
ORIGINAL RESEARCH ARTICLE
published: 07 November 2014

doi: 10.3389/fmicb.2014.00505

Bacteria in Ostreococcus tauri cultures – friends, foes or
hitchhikers?
Sophie S. Abby1,2 , Marie Touchon1,2 , Aurelien De Jode 3,4 , Nigel Grimsley 3,4 and Gwenael Piganeau 3,4*

1 Institut Pasteur, Microbial Evolutionary Genomics, Paris, France
2 CNRS, UMR 3525, Paris, France
3 CNRS, UMR 7232, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France
4 Sorbonne Universités, UPMC Université Paris 06, UMR 7232, BIOM, Observatoire Océanologique, Banyuls-sur-Mer, France

Edited by:

Monica Medina, Pennsylvania State
University, USA

Reviewed by:

Fabrice Not, Centre National de la
Recherche Scientifique, France
Scott Clingenpeel, United States
Department of Energy Joint Genome
Institute, USA

*Correspondence:

Gwenael Piganeau, CNRS, UMR
7232, Biologie Intégrative des
Organismes Marins, Observatoire
Océanologique, Sorbonne
Universités – University Pierre and
Marie Curie, 66650 Banyuls-sur-mer,
France
e-mail: gwenael.piganeau@
obs-banyuls.fr

Marine phytoplankton produce half of the oxygen we breathe and their astounding
diversity is just starting to be unraveled. Many microbial phytoplankton are thought to
be phototrophic, depending solely on inorganic sources of carbon and minerals for growth
rather than preying on other planktonic cells. However, there is increasing evidence that
symbiotic associations, to a large extent with bacteria, are required for vitamin or nutrient
uptake for many eukaryotic microalgae. Here, we use in silico approaches to look for
putative symbiotic interactions by analysing the gene content of microbial communities
associated with 13 different Ostreococcus tauri (Chlorophyta, Mamilleophyceae) cultures
sampled from the Mediterranean Sea. While we find evidence for bacteria in all cultures,
there is no ubiquitous bacterial group, and the most prevalent group, Flavobacteria, is
present in 10 out of 13 cultures. Among seven of the microbiomes, we detected genes
predicted to encode type 3 secretion systems (T3SS, in 6/7 microbiomes) and/or putative
type 6 secretion systems (T6SS, in 4/7 microbiomes). Phylogenetic analyses show that the
corresponding genes are closely related to genes of systems identified in bacterial-plant
interactions, suggesting that these T3SS might be involved in cell-to-cell interactions with
O. tauri.
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INTRODUCTION
Eukaryotes acquired photosynthesis on multiple occasions from
endosymbiosis (Archibald, 2012; De Clerck et al., 2012), result-
ing in an astounding phylogenetic diversity of phytoplanktonic
eukaryotes (Not et al., 2012 for a review). The coexistence of
so many species competing for the same resources does not fit
theoretical prediction that in a stable environment, the best com-
petitor wins, a puzzle coined as the “paradox of the plankton”
(Hutchinson, 1961). However spatial and temporal environmen-
tal heterogeneities affect the environmental stability hypothesis
(e.g., Levins and Culver, 1971), and interactions among com-
petitors (e.g., Gross, 2008), as well as non-competitive interac-
tions with other species (e.g., mutualism, commensalism) may
increase their probability of coexistence. The “phycosphere” –
the region immediately surrounding and influenced by phy-
toplankton cells – is an important bacterial habitat (Bell and
Mitchell, 1972; Blackburn et al., 1998). Heterotrophic bacte-
rial communities are sustained by phytoplankton exudates and
play an important role in remineralization of nitrogen (N) and
phosphate (P). Many protist algae are mixotrophic, gaining
nutrients either by photosynthesis or by heterotrophy depend-
ing on environmental conditions (Flynn et al., 2013 for a review),
adding further complexity to plankton community assemblages.
Facilitative interactions have often been suggested by phycolo-
gists whose algal laboratory cultures were often most successful
when they did not eliminate all bacteria from the cultures

