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The McMurdo Dry Valleys of Antarctica are considered to be one of the most physically
and chemically extreme terrestrial environments on the Earth. However, little is known
about the organisms involved in nitrogen transformations in these environments. In this
study, we investigated the diversity and abundance of ammonia-oxidizing archaea (AOA)
and bacteria (AOB) in four McMurdo Dry Valleys with highly variable soil geochemical
properties and climatic conditions: Miers Valley, Upper Wright Valley, Beacon Valley and
Battleship Promontory. The bacterial communities of these four Dry Valleys have been
examined previously, and the results suggested that the extremely localized bacterial
diversities are likely driven by the disparate physicochemical conditions associated with
these locations. Here we showed that AOB and AOA amoA gene diversity was generally
low; only four AOA and three AOB operational taxonomic units (OTUs) were identified
from a total of 420 AOA and AOB amoA clones. Quantitative PCR analysis of amoA genes
revealed clear differences in the relative abundances of AOA and AOB amoA genes among
samples from the four dry valleys. Although AOB amoA gene dominated the ammonia-
oxidizing community in soils from Miers Valley and Battleship Promontory, AOA amoA
gene were more abundant in samples from Upper Wright and Beacon Valleys, where
the environmental conditions are considerably harsher (e.g., extremely low soil C/N ratios
and much higher soil electrical conductivity). Correlations between environmental variables
and amoA genes copy numbers, as examined by redundancy analysis (RDA), revealed that
higher AOA/AOB ratios were closely related to soils with high salts and Cu contents and low
pH. Our findings hint at a dichotomized distribution of AOA and AOB within the Dry Valleys,
potentially driven by environmental constraints.
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INTRODUCTION
Nitrification represents the oxidative part of the nitrogen (N)
cycle and refers to the two-step process where ammonia is oxi-
dized to nitrite and subsequently to nitrate. This process is
considered a central biological pathway in the global N bud-
get and productivity of terrestrial and aquatic ecosystems. From
1890 until 2004, scientists believed that only bacteria medi-
ated aerobic ammonia oxidation. The recent discovery of a
chemoautotrophic ammonia-oxidizing archaeon, Nitrosopumilus
maritimus (Könneke et al., 2005), transformed our concept of the
nature of organisms involved in nitrification, highlighting the
importance of ammonia-oxidizing archaea (AOA) as potential
participants in global biogeochemical N transformations (Hal-
lam et al., 2006; Brochier-Armanet et al., 2008; de la Torre et al.,
2008; Pester et al., 2012). The phylogenetic uniqueness of these
archaea led to the creation of a novel archaeal phylum, Thaumar-
chaeota, comprising all AOA (Brochier-Armanet et al., 2008). The
idea that nitrification activities from AOA greatly contribute to the

global N-cycle is now generally accepted, and widespread distri-
bution of AOA has been demonstrated (e.g., Francis et al., 2005;
Biller et al., 2012; Stahl and de la Torre, 2012). Quantification of
the relative abundances of AOA and ammonia-oxidizing bacteria
(AOB) in different habitats (e.g., Leininger et al., 2006), including
in Antarctic Peninsula soils (Jung et al., 2011), indicated a gen-
eral dominance of AOA over AOB. However, ammonia-oxidizing
betaproteobacteria have been shown to be more abundant and
potentially more active than AOA in some estuarine and coastal
sediments (Santoro et al., 2008; Magalhães et al., 2009), suggest-
ing that the relative abundances and functional importance of
AOB vs. AOA could vary in natural ecosystems. Recent studies
indicated that environmental drivers like substrate (i.e., NH4

+)
concentration, pH, oxygen availability, salinity, among others,
might be responsible for differentiating AOA and AOB abundance
and distribution (Martens-Habbena and Stahl, 2011; Hatzen-
pichler, 2012; He et al., 2012; Prosser and Nicol, 2012; Zhalnina
et al., 2012; Zhang et al., 2012). Despite previous attempts to
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evaluate drivers of natural AOA and AOB population dynam-
ics, there remain large gaps in our understanding of factors
that control AOA vs. AOB prominence in numerous ecosystems
(Hatzenpichler, 2012; Prosser and Nicol, 2012; Monteiro et al.,
2014).

