
REVIEW ARTICLE
published: 29 August 2014

doi: 10.3389/fmicb.2014.00465

DNA polymerases as useful reagents for biotechnology –
the history of developmental research in the field
Sonoko Ishino and Yoshizumi Ishino*

Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan

Edited by:

Zvi Kelman, University of Maryland,
USA

Reviewed by:

Frank T. Robb, University of Maryland
School of Medicine, USA
Lori Kelman, Montgomery College,
USA

*Correspondence:

Yoshizumi Ishino, Department of
Bioscience and Biotechnology,
Graduate School of Bioresource and
Bioenvironmental Sciences, Kyushu
University, 6-10-1 Hakozaki,
Higashi-ku, Fukuoka 812-8581, Japan
e-mail: ishino@agr.kyushu-u.ac.jp

DNA polymerase is a ubiquitous enzyme that synthesizes complementary DNA strands
according to the template DNA in living cells. Multiple enzymes have been identified from
each organism, and the shared functions of these enzymes have been investigated. In
addition to their fundamental role in maintaining genome integrity during replication and
repair, DNA polymerases are widely used for DNA manipulation in vitro, including DNA
cloning, sequencing, labeling, mutagenesis, and other purposes. The fundamental ability
of DNA polymerases to synthesize a deoxyribonucleotide chain is conserved. However,
the more specific properties, including processivity, fidelity (synthesis accuracy), and
substrate nucleotide selectivity, differ among the enzymes. The distinctive properties of
each DNA polymerase may lead to the potential development of unique reagents, and
therefore searching for novel DNA polymerase has been one of the major focuses in this
research field. In addition, protein engineering techniques to create mutant or artificial
DNA polymerases have been successfully developing powerful DNA polymerases, suitable
for specific purposes among the many kinds of DNA manipulations. Thermostable DNA
polymerases are especially important for PCR-related techniques in molecular biology. In
this review, we summarize the history of the research on developing thermostable DNA
polymerases as reagents for genetic manipulation and discuss the future of this research
field.
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IN THE BEGINNING: TAQ POLYMERASE
DNA polymerase I from Thermus aquaticus (Taq polymerase) is
the most famous representative enzyme among the thermostable
DNA polymerases. Taq polymerase was identified from T. aquati-
cus isolated from Yellowstone National Park in Montana, USA.
The report was published by Chien et al. (1976) as her Master’s
course study. At that time, nobody foresaw how famous this
enzyme would later become. In 1985, PCR (polymerase chain
reaction) technology using the Klenow fragment of DNA poly-
merase I from Escherichia coli was reported (Saiki et al., 1985).
It was easily imagined that a heat-stable DNA polymerase that
is not inactivated at the denaturation step from double-stranded
to single-stranded DNA would transform this method of gene
amplification to a practical technology. Subsequently, a simple and
robust PCR method using Taq polymerase was published (Saiki
et al., 1988). Due to the heat stability of Taq polymerase, the reac-
tion tube could remain in the incubator after the reaction mixture
containing the DNA polymerase was prepared, and only temper-
ature changes were required for PCR. An instrument capable of
quick reaction temperature change was developed, and the PCR
market opened with a PCR kit (GeneAmp PCR Reagent Kit) and
an instrument (Thermal Cycler) provided by Perkin-Elmer Cetus.
DNA polymerase from Thermus thermophilus (Tth polymerase)
was also developed as a commercial product in the early age of
the PCR, but a scientific report was only an abstract of ASBMB in
1974 from the Mitsubishi-Kasei Institute of Life Sciences, Japan,
where this enzyme was originally identified. A specific property of

Tth polymerase is that it has a distinct reverse transcriptase (RT)
activity, and a single-tube RT-PCR method was developed with
this enzyme.