(Cole, 1982 for a review), and the generality of bacterial-
seaweed associations is now well known (Goecke et al., 2010;
Egan et al., 2013; Hollants et al., 2013 for reviews). For exam-
ple, some protists are known to fix nitrogen or carbon via their
cyanobacterial endosymbionts (reviewed in Nowack and Melko-
nian, 2010; Thompson and Zehr, 2013) and some chemical
pathways mediating algal-bacterial interactions were identified
(e.g., Seyedsayamdost et al., 2011; Patzelt et al., 2013; Syrpas
et al., 2014). Whether some phytoplanktonic eukaryotes evolved
specific interactions with bacteria beyond ecological facilitation
is still a matter of debate, and little information is available
on close algal-bacterial interactions for unicellular eukaryotes.
The study of interactions between planktonic microbes has been
long hampered by our lack of knowledge of these unicellular
organisms, especially for the smallest sized planktonic eukary-
otes, the picoeukaryotes (cell diameter size <2 μm). These
microorganisms often lack morphologically informative charac-
ters and are difficult to isolate and maintain in culture. For
example, species of the genus Ostreococcus are hard to discrim-
inate, and it is thus difficult to study species-specific inter-
actions between partners one cannot identify (Subirana et al.,
2013).

Early observations of physical attachment between some
diatom species and bacteria date back to the first cyto-
logical observations (e.g., the diatom Skeletonema costa-
tum in Droop and Elson, 1966). A pioneering study of
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bacteria-phytoplankton interactions screened the bacterial con-
tent of microalgal cultures by standard microbiological tech-
niques (Berland and Maestrini, 1969). With the development
of molecular biology tools, ribosomal RNA genes sequencing
and barcoding approaches allowed establishing links between
phytoplankton and bacterial community dynamics in natural
communities (Fukami et al., 1992; Rooney-Varga et al., 2005)
and culture collections of diatoms and dinoflagellates (Schäfer
et al., 2002; Jasti et al., 2005; Sapp et al., 2007). Recently,
integrative approaches associating sequence-based identifica-
tion of cells, cytometry, cell sorting and tracer experiments
with 15N and 13C, demonstrated a mutualistic interaction
between N2-fixing cyanobacteria and a phytoplanktonic prym-
nesiophyte (Thompson et al., 2012). Cell sorting and single
cell sequencing of natural isolates now enables to identify can-
didate bacteria–protist partnerships without cultivation, and
these techniques promise to uncover overlooked interactions
(Martinez-Garcia et al., 2012).

The development of next generation sequencing now enables
to sequence microalgae and associated microbiomes and to inves-
tigate the molecular toolkit of putative interactions from gene
content analyses. For example, symbiosis involving nitrogen fix-
ation requires the presence of the nitrogenase operon in the
bacterial partner, and complementation for vitamin biosynthe-
sis requires the presence of the genes responsible for the vitamin
B pathway in the bacteria along with suitable algal uptake mecha-
nisms (Table 1). In some plant-bacterium interactions, physical
cell-to cell-interactions occur via specialized protein secretion
systems such as the type 3 secretion systems (T3SS; Kosarewicz
et al., 2012), or the T4SS (Smillie et al., 2010). These systems are
sophisticated molecular needles that enable the translocation of
bacterial effectors from the bacterial cytoplasm to the eukaryotic
cell (Figure 1). These systems are involved in both antagonistic
and beneficial interactions between bacteria and eukaryotes.

While picoalgae of the genus Ostreococcus are distributed
worldwide (Piganeau and Moreau, 2007; Demir-Hilton et al.,
2011), Ostreococcus tauri, first isolated from a French
Mediterranean coastal lagoon and described as the smallest

eukaryotic species known (Courties et al., 1994; Chrétiennot-
Dinet et al., 1995) has been found mainly in coastal regions and
lagoons (Subirana et al., 2013). Within a 3-year period (2006–
2008) of sustained effort, we could isolate 17 new wild-type clonal
lines of O. tauri and characterize them with a few genetic markers
(Grimsley et al., 2010). Interestingly, none of the O. tauri cul-
tures we retained were completely axenic despite initial treatment
with antibiotics. Here, we postulate that the bacterial micro-
biome consistently present in successful O. tauri cultures could
be required for the health of these cultures. We present an analy-
sis of the bacterial microbiome associated with these cultures and
apply recently developed tools to mine the O. tauri microbiome
for protein secretion systems involved in bacteria-eukaryotes
interaction.