The distribution and abundance of biota in the McMurdo Dry
Valleys of Victoria Land in Antarctica are subject to strong spatial
structuring due to the extreme heterogeneity in soil geochem-
ical properties and severe climate gradients (Wood et al., 2008;
Pointing et al., 2009; Lee et al., 2012; Magalhães et al., 2012). The
dominance of environmental filters, together with the trophic sim-
plicity of the ecosystem, makes Dry Valley soils a perfect model for
investigating the physicochemical drivers of microbial biodiver-
sity and function. In this study, we examined how environmental
variables may determine the diversity and abundance of AOA and
AOB amoA genes in the Dry Valleys. Although N is thought to
be the limiting factor in many terrestrial Antarctic ecosystems,
particularly in the Dry Valleys, little is known about the abun-
dance and diversity of organisms and genes involved in the N
cycle (Barrett et al., 2007; Hopkins et al., 2008; Cary et al., 2010;
Niederberger et al., 2012). Studies of microbial N processes in
the Dry Valleys have primarily focused on the N-fixation path-
way. These studies demonstrated an unexpectedly high diversity
of diazotrophs in Dry Valley soils (Cavacini, 2001; Wood et al.,
2008; Pointing et al., 2009), suggesting that both cyanobacteria
and a diverse range of heterotrophic diazotrophs are important
players in the total input of N to these extreme oligotrophic
environments (Niederberger et al., 2012). Interestingly, previous
surveys of bacterial 16S rRNA genes in the Dry Valleys recov-
ered sequences closely related to AOB groups (i.e., Nitrosomonas;
Niederberger et al., 2008; Lee et al., 2012), and a GeoChip anal-
ysis of Dry Valley soils identified genes involved in the N cycle
(Chan et al., 2013). However, there is very limited research on the
dynamics of AOB and archaea in these hyper-arid cold deserts.
Reports of bacterial and archaeal amoA abundance and diversity
are so far restricted to the considerably wetter Antarctic Peninsula
(Yergeau et al., 2007; Jung et al., 2011). Recent studies reporting
limited diversity and abundance of Archaea in the Dry Valleys have
identified a consistently high proportion of sequences (80–99%)
affiliated with Thaumarchaeota (formerly known as Crenarchaeota
Marine Group 1.1b; Ayton et al., 2010; Richter et al., 2014). These
findings represent cursory evidence for archaeal nitrification in
the Dry Valleys.

In this study, we investigated the distribution, abundance,
and diversity of AOA and AOB amoA genes in four McMurdo
Dry Valleys, where soil bacterial diversity and geochemistry have
been previously described (Lee et al., 2012). The previous study
reported a high degree of physicochemical heterogeneity and
distinct bacterial communities, likely driven by the disparate
physicochemical conditions. We hypothesized that such physic-
ochemical heterogeneities exert similar selective effects on AOA
and AOB amoA genes distribution and abundance.

MATERIALS AND METHODS
DRY VALLEYS SOIL SAMPLES COLLECTION
Soils were collected from four different McMurdo Dry Valleys
(Figure 1): Miers Valley (MV; 78◦60’S 164◦00’E), Upper Wright

FIGURE 1 | Map of the McMurdo Dry Valleys and the sampling sites.

Valley (UW; 77◦10’S, 161◦50’E), Beacon Valley (BV; 77◦48’S,
160◦48’E), and Battleship Promontory (BP; 76◦54’S 160◦55’E).
Miers Valley is a coastal, low altitude valley (153 m) with compar-
atively high C/N ratio and has been noted for sustaining diverse
cyanobacterial and bacterial communities (Wood et al., 2008; Lee
et al., 2012). Beacon and Upper Wright Valleys are higher alti-
tude valleys (1500 and 1000 m, respectively), characterized by
extremely low temperatures, strong desiccating winds, low C/N
ratios, and high soil electrical conductivity, creating compara-
tively inhospitable environments for soil microorganisms (Wood
et al., 2008; Lee et al., 2012). Battleship Promontory is a high alti-
tude valley (1000 m) with transiently liquid water in snow melt
ponds, leading to lower soil electrical conductivity and higher
moisture content and creating favorable conditions for bacterial
communities (Lee et al., 2012).