At the beginning of the PCR age, Taq polymerase was puri-
fied from T. aquaticus cells. However, the pol gene was soon
cloned from the T. aquaticus genome and expressed in E. coli
cells. The native Taq polymerase was replaced by the recombi-
nant Taq polymerase, named AmpliTaq DNA polymerase, in the
commercial field. The amount of the recombinant Taq polymerase
produced in E. coli cells was very low, probably because of the low
expression of the T. aquaticus gene, which has a high GC content
(70%), although the protein quality was improved, as compared
to the native Taq polymerase (Lawyer et al., 1989). We success-
fully constructed an efficient overproduction system by changing
the codons around the N-terminal region from the original gene
to either the AT-type at the third letter or the optimal codons
for E. coli. These manipulations improved the production of Taq
polymerase more than 10-fold, as compared with the production
of AmpliTaq (Ishino et al., 1994). Taq polymerase has been used
as the standard enzyme for PCR since its inception. An abundance
of PCR data obtained using Taq polymerase has been accumu-
lated, providing a valuable resource for developing new products
for useful PCR modifications.

THERMOSTABLE DNA POLYMERASES FROM THERMOPHILES
Thermophilic organisms utilize thermostable DNA polymerases,
and therefore, thermophiles became more popular as genetic
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resources of DNA polymerases and other enzymes for industrial
use. The heat stability of the enzymes is directly related to the
temperature, at which the organism thrives. Thermophiles are
classified into extreme thermophiles, which grow at temperatures
greater than 75◦C, and moderate thermophiles, which grow at
55–75◦C. The thermostabilities are obviously different between
the DNA polymerases from extreme thermophiles and moderate
thermophiles as shown in Figure 1. Taq polymerase is applicable
to PCR; however, the DNA polymerases from the moderately ther-
mophilic Bacillus species are not suitable for PCR, because of their
insufficient stability. Hyperthermophiles are particular extreme
thermophiles that grow optimally at temperatures above 80◦C.
Most of the hyperthermophilic organisms are Archaea, although
some are bacteria, as shown in (Table 1). Generally, hyperther-
mophiles have the potential to provide more heat-stable enzymes
than normal thermophiles. Actually, the DNA polymerase from
Pyrococcus furiosus (Pfu polymerase) is more stable than Taq
polymerase (Figure 1). Hyperthermophilic archaea became pop-
ular not only as sources of useful enzymes for application, but
also as interesting model organisms for molecular biology. In
the early 1990s, the metabolic phenomena in archaeal cells were
just barely understood, and therefore, the molecular biology of
Archaea, the third domain of life, became a novel and exciting
field.

DNA POLYMERASES FROM HYPERTHERMOPHILES
When choosing thermostable DNA polymerases as reagents for
genetic engineering, research scientists generally do not consider
the biology of the source organisms. The properties of the obtained
enzyme are important, regardless of the source. To obtain a
thermostable DNA polymerase, the growth temperature of the
thermophile attracts the most attention. Thermotoga maritima
DNA polymerase was the first commercial product (ULTIMA
DNA polymerase) from the hyperthermophilic bacteria. This
enzyme has an associated 3′–5′ exonuclease activity and thus is
expected to perform PCR more accurately with its proofreading

FIGURE 1 | Heat resistance of the DNA polymerases. Residual DNA
polymerase activities after incubation at the indicated temperature for
30 min were plotted. DNA polymerases from Pyrococcus furiosus (open
circles), Thermus aquaticus (closed circles), and Bacillus caldotenax (open
squares) were used as representatives from hyperthermophiles, extreme
thermophiles, and moderate extremophiles, respectively.

activity. All PCR enzymes from the domain Bacteria are from
family A, whose members generally lack 3′–5′ exonuclease activity,
and ULTMA DNA polymerase was an exception, like E. coli Pol I.
In spite of this selling point, ULTIMA DNA polymerase was not
a commercial success. One report described no significant differ-
ences in the fidelities of the ULTIMA and Taq polymerases, when
using optimal buffer conditions for each enzyme, for sequencing
purposes (Diaz and Sabino, 1998).

