
10.3389/fmicb.2014.00460
This article was submitted to Aquatic Microbiology, a section of the journal Frontiers
in Microbiology.
Copyright © 2014 Song, Lisa and Tobias. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Microbiology | Aquatic Microbiology September 2014 | Volume 5 | Article 460 | 10

http://dx.doi.org/10.3389/fmicb.2014.00460
http://dx.doi.org/10.3389/fmicb.2014.00460
http://dx.doi.org/10.3389/fmicb.2014.00460
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Aquatic_Microbiology
http://www.frontiersin.org/Aquatic_Microbiology
http://www.frontiersin.org/Aquatic_Microbiology/archive

	Linking DNRA community structure and activity in a shallow lagoonal estuarine system
	Introduction
	Materials and Methods
	Site Description
	Sediment Sampling
	15N Tracer Incubations
	DNA Extraction and Quantitative PCR of nrfA Genes
	Ion Torrent PGM Sequencing of nrfA Genes
	Bioinformatic Analysis of nrfA Sequences
	Statistical Analysis
	Nucleotide Sequence Accession Numbers

	Results
	Physical and Geochemical Characteristics of the New River Estuary
	Abundance and Activities of DNRA Communities
	Diversity of DNRA Communities Based on nrfA Gene Pyrosequencing
	Comparison of DNRA Community Composition based on nrfA Gene Pyrosequencing
	Comparison of Dominant NrfA OTUs in Sediment Communities

	Discussion
	Acknowledgments
	Supplementary Material
	References