In December 2006 (Miers Valley and Beacon Valley) and Jan-
uary 2008 (Battleship Promontory and Upper Wright Valley), two
perpendicular transects of 50 m intersecting in the center were
laid out at each sampling site, and four sampling points (A–
D) were taken at the ends of each transect (Lee et al., 2012).
At each sampling site, an area of 1 m2 was identified, and one
scoop of soil was collected aseptically from the top 2 cm at
the four corners of this 1 m2 area and combined in a sterile
Whirl-Pak (Nasco International Inc., Fort Atkinson, WI, USA).
All necessary and appropriate precautions were taken to avoid
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anthropogenic or cross-site contaminations. Samples were stored
at −20◦C at the earliest opportunity and transported back to Uni-
versity of Waikato, New Zealand, where they were stored at −80◦C
until analysis. Soil geochemical properties were determined as
previously described (Lee et al., 2012).

DNA EXTRACTION
From each of the four samples collected at a sampling site (A–D),
six replicates of DNA were extracted (total of 24 extractions per
valley) from 0.6 to 0.8 g of homogenized soil using a modification
of the CTAB (bromide-polyvinylpyrrolidone-bmercaptoethanol)
extraction protocol (Coyne et al., 2001; Barrett et al., 2006). Recov-
ered DNA was stored at –80◦C. Reproducibility of DNA recovery,
quantified using the QuBit dsDNA HS Kit (Life Technologies,
Portugal), was tested among the six replicates (coefficient of
variation = 14%). Three of the DNA extraction replicates were
combined to obtain sufficient amounts of DNA for molecu-
lar analyses. Internal variations for each sample were assessed
by processing two pooled replicates (composed of three DNA
extractions) for each soil sample.

CLONING AND PHYLOGENETIC ANALYSIS
To assess AOA and AOB amoA genes diversity, two soil sam-
ples from each Dry Valley (i.e., MV-A, MV-B, BP-A, BP-B, BV-A,
BV-B, UW-A, and UW-B) were randomly selected for clone library
construction. Archaeal and bacterial amoA genes were amplified
using Arch-amoAR/Arch-amoAF (Francis et al., 2005) and amoA-
1F/534R (Rotthauwe et al., 1997) primers, respectively (Table 1).
PCR products, generated using a previously described PCR pro-
tocol (Magalhães et al., 2009), were visualized with agarose gel
(1.5%) electrophoresis, and a band of appropriate size was excised
and purified with the QIAquick Gel Extraction Kit (Qiagen, Por-
tugal). The resulting PCR amplicons were cloned using the TOPO
TA Cloning Kit (Life Technologies, Portugal) according to manu-
facturer instructions. Plasmids were isolated using the GeneElute
Plasmid Miniprep Kit (Sigma Aldrich, Spain), and DNA con-
centrations were determined with the QuBit dsDNA BS kit (Life
Technologies, Portugal). Thirty colonies were selected randomly
from each clone library (i.e., a total of 480 colonies for AOA
and AOB amoA genes), and their insert sizes were verified by

digesting 0.6–0.8 μg of DNA at 37◦C for 2h with 10 U of EcoRI
(Sigma-Aldrich, Portugal). A total of 420 clones with the cor-
rect insert size and containing likely AOA and AOB amoA genes
were screened using restriction fragment length polymorphism
analysis, where 0.6–0.8 μg of DNA was digested with 10 U of
MspI (Promega, Europe) at 37◦C overnight. A total of 15 clones
of amoA AOA and AOB genes from each valley (total 120) were
selected for sequencing in the STABVIDA Sequencing Facilities
(Lisbon, Portugal).