DNA polymerases from the hyperthermophilic archaea were
also assessed as PCR enzymes. We cloned the pol gene from P. furio-
sus and expressed it in E. coli (Uemori et al., 1993). We thought
ours would be the first report of the full-length sequence of an
archaeal family B DNA polymerase, which had been predicted ear-
lier because of the aphidicolin-sensitive phenotype of a halophile
and a methanogen (Forterre et al., 1984; Zabel et al., 1985). How-
ever, two papers showing the deduced total amino acid sequences
of DNA polymerases from the hyperthermophilic archaea, Sul-
folobus solfataricus (Pisani et al., 1992) and Thermococcus litoralis
(Perler et al., 1992) were published during the preparation of our
manuscript (Uemori et al., 1993). All these reports clearly showed
that the archaeal DNA polymerases have sequences similar to the

Table 1 | Representative hyperthermophiles.

Growth conditions

Temperature

Species Min. temp to

Max. temp (◦C)

Opt.

temp (◦C)

Aerobic(ae)/

Anaerobic(an)

Archaea

Crenarchaeota

Acidianus infernus 60–95 88 ae/an

Sulfolobus acidocaldarius 60–85 75 ae

Pyrobaculum islandicum 74–103 100 an

Thermoproteus tenax 70–97 88 an

Desulfurococcus mobilis 70–95 85 an

Aeropyrum pernix 70–100 90 ae

Ignicoccus islandicus 65–100 90 an

Pyrolobus fumarii 90–113 106 ae/an

Euryarchaeota

Pyrococcus furiosus 70–105 100 an

Thermococcus

kodakarensis

60–100 85 an

Archaeoglobus fulgidus 60–95 83 an

Methanopyrus kandleri 90–122 105 an

Methanothermus

sociabilis

65–97 88 an

Methanococcus igneus 45–91 88 an

Bacteria

Thermotoga maritima 55–90 80 an

Aquifex pyrophilus 67–95 85 ae
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eukaryotic replicative DNA polymerases, Pol α, δ, and ε (family B).
It is also interesting that the T. litoralis pol has inteins that must be
spliced out after translation (Perler et al., 1992). Thereafter, many
cases of DNA polymerases containing various pattern of inteins,
inserted in motifs A, B, and C, were discovered (Perler, 2002). The
fidelity of DNA synthesis in vitro is markedly affected by the reac-
tion condition. However, the archaeal family B enzymes generally
perform more accurate DNA synthesis as compared with Taq poly-
merase (Cariello et al., 1991; Ling et al., 1991; Lundberg et al., 1991;
Mattila et al., 1991), suggesting that the strong 3′–5′ exonuclease
activities of the hyperthermophilic family B polymerase in vitro
affect the fidelity of PCR.

DEVELOPMENT OF LA-PCR
DNA polymerases are classified into seven families based on the
amino acid sequence similarity (Figure 2). To date, the enzymes
utilized for genetic engineering have been only from families A
and B among them. Taq polymerase from family A has strong
extension ability and performs efficient amplification of the tar-
get DNA. However, their fidelity is low. On the other hand, the
Pfu polymerase from family B performs highly accurate PCR
amplification, but their extension rate is slow and a long exten-
sion time is required for each cycle of PCR. Therefore, a method
was required for the accurate PCR amplification of long DNA
regions. One simple idea that researchers considered trying was to
combine one enzyme each from family A and family B in a sin-
gle PCR reaction mixture. However, the actual PCR performance
was not so simple, and persevering trials were necessary to find
suitable conditions to develop a long and accurate (LA) PCR sys-
tem. The amplification of a ∼35 kb DNA fragment from λ phage
genomic DNA was successfully accomplished in 1994, by the mix-
ture of Klentaq1 (N-terminal deletion mutant of Taq polymerase)
and an archaeal family B DNA polymerase with 3′–5′ exonuclease
activity (Barns, 1994). Subsequently, commercial products for LA-
PCR were rapidly developed by several manufactures and LA-PCR
technology became popular throughout the world.