MATERIAL AND METHODS
BIOLOGICAL DATA
We analyzed data from 13 O. tauri strains that were sampled from
surface water in five locations by the North-West Mediterranean
sea previously described (Blanc-Mathieu et al., 2013). Cultures
were isolated by serial filtrations, addition of Keller’s salts as a sup-
plement (Keller et al., 1987), and growth in a culture chamber in
the laboratory. These strains were established from clonal culture
by plating out in gelled medium and re-inoculating cells picked
from a single colony in liquid medium to obtain cell densities
above 107 ml−1. One strain was the control O. tauri laboratory
strain RCC4221, cloned from the RCC745 culture (Courties et al.,
1994), and the other 12 were isolated more recently as described
in Grimsley et al. (2010). Despite the treatment by antibiotics as
described in Grimsley et al. (2010); kanamycin 20 μg/ml, peni-
cillin 25 μg/ml, and neomycin 20 μg/ml final concentrations,
none of the strains were found to be completely axenic. This
is the case not only for the 13 strains analyzed here, but also
for 100s of other isolations made by plating out for single algal
cells, including O. mediterraneus, Micromonas sp. and Bathycoc-
cus prasinos (Nigel Grimsley, unpublished observations). Three
micrograms of total DNA was extracted from each culture as previ-
ously described (Derelle et al., 2006). Genomic DNA of the strains

Table 1 |The Molecular toolkit of bacteria – eukaryote interactions: examples of bacterial target genes for screening genomes and metagenomes.

Type Name of Pathway Phylogenetic spread Number of genes Reference

Directed secretion of

bacterial proteic effectors

Type 3 secretion system

Type 4 secretion system

Type 6 secretion system

Proteobacteria and Chlamydiae

Proteobacteria

Mostly proteobacteria

20–25

12

15

Galan and Wolf-Watz (2006)

Backert and Selbach (2008),

Bardill et al. (2005)

Pukatzki et al. (2006)

Metabolic complementation

on Nitrogen

Nitrogenase – diazotrophy Proteobacteria, Cyanobacteria,

Firmicutes, Euryarchaea

Operon of five genes:

NifHDKEN

Raymond et al. (2004),

Seefeldt et al. (2009)

Metabolic complementation

on vitamin synthesis

B12

B1, B2

Euryarchea

Proteobacteria

Firmicutes

Actinomycete

Cyanobacteria

3–11 genes Helliwell et al. (2011),

Wagner-Döbler et al. (2009),

Croft et al. (2005)
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FIGURE 1 | Assembled structure of the type 3 secretion system

(modified from Abby and Rocha, 2012). This system is made of an
extracellular part for close contact with host cell, and a
membrane-associated part containing the core secretion apparatus. The
components with bright colors correspond to the most conserved
components, and are thus the one searched by sequence similarity to
assess the system’s presence in the assembled sequences.

was randomly sheared into ∼250-bp fragments. The libraries
created from these fragments were sequenced on an Illumina
GAIIx and Hiseq system at the Joint Genome Institute1 Com-
munity Sequencing Program (CSP-129). Sequence data for strains
RCC1108, RCC1114, RCC1115, RCC1116, RCC1558, RCC1559,
and RCC4221 were 76 bp paired-end reads (depth of coverage
for the algal genome 160-fold to 340-fold) and sequence data of
strains RCC1110, RCC1112, RCC1117, RCC1118, RCC1123, and
RCC1561 were 101 bp paired-end reads (depth of coverage for the
algal genome 780-fold to 1130-fold).