Sequences were aligned with published AOA and AOB amoA
sequences in GenBank using the basic local alignment search tool
(BLAST). All sequences were aligned with Clustal W (Thomp-
son et al., 1994) as implemented in Bioedit version 7.0.5 (Hall,
1999), and phylogenetic trees were constructed using MEGA ver-
sion 3.1 (Kumar et al., 2001) with both maximum parsimony and
neighbor-joining methods. Bootstrap analysis (1,000 replicates)
was carried out. We used a 98% similarity cut off for defining
operational taxonomic units (OTUs). Clone sequences from this
study have been deposited in GenBank under accession numbers
KF574112 to KF574224.

QUANTITATIVE REAL-TIME PCR
Quantitative PCR (qPCR) was conducted in a CFX96 real-time
PCR detection system (Bio-Rad, Portugal) to determine copy
numbers of bacterial 16S rRNA, bacteria amoA, and archaeal amoA
genes using previously described 16S rRNA primers and new amoA
primers designed for this study (Table 1). For each soil sample,
qPCR was performed in triplicates for both pooled DNA repli-
cates as 25 μl reactions with 10–20 ng of template DNA in each
reaction. Each qPCR tube (white 0.2 ml PCR strips with ultra clear
optical flat caps, [Bio-Rad, Portugal]) contained 12.5 μl of iQ Sybr
Green Supermix (BioRad, Portugal), 2 μl of each primer (10 μM),
and nuclease-free water (Promega, Portugal). For both primer
sets, the thermal cycler was programmed for 5 min of denatura-
tion at 94◦C; followed by 8 cycles of denaturation at 94◦C for 30 s,
annealing at 65◦C for 30 s, and extension at 72◦C for 30 s; fol-
lowed by 27 cycles where the annealing temperature was changed
to 57 ◦C; and a final extension step at 72◦C for 10 min. Standards
consisted of plasmids with AOA and AOB amoA gene inserts from
clones generated for this study, as described above. Standard curves

Table 1 | Primers used in this study.

Target gene Primers Sequence (5′–3′) Reference

16s rRNA 341F CCT ACG GGA GGC AGC AG Muyzer et al. (1993)

534R ATT ACC GCG GCT GCT GG

βAOB amoA amoA-1F GGG GTT TCT ACT GGT GGT Rotthauwe et al. (1997)

amoA-2R′ CCT CKG SAA AGC CTT CTT C Okano et al. (2004)

Archaea amoA Arch -amoAF STAATGGTCTGGCTTAGACG Francis et al. (2005)

Arch - amoAR GCGGCCATCCATCTGTATGT Francis et al. (2005)

qPCR-AOA AOAF CCTACCACAAGCATAGT This study

AOAR GTTAACAGCACCTTACTTACT This study

qPCR-AOB AOBF GTCTCCATGCTCATGTTC This study

AOBR GGACCTTTGACGTAGAAGAA This study
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were generated in duplicate for each primer set, and amplification
of standards was linear over six orders of magnitude (i.e., 0.2–
0.2 × 10−6 ng of DNA). The R2 values between plasmid DNA
copy numbers and the calculated threshold cycle values ranged
from 0.98 to 1.00, and amplification efficiency ranged between
98 and 101% for all standard curves. Target copy numbers were
calculated with an average molecular weight of 618 g mol−1, and
data were standardized to copies of gene per g of sediment. Melt-
ing curves and agarose gel electrophoresis of the qPCR products
were carried out following each qPCR assayed to confirm identity
of the PCR products. Primers for qPCR were designed for AOA
and AOB (Table 1) using AlleleID 7.6 software (Prenier Biosoft,
International).

STATISTICAL ANALYSES
Relationships between gene copy numbers and soil physicochem-
ical properties (described in Lee et al., 2012) for 16 samples (four
sampling sites in each of the four Dry Valleys) were analyzed
using multivariate ordination tools. Redundancy analysis (RDA)
was selected as the preferred ordination method (ter Braak and
Smilauer, 2002) and performed using CANOCO (version 4.5,
Microcomputer Power, Ithaca, NY, USA). For RDA, environmental
variables (i.e., pH, electrical conductivity, gravimetric water

content, C/N, Mg, Cr, Mn, Co, Ni, and Cu) were normalized
to a mean of 0 and SD of (1). Monte Carlo permutation test was
used to assess the statistical significance of the relationships.