FAST AND HIGHLY ACCURATE PCR BY AN ARCHAEAL
FAMILY B DNA POLYMERASE
A family B DNA polymerase from the hyperthermophilic
archaeon, Thermococcus kodakarensis (this strain was originally
named Pyrococcus kodakaraensis KOD1), was identified and

FIGURE 2 | Distribution of DNA polymerases in the three domains of

life. The names of DNA polymerases vary, depending on the domains. Only
DNA polymerases with in vitro activity, if applicable, are shown. Eukaryotic
Polγ is from mitochondria and archaeal PolE is a plasmid-encoded enzyme.

applied to PCR (Takagi et al., 1997). This enzyme has the typi-
cal amino acid sequence of the archaeal family B enzymes, but
it showed a high extension rate while maintaining high fidelity,
and therefore, the commercial product, KOD DNA polymerase
(KOD Pol), was developed and became popular as a PCR enzyme.
Commercial products related to KOD Pol, including a hot start kit
with a monoclonal antibody and an LA-PCR kit with a mixture
of the wild type and 3′–5′ exonuclease-deficient mutant of this
enzyme, were subsequently developed by the manufacturers. The
underlying reason why this family B enzyme shows high extension
speed is interesting. Comparisons of the crystallographic struc-
tures and amino acid sequences of KOD Pol with other archaeal
family B enzymes revealed the logical explanation for the efficient
extension ability of this enzyme. Many basic residues are located
around the active site in the finger domain of KOD Pol. In addi-
tion, many Arg residues are located at the forked point, which is the
predicted as the junction of the template binding region and the
editing cleft. This unique structure may stabilize the melted DNA
structure at the forked point, resulting in high PCR performance
(Hashimoto et al., 2001).

BASIC RESEARCH ON ARCHAEAL DNA POLYMERASES
Research on DNA polymerases in hyperthermophilic archaea is
motivated by not only industrial applications, but also basic
molecular biology, to elucidate the molecular mechanisms of
genetic information processing systems at extremely hot temper-
atures. To identify all of the DNA polymerases in the archaeal cell,
we tried to separate the DNA polymerase activities in the total
cell extract of P. furiosus. Three major fractions showed nucleotide
incorporation activity after anion exchange column chromatogra-
phy (Resource Q column, GE Healthcare; Imamura et al., 1995).
In addition to the further purification of each fraction, the screen-
ing of the DNA polymerase activity from the heat-stable protein
library, made from E. coli cell extracts containing P. furiosus DNA
fragments, revealed a new DNA polymerase gene (Uemori et al.,
1997). The new DNA polymerase consisted of two proteins, the
small and large subunits, and we named it DP1 and DP2. There
two proteins are strictly required for both 5′–3′ polymerizing and
3′–5′ exonucleolytic activities in vitro. The genes encoding DP1
and DP2 are located in tandem on the P. furiosus genome and
form an operon. Interestingly, this operon has a total of five
genes, including a gene encoding a eukaryotic Cdc6/Orc1 pro-
tein (important for initiation of DNA replication) and a gene
encoding a Rad51-like protein (involved in homologous recom-
bination in Eukarya), in addition to DP1 and DP2 (Figure 3;
Uemori et al., 1997). This was the first report of a eukaryotic-
like initiator protein for DNA replication in Archaea. The amino
acid sequences of DP1 and DP2 are not similar to those of any
other DNA polymerases. After the discovery of this DNA poly-
merase, the total genome sequence of Methanococcus jannaschii
was published as the first complete archaeal genome (Bult et al.,
1996). One of the topics of this report was that only one DNA poly-
merase (family B) was found in the deduced amino acid sequences,
in contrast to the three DNA polymerases, PolI, II, and III, in
E. coli and several DNA polymerases in eukaryotic cells (Gray,
1996). We searched for homologous sequences of DP1 and DP2
in the M. jannaschii genome, and found them. The two genes
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FIGURE 3 | Physical map of the P. furiosus chromosomal segment

bearing the replication origin and the replication proteins. The genes
encoding PolD, the archaea-specific DNA polymerase, is located near the
replication origin, oriC, and are transcribed as an operon with the initiator
protein, Cdc6/Orc1, and a recombination protein, RadB.