EXTRACTION OF BACTERIAL SEQUENCES AND TAXONOMIC
AFFILIATION
Paired-end data of each strain were mapped to the refer-
ence nuclear genome of O. tauri (GenBank accession numbers:
CAID01000001-CAID01000020, (Blanc-Mathieu et al., under
review) with the Burrow-Wheeler Aligner (BWA) with parame-
ters n = 6 l = 35 k = 3 e = 3 (Li and Durbin, 2009). Read pairs
with no read mappings to the genome sequence were identified
based on SAM flags and extracted in fastq files with the seqtk pack-
age2. Paired-end reads were assembled with Velvet (Zerbino and
Birney, 2008) using default parameters and various k-mer sizes.
The assembly with the highest median contig length (N50) was
retained.

To remove remaining Ostreococcus sequences that might have
been too divergent to be mapped on to the reference sequence,
contigs with more than 80% amino-acids identity over 90 bp with
available Mamiellales coding sequences were discarded using the

1http://www.jgi.doe.gov/
2https://github.com/lh3/seqtk

PRASINOID interface3 (Vaulot et al., 2012). The remaining con-
tigs were analyzed via MG-RAST (Meyer et al., 2008) on the Refseq
protein database. Taxonomic affiliations for each microbiome were
downloaded from the MG-RAST server and analyzed using in-
house scripts to retrieve all contigs with an alignment against
Refseq longer than 30 amino-acids and with more than 80%
sequence identity.

The assembled bacterial contigs for each culture can be down-
loaded from http://www.obs-banyuls.fr/piganeau/publications/
data/.

ESTIMATION OF UBIQUITY AND ABUNDANCE OF BACTERIA
The abundance of each bacterial group was measured as the sum
of reads affiliated to one group, divided by the total number of
affiliated reads for each microbiome. Ubiquity was defined as the
number of occurrences of a genus in the 13 metagenomes.

To estimate the bacteria to Ostreococcus-cells ratio, we assumed
that the number of reads affiliated to Ostreococcus, rO is equal to
the product of the number of Ostreococcus cells in the sample, CO,
by the genome size, GO, by a constant αO (representing the product
of the DNA extraction efficiency and the sequencing efficiency):

RO = αOGOCO (1)

The number of reads affiliated to bacteria, RB, is equal to the sum
of the product of CBi the number of bacterial cells from each bac-
terial strain i, by GBi their average genome size, by a constant αBi.
Assuming an equal α. and genome size between bacteria (marine
bacteria have a genome in the 2–7 Mb size range), the complete
number of bacterial reads can be expressed as the product of CB,
GB , and αB.

RB =
∑

i

αBiGBiCBi ≈ αBGBCB

From these two equations we can estimate the ratio of bacterial
to Ostreococcus cells as a function of two parameters: the rela-
tive genome size differences, the relative number of reads and the
relative α. parameter between bacteria and Ostreococcus DNA.

CB

CO
= αOGORB

αBGBRO
(2)

Statistical analyses and ubiquity abundance plots were done
with R4.

SEARCH FOR NITROGENASES
To screen for the presence of nitrogenases, we used the amino-acid
sequences of the different types of nitrogenases described in Ray-
mond et al., (2004). We processed the output of the blastx of this
dataset against the assemblies to retain all hits with amino-acid
identity greater or equal to 60% and total alignment length higher
than 100 amino-acids. Ten cultures contained hits with these
criteria. Further analysis of theses hits did not confirm that the
encoding genes were nitrogenases, but genes belonging to related
gene families, like hydrogenases, so that we did not proceed to
further analysis.

3http://www.obs-banyuls.fr/prasinoidtest
4http://www.R-project.org
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IDENTIFICATION AND PHYLOGENETIC ANALYSIS OF PROTEIN
SECRETION SYSTEMS
Tools were recently developed to identify type 3, type 4, and
type 6 secretion systems from similarity search of essential com-
ponents and gene content/gene organization criteria (Abby and
Rocha, 2012; Gama et al., 2012; Guglielmini et al., 2014). They
were used with the MacSyFinder framework (Abby et al., 2014)
to detect these systems in the assembled contigs of the micro-
biomes. Phylogenetically relevant components of T3SS detected
in the microbiome were analyzed (i.e., SctJ, SctN, SctQ, SctR,
SctS, SctT, SctU, and SctV; see Figure 1). Their sequences
were introduced into the appropriate pre-existing gene fam-
ilies (dataset of Abby and Rocha, 2012). We aligned their
sequences with Muscle (default parameters) and selected infor-
mative sites with BMGE (BLOSUM30 similarity matrix, gap rate
cut-off = 0.20, sliding window size = 3, entropy score cut-
off = 0.5; Edgar, 2004; Criscuolo and Gribaldo, 2010). Then, these
alignments were concatenated, and a phylogenetic tree including
microbiome sequences was built with RAxML (Le and Gascuel
matrix + 4-categories-discretized Gamma distribution for rate
variation among sites + empirical frequencies of amino-acids)
with 100 rapid bootstraps (Stamatakis, 2006; Le and Gascuel,
2008).