RESULTS AND DISCUSSION
AOA AND AOB DIVERSITY
Previous studies have reported high diversities and widespread dis-
tribution of AOA and AOB in natural and managed soils, marine
and estuarine water and sediments, wastewater treatment biore-
actors, hot springs, and many other environments (Francis et al.,
2005; Beman and Francis, 2006; Leininger et al., 2006; Park et al.,
2006; Dang et al., 2008; Magalhães et al., 2009; Biller et al., 2012;
Stahl and de la Torre, 2012). In this study, we report AOA and
AOB presence in the extreme environments of the Transantarc-
tic Mountains. AOA and AOB amoA gene diversity recovered
from these soils were extremely low, with only four AOA and
three AOB amoA OTUs identified from a total of 420 clones
(Figures 2 and 3). However, we cannot exclude the possibility
that our primers failed to amplify some amoA genes, result-
ing in a lower observed AOA and AOB amoA diversity since
considerable numbers of microorganisms in the Dry Valleys can-
not be reliable assigned to higher taxonomic levels (Cary et al.,
2010).

FIGURE 2 | Phylogenetic relationship among Archaeal amoA

sequences retrieved from Antarctica Dry Valleys and other geographic

locations. The neighbor-joining tree was based on 591 nucleotide
sequences and was constructed based on Kimura distances and the
neighbor-joining method. Distance bootstrap values ≥50% are indicated at
branch points (1000 iterations). The major clusters indicated were also

supported by maximum parsimony analysis. The 210 Archaeal amoA
clones obtained from this study are distributed under DVAOA1, DVAOA2,
DVAOA3, and DVAOA4. Gray scale pie plot indicate the percentage of
occurrence of each OTU in the total sequences, and colorful pie plots
indicate the percentage of occurrence of each OTU within the four Dry
Valleys.
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FIGURE 3 | Phylogenetic relationship among Bacterial amoA

sequences retrieved from Antarctica Dry Valleys and other

geographic locations. The neighbor-joining tree was based on 443
nucleotide sequences and was constructed based on Kimura distances
and the neighbor-joining method. Distance bootstrap values ≥50% are
indicated at branch points (1000 iterations). The major clusters indicated

were also supported using maximum parsimony analysis. The 210
Bacterial amoA clones obtained from this study are distributed under
DVAOB1, DVAOB2, and DVAOB3. Gray scale pie plot indicate the
percentage of occurrence of each OTU in the total sequences, and
colorful pie plots indicate the percentage of occurrence of each OTU
within the four Dry Valleys.

Archaea were only recently successfully detected in the Ross
Sea region (Ayton et al., 2010) and across the McMurdo Dry
Valleys (Richter et al., 2014), with reportedly low diversity and
dominance of certain OTUs in these harsh environments. In
Antarctic coastal mineral soils, 99% of the detected 16S rRNA
sequences were affiliated with Thaumarchaeota (Ayton et al.,2010),
as did more than 80% of all archaeal sequences identified in the
McMurdo Dry Valleys (Richter et al., 2014). These findings hint
at a high prevalence of amoA within the archaeal communities of
Antarctic Dry Valley soils, which have been demonstrated by our
results to have low genetic diversity (Figure 2). Taking this into
account the quantification of the amoA could be a good repre-
sentative of the whole archaeal community inhabiting Dry Valley
soils.

Across the four AOA OTUs identified (DVAOA 1–4), 89% of
the archaeal amoA clone sequences fell within DVAOA 2, which
was also the only OTU recovered from all four sampling sites
(Figure 2). The representative sequence of DVAOA 2 showed
95–96% nucleotide sequence similarity to sequences retrieved
from a wide range of environments, such as temperate oxic lake

water and anoxic sediments (Jiang et al., 2009), sediments from
Plum Island Sound estuary [(Boston, Massachusetts, USA) Bern-
hard et al., 2010], alpine and permafrost Mount Everest bare soils
(Zhang et al., 2009) and temperate pristine forest soils (Szukics
et al., 2010). DVAOA2 is also less than 80% similar to the amoA
gene of any known AOA isolates [71% to N. maritimus (Kön-
neke et al., 2005)] and 79% to Candidatus Nitrososphaera gargensis
(Spang et al., 2012). Only one AOA amoA OTU (DVAOA 2) was
identified in the Upper Wright Valley, and Miers Valley had the
highest diversity of amoA AOA, with four different OTUs present
(Figure 2).