were not present in tandem, but were located separately on the
genome. We cloned and expressed them in E. coli, and demon-
strated their polymerase and exonuclease activities in vitro. With
this report, DP1 and DP2 became recognized as a novel archaeal
DNA polymerase (Ishino et al., 1998). Three more total genome
sequences were subsequently reported, and the genes for DP1 and
DP2 were found in all them. Thus, this new DNA polymerase
became more generally found in Archaea (Cann et al., 1998). Due
to the lack of sequence homology to other DNA polymerases, we
proposed a new family, family D, for this enzyme (Cann and Ishino,
1999).

In parallel to the identification of DNA polymerase activities in
the cell extract of P. furiosus, we amplified a gene fragment for the
family B DNA polymerase from the genomic DNA of Pyrodictium
occultum, which grows at 105◦C, in an attempt to find a more heat-
stable DNA polymerase than that from P. furiosus. By using a set of
mixed primers based on the conserved sequences of motifs A and
C in the family B DNA polymerase, a single band was amplified.
However, two different fragments were found after the cloning and
sequencing of the PCR product. The full-length sequences of both
pol-like genes were cloned from the P. occultum genome by the
primer walking method, and they were expressed in E. coli. Both
of the gene products exhibited the heat stable DNA polymerase
activity (Uemori et al., 1995). Unfortunately, the performance of
these two enzymes in PCR was not better than Pfu polymerase,
and we discontinued further research on them. However, this was
the first report that an archaeal cell has two different family B DNA
polymerases. It was an exciting discovery because three family B
DNA polymerases, Polα, Polδ, and Polε, were known in eukarya,
and so we proposed that plural family B enzymes were a common
feature between Archaea and Eukarya. However, there is only one
gene encoding a family B DNA polymerase in the M. jannaschii
genome as described above. We subsequently found two family B
DNA polymerases in Aeropyrum pernix (Cann et al., 1999), and
thus the presence of two family B enzymes is not special for Pyro-
dictium, but is more general in Archaea. In the early stages of the
total genome sequences, all sequences were from Euryarchaeota
(Archaeoglobus fulgidus, Methanothermobacter thermautotrophi-
cus, Pyrococcus horikoshii) and the determination of the genome
sequence of a crenarchaeal organism was delayed until that of
A. pernix was reported (Kawarabayasi et al., 1999). Taken together

with the new knowledge at that time, it was predicted that eur-
yarchaeal organisms have one DNA polymerase each from family B
and family D, respectively, and crenarchaeal organisms have at least
two family B enzymes in the cell. This overview of the distribu-
tion of DNA polymerases in Archaea is generally correct as shown
in (Figure 4), which displays DNA polymerases in the archaeal
phyla (subdomains) including newly proposed phyla from recent
ecological research.

All of the original biochemical data for P. furiosus PolD from
our group, including thermostability, strong primer extension and
3′–5′ exonuclease activity, showed that PolD is a suitable enzyme
for PCR (Ishino and Ishino, 2001). However, PolD has not been
commercially developed. Recent analysis of Pyrococcus abyssi PolD
revealed that it is a suitable PCR enzyme (Killelea et al., 2014). On
the contrary, PolD from Thermococcus sp 9◦N does not have any
advantages as compared with the current commercially available
PCR enzymes (Greenough et al., 2014).