RESULTS
WHICH BACTERIA LIVE IN O. tauri CULTURES?
MG-RAST taxonomic affiliation of contigs based on sequence
identity to the Refseq protein database listed 149 distinct bacte-
rial taxonomic affiliations at the genus level. A few contigs were
assigned to higher taxonomic ranks like alphaproteobacteria or
gammaproteobacteria. We estimated the average abundance of
each group as the proportion of reads affiliated to a bacterial
group to the total number of reads assigned to bacteria. Based on
these estimates, we found no bacterial group to be both ubiqui-
tous and abundant throughout the 13 microbiomes (Figure 2).
The most ubiquitous bacterial group is Flavobacterium and is
found in 10 out of 13 cultures, with an average abundance of
18% of reads in the 10 microbiomes. The most abundant group

of bacteria is Limnobacter as this genus is represented by 60% of
the reads in the three microbiomes where it was detected. Other
abundant groups are Pseudomonas, Roseovarius, and Oceanocaulis
(Figure 2), each group represent more than 10% of the reads.
The most abundant bacterial groups for each microbiome are
reported in Table 2. They belong to seven different genera for
the 13 microbiomes; Flavobacterium, Pseudomonas, and Lim-
nobacter dominate in the six microbiomes with more than one
bacterium for 10 O. tauri cells, while Sphingomonas, Robig-
initalea, Oceanocaulis, and Roseovarius are the most abundant
bacterial groups in the seven microbiomes with less than one
bacterium for 10 O. tauri cells (see below). These genera belong
to the Bacteroidetes and Proteobacteria phyla, with three orders
present for the latter: alphaproteobacteria, betaproteobacteria, and
gammaproteobacteria.

HOW MANY BACTERIA PER O. tauri CELL?
We used the number of reads affiliated to O. tauri and to the most
abundant bacterial groups to estimate the number of bacterial
to microalgal cells using Eqn (2). This estimation relies on the
assumption that the DNA extraction protocol and the sequencing
are not biased towards O. tauri or bacteria. In a 45 marine bacterial
genomes dataset, the average genome size was estimated to be
∼4 Mb (Moran and Armbrust, 2007). We used this value as a
proxy for genome size of bacteria associated to O. tauri strains.
Since marine bacterial genome size varies between 2 and 7 Mb, we
do not expect more than a twofold difference in our estimate. The
number of bacteria for 10 O. tauri cells varies by two orders of
magnitude between cultures: from 0.02 to 4 (Table 2).

LOOKING FOR BACTERIAL FACTORS INVOLVED IN INTERACTIONS WITH
EUKARYOTES
Type 3 secretion systems have evolved and diversified into rec-
ognizable sub-types to interact with different kinds of eukaryotic
cells (animal vs. plant), and participate in different types of inter-
action with eukaryotes (antagonistic vs. beneficial; Troisfontaines
and Cornelis, 2005; Abby and Rocha, 2012). The human pathogen
Salmonella uses two types of T3SS (SPI-1 and SPI-2) at different

FIGURE 2 | Ubiquity versus abundance (average % of reads across microbiomes where the group is present) of bacterial groups after MGRAST

analysis of the 13 microbiomes.