The identified AOB amoA sequences fell into two distinct
phylogenetic clusters (Figure 3). All three amoA AOB OTUs
(DVAOB1-3) were present in Miers Valley, whereas the other Dry
Valleys contained only two of those OTUs. Similarly to the pat-
tern for AOA amoA, the majority (81%) of amoA AOB clones
fell within one OTU (i.e., DVAOB1), and the remaining clones
(19%) were equally distributed between DVAOB2 and DVAOB3
(Figure 3). The representative sequences for DVAOB1 are 97%
similar to a AOB amoA sequence detected in alpine soils on
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Mount Everest (Zhang et al., 2009). It is worth noting that a
higher AOB amoA gene diversity (with sequences within four
Nitrosospira and two Nitrosomonas-like clusters) was reported
for the Mt. Everest soils (Zhang et al., 2009). Representative
sequences for DVAOB1 and DVAOB2 were more closely related
to Nitrosospira-like entries in GenBank (between 87 and 89% sim-
ilarity) than Nitrosomonas-like sequences (between 70 and 78%
similarity). Interestingly, previous studies have demonstrated that
Nitrosomonas-like species are more tolerant of high environmen-
tal NH4

+ concentrations than Nitrosospira-like species (de Bie
et al., 2001; Cébron et al., 2004; Caffrey et al., 2007; Magalhães
et al., 2009), which are typically associated with pristine environ-
ments with low NH4

+ concentrations (Stephen et al., 1996, 1998;
McCaig et al., 1999). In the extremely oligotrophic Dry Valley
soils, nutrient limitation has been found to impose strong limita-
tions on the distribution of soil microbiota (Cary et al., 2010; Lee
et al., 2012; Magalhães et al., 2012). The representative sequence
of DVAOB 3 showed lower similarities to amoA gene sequences
from isolates (73–77% similarity). However, clustered (94–95%
similarity) with sequences retrieved from a range of contrast-
ing environments like lava cave walls biofilms (Azores, Portugal
(Hathaway et al., 2014), sediments from subtropical freshwater

marshes [Hongne Reserve, China (Lee and Gu, unpublished)] and
subglacial soils from Robertson Glacier [Alberta, Canada (Boyd
et al., 2011)].

Our findings showed that although AOA and AOB amoA gene
diversities in the Dry Valleys were low, there were clear differences
in the distribution of AOA and AOB among the four Dry Valleys
examined.

AOA AND AOB COMMUNITY ABUNDANCE
qPCR analysis of AOB amoA gene showed substantially higher
abundance of AOB amoA gene at BP and MV (Figure 4A)
compared to UW and BV (ANOVA, p < 0.001; Figure 4A). Coin-
cidentally, qPCR analysis of bacterial 16S rRNA genes showed
much higher abundance in BP and MV (5.6 ± 1.4 × 109 and
4.9 ± 1.4 × 109 copies g−1 soil, respectively) than in UW and BV
(2.2 ± 1.4 × 108 and 4.4 ± 1.8 × 108, copies g−1 soil, respec-
tively; Figure 5). These values fall within the range of bacterial
16S rRNA gene copy numbers previously reported for McKelvey
Valley (0.06 × 108 to 2.4 × 108, Pointing et al., 2009), and for
Ross Island and several McMurdo Dry Valleys, from direct cell
counts (Ayton et al., 2010). AOA amoA gene qPCR results showed
a different pattern, where amoA gene copy numbers did not differ

FIGURE 4 | Bacterial (A) and archaeal (B) amoA gene copy numbers for locations A, B, C, and D) in Upper Wright, Beacon and Miers Valleys and in

Battleship Promontory (mean ± SD of 3 qPCR replicates).
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FIGURE 5 | 16S rRNA gene copy numbers for locations A, B, C, and D of the four Dry Valleys (mean ± SD of 3 qPCR replicates). Blue lines show the
mean value for the four sites of each valley.