PROTEIN ENGINEERING OF THERMOSTABLE DNA
POLYMERASES
Once PCR technology was established, efforts to improve PCR per-
formance were pursued. At the early stage, hot start PCR was one of
the big improvements for the specific amplification. An antibody
against Taq polymerase was used to suppress its enzyme activity
by specific antigen–antibody binding at the low temperature, and
when PCR started from the denaturing temperature at more than
90◦C, the antibody became separated from the enzyme by heat
denaturation. This hot start PCR method is generally effective to
prevent non-specific amplification. For this purpose, another idea
was tested. A chemical modification of Taq polymerase inactivated
its enzymatic activity at low temperatures, but the modification
can be released by high temperature resulting in activation of Taq
polymerase to start PCR. This temperature-dependent reversible
modification of the Taq protein led to the commercial product,
AmpliTaq Gold, as the hot start PCR enzyme. Alternatively, a
cold-sensitive Taq polymerase with markedly reduced activity at
37◦C, as compared with the wild type enzyme, was produced by
site-directed mutagenesis, and this mutant is suitable for hot start
PCR (Kermekchiev et al., 2003).

Taq polymerase is a family A enzyme, and is applicable to prac-
tical dideoxy sequencing. However, the output of the sequencing
data was not ideal as compared with that from T7 DNA polymerase

FIGURE 4 | DNA polymerases in Archaea. The evolutionary relationships
of six phyla in the domain Archaea are schematically shown with the DNA
polymerases encoded in their genomes. The family B DNA polymerases
from extrachromosomal elements were excluded.
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(known commercially as Sequenase; see below). An ingenious pro-
tein engineering strategy produced a mutant Taq polymerase that
is more suitable for dideoxy sequencing than the wild type Taq
polymerase. E. coli PolI and Taq polymerase discriminate deoxy-
and dideoxynucleotide as substrates for the incorporation into the
DNA strand, and therefore, an excess amount (50 to 1000-fold)
of dideoxynucleotides must be present in the reaction mixture to
stop DNA strand synthesis by their incorporation. For this prop-
erty, the strength of each signal is not uniform, but is distinctly
unbalanced. However, T7 DNA polymerase equally incorporates
deoxynucleotides and dideoxynucleotides, and therefore, it is easy
to adjust the reaction conditions to provide very clear signals
(Tabor and Richardson, 1990). A mutant T7 DNA polymerase
lacking the 3′–5′ exonuclease activity was developed as a commer-
cial product, named Sequenase. A detailed comparison of E. coli
Pol I and T7 polymerase revealed one amino acid that discrim-
inates deoxy- and dideoxynucleotides, resulting in the successful
conversions of the properties from PolI to T7 and T7 to PolI (Tabor
and Richardson, 1995). This work was applied to Taq polymerase
and a modified Taq with F667Y, which endows Taq with T7-type
substrate recognition, was created (Tabor and Richardson, 1995).
This enzyme was called Thermosequenase, and it became popular
as the standard enzyme for the fluorescently labeled sequencing
method (Reeve and Fuller, 1995).

Another target for the creation of a new enzyme by mutage-
nesis is an enzyme that is more resistant to PCR inhibitors in
blood or soil, such as hemoglobin and humic acid. A mutant Taq
DNA polymerase with enhanced resistance to various inhibitors,
including whole blood, plasma, hemoglobin, lactoferrin, serum
IgG, soil extracts, and humic acid, was successfully created by
site-directed mutagenesis (Kermekchiev et al., 2009). The molec-
ular breeding of Thermus DNA polymerases by using a direct
evolution technique, compartmentalized self-replication (CSR;
Ghadessy et al., 2001), also generated a PCR enzyme with strik-
ing resistance to a broad spectrum of inhibitors with highly
divergent compositions, including humic acid, bone dust, copro-
lite, peat extract, clay-rich soil, cave sediment, and tar (Baar
et al., 2011). Furthermore, enzymes with a broad substrate speci-
ficity spectrum, which are thus useful for the amplification of
ancient DNA containing numerous lesions, were also obtained
by the CSR technique (Ghadessy et al., 2004; d’Abbadie et al.,
2007). Mutational studies of the O-helix of Taq DNA poly-
merase produced enzymes with reduced fidelity, which may be
useful for error-prone PCR (Suzuki et al., 1997, 2000; Tosaka et al.,
2001).