Frontiers in Microbiology | Microbial Symbioses November 2014 | Volume 5 | Article 505 | 4

http://www.frontiersin.org/Microbial_Symbioses/
http://www.frontiersin.org/Microbial_Symbioses/archive


Abby et al. Bacteria in Ostreococcus tauri cultures

Table 2 | Number of reads assigned to Ostreococcus tauri and bacteria for each cultured strain and estimation of the number of bacterial cells

for 10 O. tauri cells from Eqn (2) for the most abundant bacteria.

Strain Ostreococcus tauri

reads (x105)

Total Bacterial

reads (x105)

Taxonomic Affiliation+ of most

abundant bacteria [% reads]

CB/(10 CO)

RCC1108* 1161 185 Pseudomonas (γP) [70] 3

RCC1110* 484 69 Flavobacterium (F) [59] 2

RCC1112* 840 299 Limnobacter (βP) [43] 4

RCC1114* 331 34 Limnobacter (βP) [73] 2

RCC1115 459 3 Sphingomonas (αP) [13] 0.02

RCC1116 448 22 Robiginitalea (F) [58] 1

RCC1117* 1037 248 Limnobacter (βP) [66] 4

RCC1118 1219 6 Oceanicaulis (αP) [80] 0.1

RCC1123 1151 72 Oceanicaulis (αP) [41] 1

RCC1558 423 2 Oceanicaulis (αP) [47] 0.05

RCC1559 235 3 Oceanicaulis (αP) [98] 0.3

RCC1561* 1096 153 Flavobacterium (F) [38] 1

RCC4221 301 14 Roseovarius (αP) [57] 1

Genome size of O. tauri is 13 Mb and bacterial genome size was assumed to be 4 Mb.
*T3SS detected from microbial assemblage.
+α, β, γ P, alpha, beta, gamma Proteobacteria; F, Flavobacteria.

stages of host infection (Valdez et al., 2009), while nitrogen-fixing
Rhizobiales use a particular T3SS (Rhizobiales type) to establish
symbiotic interactions with host plants (Dai et al., 2008; Kambara
et al., 2009). Therefore, the presence of T3SS components in a bac-
terial dataset is a hallmark of bacterium-eukaryote interactions,
and the phylogenetic typing of these components can help identi-
fying the kind of interaction, and the type of targeted eukaryotic
cell. Among T4SS – classically dedicated to conjugation – some are
involved in plant pathogenesis (e.g., tumor formation, Pitzschke
and Hirt, 2010) but also in plant symbiosis (Hubber et al., 2004).
T6SS allow the translocation of effectors from bacteria to eukary-
otic cells in antagonistic relationships, but were also proved to
target bacteria for bacterial competition (Pukatzki et al., 2007;
Hood et al., 2010; Kapitein and Mogk, 2013). T6SS are virulence
factors for several phytopathogens, and were observed in plant
symbionts genomes (Amadou et al., 2008; Wu et al., 2008). We
looked for signs of these putative factors of bacterium-eukaryote
interaction in the microbiota associated to O. tauri. Using both
gene content and close linkage distance between genes as criteria
for the detection of T4SS and T6SS (Gama et al., 2012; Guglielmini
et al., 2014), there was no evidence of T4SS seemingly involved in
protein secretion, but we could detect six occurrences of putative
T6SS in four different microbiomes (Table S1).

Using the same kind of detection methods for type 3 secre-
tion systems (Abby and Rocha, 2012), we could detect seven
occurrences of putative T3SS in contigs from six different micro-
biomes (Figure 3). We took advantage of a previous study
to sub-type T3SS: we included the T3SS’ components detected
in O. tauri’s microbiome in a reference phylogeny annotated
with T3SS sub-types and corresponding host types (Figure 4
of Abby and Rocha, 2012). Interestingly, detected T3SS con-
sistently placed within, or as sister-groups of plant-associated