significantly among samples from UW, BV, and BP, and were only
significantly higher (p < 0.001) in samples from MV (Figure 4B).
Soils from MV have been described as geochemically distinct (i.e.,
high C/N, high pH, etc.; Lee et al., 2012) from other Dry Valleys,
and these conditions may favor nitrification and thus allow high
diversity and abundance of bacterial and archaeal amoA. This is
congruent with high bacterial and cyanobacterial diversities pre-
viously documented in samples from MV (Wood et al., 2008; Lee
et al., 2012).

Large spatial differences in AOA and AOB amoA gene abun-
dance were detected among the four Dry Valleys (Figures 4 and 6).
For example, AOB amoA gene abundances were three orders of
magnitude higher in MV soils relative to UW soils (Figures 4A and
6). AOA and AOB amoA gene abundance reported here are similar
to values obtained in higher altitude soils (≥5700 m) of Mount
Everest, but one to three magnitudes lower than those observed
for lower elevation mountain soils (<5400 m; Zhang et al., 2009).
Interestingly, the amoA gene copy numbers for the Dry Valleys are
significantly higher than those reported for soils from the Antarc-
tic Peninsula (Jung et al., 2011). This may be due to the fact that we
developed and optimized a new set of qPCR primers for archaeal
and bacterial amoA genes found in the Dry Valleys, whereas the
qPCR primers used by Jung et al. (2011) were based on existing
primer sets developed for very different environments (Rotthauwe
et al., 1997; Okano et al., 2004; Francis et al., 2005; de la Torre et al.,
2008).

Since the discovery of chemoautotrophic AOA (Venter et al.,
2004; Könneke et al., 2005; Schleper et al., 2005; Treusch et al.,
2005), their high relative abundances have been reported for many
systems (Hallam et al., 2006; Leininger et al., 2006; Wuchter et al.,
2006; Nicol et al., 2008). These studies showed a general prevalence
of AOA over AOB, as was previously reported for soils from the
Antarctic Peninsula (Jung et al., 2011). We observed more com-
plex AOA vs. AOB dynamics in the Dry Valleys, with significant
differences in the four Dry Valleys examined. Although AOB out-
numbered AOA in MV and BP, high relative abundances of AOA
amoA genes were found in UW and BV (Figure 6), where lower
bacterial 16S rRNA gene abundance (Figure 5) and diversity have

been described (Lee et al., 2012). Quantitative PCR analysis of
amoA genes revealed clear differences in the relative abundances
of AOA and AOB amoA genes among samples from the four
Dry Valleys. A shift in the relative abundance of AOA and AOB
has been previously reported for Mount Everest alpine and per-
mafrost environments with greater abundance of AOA over AOB at
lower (4000 m), and the reverse at higher (5800–6000 m) altitudes
(Zhang et al., 2009). In addition, the results for MV and BP are in
agreement with what had been observed in subglacial soils (Boyd
et al., 2011), where bacteria appeared to be the predominant nitri-
fiers over archaea. It is also interesting to note that the AOB/AOA
amoA gene ratio varied between 2.6 and 3.3 in MV and BP, but
in UW and BV, where AOA amoA was more dominant, AOA/AOB
ratios were much higher (33.1–24.0). Collectively, these results
indicate spatial heterogeneity in the microorganisms that mediate
the ammonia oxidation pathway in these extreme environments,
and that the harsh conditions in UW and BV potentially impose
physiological challenges for AOB and limit their distribution.

ENVIRONMENTAL CONTROLS ON AOA AND AOB DISTRIBUTION
The clearly dichotomized distribution of AOA and AOB in the
four Dry Valleys examined (Figure 6) provides a rare oppor-
tunity to identify the environmental factors that control the
relative abundance and diversity of these two groups of ammonia
oxidizers.