One successful strategy to produce improved DNA polymerases
is the “domain tagging.” For example, new DNA polymerases
were created by the flexible attachment of helix–hairpin–helix
(HhH) domains of Methanopyrus kandleri topoisomerase V
to the catalytic domains of Taq polymerase and Pfu poly-
merases. HhH is a widespread motif and generally functions
on sequence-nonspecific DNA binding. These hybrid enzymes
increased thermostability and became more resistant to salt and
several inhibitors such as phenol, blood, and DNA intercalat-
ing dyes (Pavlov et al., 2002). This tagging strategy was also
applied to ϕ29 DNA polymerase (de Vega et al., 2010) and Bacillus
stearothermophilus DNA polymerase (Pavlov et al., 2012). Another

successful example of the tagging strategy is the creation of com-
mercial product “Phusion DNA polymerase” (Figure 5). This is a
fusion protein of Pfu DNA polymerase and a DNA binding protein,
Sso7d, from S. solfataricus (Wang et al., 2004). Sso7d has strong
affinity to DNA, and it retains the fused Pfu DNA polymerase on
the DNA once it starts DNA synthesis along with the template
DNA strand. Phusion DNA polymerase compensates for the low
extension rate of Pfu DNA polymerase while maintaining its high
fidelity. This enzyme shows very high processivity and accurate
PCR performance, and is now widely used.

Another idea to improve the processivity of the archaeal family
B DNA polymerases was to use PCNA (proliferating cell nuclear
antigen) as a processivity factor. The ring-shaped PCNA encircles
the DNA strand and slides on it, and various binding proteins are
attached to PCNA (Pan et al., 2011). DNA polymerase is a typi-
cal PCNA binding protein and it is connected to the DNA strand
by PCNA during strand synthesis. This is why DNA polymerase
shows highly processive DNA synthesis in the presence of PCNA.
Based on this property of PCNA, scientists have searched for a
thermostable PCNA for PCR with DNA polymerase. However,
PCNA has not yet been successfully used for PCR. Unexpect-
edly, PCR is inhibited, rather than stimulated, in the presence
of PCNA. We developed a PCNA-assisted PCR method, which is
highly processive PCR with high fidelity, by using a mutant PCNA.
Originally, we determined the crystal structure of P. furiosus PCNA
(PfuPCNA; Matsumiya et al., 2001), and our continued research

FIGURE 5 | Schematic diagrams of processive PCR using a family B

DNA polymerase. (A) The DNA binding protein, Sso7d, from S.
solfataricus was fused with Pfu polymerase to confer high processivity to
this enzyme. (B) PCNA-assisted PCR. 1, Self-loading of mutant PCNA on
DNA; 2, PCNA-assisted processive DNA synthesis; 3, disassembly of the
complex after DNA synthesis.
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revealed that the intermolecular ion pairs between the protomers
of PfuPCNA contributed to its ring stability (Matsumiya et al.,
2003), which was greatly affected by the ionic strength of the
solution. Mutations of the amino acid residues involved in the
ion pairs clearly decreased its ring stability, but unexpectedly, a
less stable mutant PfuPCNA enhanced the primer extension reac-
tion of Pfu DNA polymerase in vitro (Matsumiya et al., 2003).
Therefore, we applied the mutant PfuPCNA to PCR and success-
fully amplified DNA fragments up to 15 kbp with a markedly
shorter reaction time, by Pfu DNA polymerase in the presence of
a PfuPCNA mutant under conditions where Pfu DNA polymerase
alone did not function (Ishino et al., 2012; Kawamura et al., 2012)
This PCNA-assisted PCR (Figure 5) is also a successful example
of processive PCR with high accuracy.