T3SS sub-types with high rapid bootstrap supports (Figure 4).
A first sub-type placed within the “Hrp1” T3SS family, which
includes many systems of plant pathogens and some involved
in plant symbiosis (i.e., Pseudomonas syringae, Dickeya dadan-
tii). This system, whose contig was assigned to the Pseudomonas
genus, was found in a single microbiome and showed sequence
and genetic architecture highly similar to the T3SS observed in
the genome of P. brassicacearum, a root-associated plant sym-
biont (Ortet et al., 2011). Three T3SS occurrences seemed to
correspond to a single system that placed within the clade of
plant-symbionts, Rhizobiales T3SS. This system showed high sim-
ilarity with a Mesorhizobium system (Rhizobiales species, 50–70%
identity in a Blast analysis). The three corresponding contigs
were attributed to three different alphaproteobacterial species:
2 Rhizobiales and 1 Rhodobacterales. Intriguingly, a third type
of T3SS found in two microbiomes fell outside of the defined
T3SS families, but constituted a sister-group of the Hrp1 family
(Figure 4). The closest system found in the phylogeny was that
of Herbaspirillum seropedicae, a plant symbiont, and both taxo-
nomic attribution of contigs and similarity searches of the system
using Blast and MG-RAST pointed at the species Limnobacter sp.,
a Burkholderiales.

Overall, one of the detected T6SS gene cluster was found on
a contig assigned to the Pseudomonas genus, in the same micro-
biome where a Pseudomonas T3SS was inferred (RCC1108, see
Table S1; Figure 4). Five of the six detected T6SS were found in
three microbiomes showing also evidence of T3SS gene clusters.

DISCUSSION
Despite the efforts of many laboratories over the last century to
define the media and growth conditions required for different
marine algae, most have so far remained recalcitrant to growth

www.frontiersin.org November 2014 | Volume 5 | Article 505 | 5

http://www.frontiersin.org/
http://www.frontiersin.org/Microbial_Symbioses/archive


Abby et al. Bacteria in Ostreococcus tauri cultures

FIGURE 3 | Genetic architecture of microbiomeT3SS. The genetic architecture of T3SS detected in microbiomes’ contigs and of the closest systems found in
a complete genome is displayed along the corresponding phylogeny. The color of boxes corresponds to the colors in Figure 1.

in a completely defined medium, and require seawater to grow
over essential extra nutrients (e.g., phosphate and nitrate). Sea-
water is a complex solution of chemicals and organisms that can
vary considerably in its composition between geographically dis-
tant regions, complicating the development of appropriate culture
media. Collections are thus often located in marine biology labo-
ratories close to coastlines. The majority of algal cultures cannot
be maintained axenically, rendering physiological analyses of their
nutritional requirements more difficult. Indeed, many unicellu-
lar algae are mixotrophic, and can satisfy part of their nutritional
requirements by ingesting bacteria.

Despite antibiotics treatments and the isolation of single cells
from colonies in soft agarose, none of the O. tauri strains
were axenic. This was the case not only for the 13 strains
analyzed here, but also for 100s of other isolations made by
plating out for single algal cells (unpublished observations).
In addition, bacterial cultures issued from media of such cul-
tures as well as observations of algal strains by flow cytometry
almost always confirmed the presence of common seawater bac-
teria (unpublished data). These observations strongly suggest
that either O. tauri adhere to bacterial cells during the cul-
tivation process, or that O. tauri require some unidentified
substance from bacterial cells for growth. Recent experimental
evidence and genome analysis suggests that O. tauri is vitamin
B12-dependent (Helliwell et al., 2011). We provided three vita-
mins (thiamine [B1]), biotin [H], and cyanocobalamin [B12])
as described for standard Keller’s medium (Keller et al., 1987),
making unlikely the selection of bacteria for vitamin B12 pro-
duction. In order to identify putative supplements required by
isolated O. tauri cells for growth, future work could focus in

the use of sterile artificial seawater, and step-by-step introduction
of candidate substances. But considering the great deal of effort
already put in attempts to define suitable culture media for this
kind of algae (Keller et al., 1987), it might be more efficient
to first isolate associated bacteria and investigate their influ-
ence on the physiology of the microalgae (Le Chevanton et al.,
2013).