As previously described, soil geochemical characteristics of
McMurdo Dry Valleys varied significantly among the studied
valleys (Lee et al., 2012). Large heterogeneities in bacterial diver-
sity (Lee et al., 2012), bacterial abundance (Pointing et al., 2009),
and the diversity of stress response pathways (Chan et al., 2013)
among different Dry Valleys reflect significant variances in soil
geochemical properties that characterize the Dry Valley ecosys-
tem (Bockheim, 1997; Lamsal and Paudyal, 1999; Lee et al.,
2012). Among the Dry Valleys examined for this study, MV stood
out by virtue of the high C/N ratio, high total % C content,
low conductivity, and higher pH of its soils (Lee et al., 2012),
which may explain higher overall AOA and AOB amoA gene
copy numbers (Figures 4A,B) and diversity (Figures 2 and 3).
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FIGURE 6 | Bacterial vs. archaeal amoA genes copy numbers in Upper Wright, Beacon and Miers Valleys and in Battleship Promontory (mean ± SD, of

3 qPCR replicates performed in each of the four sites sampled in each valley, n = 12).

FIGURE 7 | Redundancy analysis ordination (RDA) plot for the

biogeochemical variables and copy numbers of AOA and AOB

amoA genes. Gene copy values for AOA, AOB and ratios of amoA
AOA/AOB are represented as circles of diameter scaled linearly to the

magnitude of the value. In the RDA ordination diagram, the angle and
length of the arrow relative to a given axis reveals the extent of
correlation between the variable and the canonical axis (environmental
gradient).

The low C/N ratios and high soil conductivity that character-
ized BV and UW soils (Lee et al., 2012) correlate with lower
bacterial abundance (Figure 5) and drastically lower AOB amoA
diversity (Figure 3) and gene copy numbers (ANOVA, p < 0.01;
Figure 4A).

Correlations between environmental variables and 16S rRNA
and amoA gene copy numbers were examined using (RDA;
Figure 7). A Monte Carlo test of F-ratios (F = 2.54 and p = 0.044)
identified ten environmental variables (pH, conductivity, gravi-
metric water content, C/N, Mg, Cr, Mn, Co, Ni, and Cu) among
those reported in Lee et al. (2012) that significantly contributed
to differences in gene copy numbers. The first gradient (RDA 1,
horizontal, Figure 7) explained 75% of the variability in gene copy
numbers and was highly correlated with the environmental vari-
ables (93.2%). The results revealed that higher abundance of AOA

and AOB amoA genes are most strongly correlated with higher
C/N ratio and pH in the soils (Figure 7). Higher AOA/AOB ratios
were related to higher conductivity, Cu contents, and higher gravi-
metric water content (Figure 7). Our results suggest that AOA
communities can better tolerate higher conductivity in BV and
UW soils. This is in agreement with the documented prevalence
of AOA over AOB in ocean waters (Santoro et al., 2010) where
salinities are fairly stable at about 35 ppt. However, studies of
coastal and estuarine sediments, characterized by highly fluctuat-
ing salinity levels, showed that high salinities favored numerical
dominance of AOB over AOA (Santoro et al., 2008; Magalhães
et al., 2009). Substrate (i.e., NH4

+) concentration might also play
an important role in the abundance and distribution of AOA
and AOB, with AOA generally dominant in low NH4

+ and olig-
otrophic environments (Martens-Habbena et al., 2009; Santoro
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et al., 2010; Martens-Habbena and Stahl, 2011; Zhalnina et al.,
2012).

CONCLUSION
The findings of this study represent the first report of the
diversity and abundance of AOA and AOB communities in the
Transantarctic Mountains, and make substantial contributions to
our knowledge of the poorly understood N cycle of Antarctic Dry
Valley soils. We confirmed the presence of archaeal and bacterial
amoA genes in four Dry Valleys with disparate soil geochemi-
cal characteristics, demonstrating wide distributions and spatial
heterogeneities of AOA and AOB, highlighting the potential role
of nitrification in microbial processes in the Dry Valleys. We also
identified a dichotomized distribution of AOA and AOB in the Dry
Valleys that is potentially driven by environmental heterogeneities.
Although more detailed studies are needed to fully understand the
environmental drivers that control the relative abundance of AOA
and AOB in natural environments, our results indicate that soil
conductivity, may play an important role.
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