Because of the high sensitivity of PCR, very small amounts of
carry-over contaminants from previous PCRs are considered to be
one of the major sources of false positive results. The most com-
mon strategy to prevent carry-over contamination is to replace
dTTP with dUTP during PCR amplification, thereby producing
DNA containing uracil. Prior to initiating PCR, the PCR mixture
is treated with Uracil-DNA glycosylase (UNG). During the ini-
tial denaturation step temperature is elevated to 95◦C, resulting
in cleavage of apyrimidinic sites and fragmentation of carry-over
DNA. One problem of the archaeal family B DNA polymerase
to be used for this carry-over prevention is that they specifi-
cally interact with uracil and hypoxanthine, which stalls their
progression on DNA template strands (Connolly, 2009). The crys-
tal structure of the DNA polymerase revealed that read-ahead
recognition occurs by an interaction with the deaminated bases
in an N-terminal binding pocket that is specifically found in the
archaeal family B DNA polymerases (Fogg et al., 2002). Due to
this specific recognition of uracil, the archaeal family B DNA
polymerases, including Pfu DNA polymerase and KOD DNA
polymerase, are not suitable for carry-over prevention PCR. To
conquer this defect, a point mutation (V98Q) was introduced
into Pfu polymerase. This mutant enzyme is completely unable
to recognize uracil, while its DNA polymerase activity is unaf-
fected (Fogg et al., 2002; Firbank et al., 2008). Therefore, this
mutant Pfu polymerase is useful for the carry-over prevention
PCR. It is also useful for amplification of uracil-containing DNA,
such as damaged DNA and bisulfite-converted DNA for epigenetic
analysis.

FUTURE PERSPECTIVES
Polymerase chain reaction initiated a revolution in molecular biol-
ogy, and is now used daily not only in research, but also in the
general human society. PCR is a complete technology, but more
powerful and reliable enzymes for PCR are still desired. Notably,
an enzyme with faster, longer, and more efficient extension ability,
as compared to the properties of the current commercial prod-
ucts, will contribute to further improvements in PCR technology.
In addition to these basic abilities, DNA polymerases that can
incorporate various modified nucleotides, which are useful for
highly sensitive labeling, are valuable for single molecule anal-
ysis. Mutations of the DNA polymerase itself, by site-specific
or random mutagenesis, are effective ways to create modified
enzymes with improved PCR performance or specific properties

for in vitro DNA manipulations. An artificial evolution procedure
also has attracted a great deal of attention, for the creation of DNA
polymerases with novel activities (Brakmann, 2005; Henry and
Romesberg, 2005; Holmberg et al., 2005; Ong et al., 2006). Our
strategy of using environmental DNA as a genetic resource also
works well to investigate the structure–function relationships of
DNA polymerases. The region corresponding to the active cen-
ter of the DNA polymerizing reaction, in the structural genes of
Taq polymerase and Pfu polymerase, was substituted with PCR
fragments amplified from DNAs within soil samples from vari-
ous locations in Japan. The chimeric pol genes were constructed
within the expression plasmids for the Taq and Pfu polymerases
in E. coli. The chimeric enzymes thus produced, exhibited DNA
polymerase activities with different properties (Matsukawa et al.,
2009). The main focus for the future development of DNA poly-
merases is not on versatile enzymes, but rather on specialized
enzymes suitable for individual purposes, including whole genome
amplification, rapid detection of short DNA, new sequencing
technologies, etc. Continued research on DNA polymerases may
facilitate the invention of new genetic analysis technologies that
are completely different from PCR or PCR-related techniques. The
isothermal amplification without temperature cycling is more con-
venient and practical than PCR, and development of this type of
technique has been actively performed (Gill and Ghaemi, 2008).
Several methods practically utilized now are based on the strand
displacement (SD) activity of the DNA polymerases. DNA poly-
merases from ϕ29 bacteriophage and B. stearothermophilus are
the representative enzymes for the SD activity. A whole genome
amplification using the SD activity of ϕ29 DNA polymerase is
now especially useful for single cell analysis. Alternatively, heli-
case was applied for the dissociation of the double-stranded DNA
from an idea to mimic DNA replication in vivo (Vincent et al.,
2004). Although the helicase-dependent amplification (HDA)
technique has not been practically used (Jeong et al., 2009), brush-
ing up this technique may generate a powerful tool for genetic
engineering.
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