The bioinformatic analyses performed here confirmed the pres-
ence of a diverse collection of common marine bacteria in O.
tauri cultures. Flavobacteria was largely found in our samples.
This important class of Bacteroidetes often constitutes a signif-
icant portion of marine microbial communities and has been
reported in microalgal cultures (Berland and Maestrini, 1969;
Mann et al., 2013). Similarly, Bacteroidetes have also been reported
in the surface waters of NW Mediterranean sea (Lami et al., 2009).
Flavobacteria are found both free-living and attached to organic
aggregates and are considered as major mineralizers of organic
matter (Kolton et al., 2013). Interestingly, the type 3 and type 6
secretion systems have been detected in the microbiomes with
higher bacterial prevalence. Microbiomes for strains that have a
higher ratio of number of bacteria to O. tauri cells (Table 2), are
more likely to contain a detectable T3SS (Wilcoxon signed rank
test p < 0.01). The taxonomic affiliation of the contigs containing
a predicted T3SS correspond to the most abundant bacterial group
in the microbiome except for RCC1110 and RCC1561, whose T3SS
contigs were assigned to alphaproteobacteria while the most abun-
dant bacterial group is a Flavobacterium. The contigs containing
the secretion systems were attributed to genera with evidence of
species interacting with eukaryotes via protein secretion systems.
Finally, no single strain of bacterium was found in all of the
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FIGURE 4 |The phylogeny of T3SS reflects host-cell type. The T3SS
detected in O. tauri microbiomes were integrated in a reference phylogeny of
the T3SS (Abby and Rocha, 2012). T3SS phylogeny shows a diversification of
T3SS into host-cell adapted sub-types: animal associated, and plant

associated (“ecology” panel, and column). While most of these sub-types are
mostly involved in pathogenic interactions with plants or animals, some Hrp1
T3SS and all Rhizobiales T3SS are involved in symbiotic associations with
plants.

O. tauri cultures. Since all these bacteria were isolated from the
same host species, it could seem unlikely at first that very specific
physical interactions or nutritional requirements exist between
O. tauri and its microbiome. However, several biases could par-
tially explain the heterogeneity observed between the microbiomes
both in terms of taxonomic diversity, and therefore gene content.

Firstly as the effective detection of the secretions systems rely on
sequence similarity search and the genetic organization of their
components, it heavily depends on the sequencing and assem-
bly quality. In the context of NGS approaches for metagenomics,
whose short reads are difficult to assemble, it is likely that we
missed occurrences of systems due to contig assembly errors and
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biases. Secondly, the filtration steps in O. tauri isolation is likely
to sort out aggregates of bacterial cells, and as a consequence,
some bacteria of interest to understand the growth of O. tauri.
Finally, antibiotics treatment had also an impact on the bacte-
rial populations we analysed in this study, and this might also
explain some of the heterogeneity in terms of bacterial diver-
sity and gene content. To specifically find preferred associated
bacteria we should repeat this work without using antibiotics,
even if these conditions, it may be difficult to isolate Ostreococcus
strains.

In conclusion, we provide evidence of pervasive bacterial
presence in O. tauri cultures, despite initial antibiotic treat-
ment. We provide evidence for putative plant-associated T3SS
in six microbiomes, and several cases of T6SS in four micro-
biomes (three displayed both systems). For now there are no
studies showing a clear association between T6SS sub-types and
their function, thus it is hard to define from genomic analy-
ses whether the systems we detected are targeting bacteria or
eukaryotes. But in both cases, they might be parts of inter-
actions between bacteria and eukaryotes, even indirectly: via
bacterial competition, T6SS were found to serve as colonization
factors in the plant pathogen Agrobacterium tumefaciens, (Ma et al.,
2014) and to provide plants a protection against pathogens in P.
fluorescens (Decoin et al., 2014). On the other hand, the anal-
ysis of detected T3SS gave a clearer picture as it clearly shows
they are involved in interaction with plant cells. The three sub-
types they belong to – or the groups they are closer to, all
contain systems typical of plant symbiosis, and pathogenicity
in the case of the Hrp1 group. Further experimental work is
required to determine the impact of these secretion systems in
O. tauri growth, while keeping in mind that interactions are
dynamic, and that the same bacteria may change between “friend,”
“foe,” or “hitch-hiker” over time or environmental conditions
(Andrade-Domínguez et al., 2014).
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