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Engineered bacteriophage lysins as novel anti-infectives
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Bacteriophage lysins, the highly evolved specific peptidoglycan hydrolases, have long
been demonstrated to be effective enzybiotics in various infectious models. The modular
structure of lysins makes it possible to design bioengineered lysins that have desired
properties, such as higher activity, or broader killing spectrum. Moreover, lysins can even
be engineered to kill Gram-negative bacterial pathogens from without, a property that is
not present in natural lysins. In this era of ever increasing multidrug resistant pathogens,
engineered lysins represent a new class of enzybiotics that are powerful and readily
available to fight antimicrobial resistance.
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INTRODUCTION
Bacteriophage lysins are novel murein hydrolases encoded by
dsDNA phages in the late phase of infection cycle for the
release of progeny virions (Loessner, 2005). These enzymes
are usually genus-specific and highly active against bacterial
peptidoglycan and capable of digesting the cell walls of sus-
ceptible bacteria, including multidrug resistant Gram-positive
pathogens (Fischetti, 2006). Therefore, lysins have been con-
sidered as promising anti-infective enzybiotics with potential
important applications in medicine and biotechnology in the cur-
rent age of mounting antimicrobial resistance (Fischetti et al.,
2006).

Currently, there are excellent reviews that have dealt with the
characteristics of lysins and their applications, both as alterna-
tive enzybiotics in medical-oriented in vitro and in vivo tests
(Fischetti, 2005; Fenton et al., 2010b; Knoll and Mylonakis,
2014), and as preservatives in the food industry (Callewaert
et al., 2011; Oliveira et al., 2012). In the experimental models
of sepsis (Schuch et al., 2002; Gilmer et al., 2013), pneumo-
nia (Loeffler et al., 2001; Witzenrath et al., 2009), endocarditis
(Entenza et al., 2005), meningitis (Grandgirard et al., 2008),
nasopharyngeal infection (Kiser et al., 1999), canine pyoderma
(Junjappa et al., 2013), endophthalmitis (Singh et al., 2014), skin
and vaginal decolonization (Cheng et al., 2005), lysins have been
used as effective anti-infectives to eliminate pathogens systemi-
cally and topically from mucosal surfaces and biofilms, includ-
ing methicillin- and vancomycin-resistant Staphylococcus aureus,
vancomycin-resistant Enterococcus faecalis and E. faecium, and
penicillin-resistant Streptococcus pneumoniae. According to the
opinion of Vincent A. Fischetti, several unique characteristics
of lysins makes them attractive enzybiotics over small molecule
antibiotics (Fischetti, 2008, 2010). These include (i) their speci-
ficity for the pathogens without disturbing the normal microflora,
(ii) the low chance of developing bacterial resistance, and (iii)

their ability to kill colonizing pathogens on mucosal surfaces.
One possible problem of lysins may be their immunogenicity
as protein molecules. However, studies thus far have illustrated
that lysin-specific antibodies are non-neutralizing both in vitro
and in vivo (Rashel et al., 2007; Daniel et al., 2010; Yang
et al., 2014), which means that lysins can be used repeatedly
in the treatment of infections caused by susceptible pathogens.
Clinical trials are being conducted or prepared to assess the safety
and pharmacokinetic properties of lysins in humans (Pastagia
et al., 2013). For instance, a lysin against staphylococci P128
(George et al., 2012), has already stepped into phase II clin-
ical trial (http://www.clinicaltrials.gov/ct2/show/NCT01746654?
term=gangagen&rank=1) for studying its effectiveness in reduc-
ing the nasal carriage of S. aureus in humans. Although there are
no lysins being used as medicine yet, it is believed that the break-
through might come first for treating mucosal infections, such as
nasal decolonization and wound healing. Furthermore, the com-
bination of lysins with current antibiotics would be very effective
to treat infections caused by multidrug resistant bacteria (Schuch
et al., 2014).

Apart from natural lysins, there is an ever-growing interest
in the engineered lysins created through modification or ratio-
nal design from natural lysins. A perfect lysin that is ideal for
anti-infective applications should maintain high bioavailability
and activity. However, the genus-specific natural lysins are limited
when treating infections caused by mixed bacteria from mul-
tiple genera. For example, a lysin with a relatively broad lytic
spectrum that could lyse more than one genus of pathogens is
preferred when treating mucous associated infections (human
mucous membranes are the reservoir of many pathogenic bacteria
including pneumococci, staphylococci and streptococci) (Coello
et al., 1994; De Lencastre et al., 1999; Fischetti, 2003). Lysin engi-
neering is of special promise to create enzybiotics with novel
characteristics.
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Chimeric lysins (also called chimeolysins) have been created
by shuffling the domains, i.e., the cell wall binding domains
(CBDs) and the catalytic domains (CDs) from natural lysins.
Interestingly, the natural lysin Pal, identified from pneumococcal
phage Dp-1, has proven to be a natural chimeolysin of inter-
generic origin (Sheehan et al., 1997). Artificial lysins (also known
as artilysins) have been created by fusing a natural lysin or part
of its domain with another component that came from either
a peptide or a protein. While natural lysins essentially lyse only
Gram-positive bacteria exogenously, some artilysins could kill
Gram-negative bacteria directly from without (Lukacik et al.,
2012; Briers et al., 2014a). Therefore, developing engineered
lysins may help to create novel enzybiotics with improved lytic
activity and spectrum against both Gram-positive and nega-
tive bacterial pathogens, and provide novel clues to understand
the modular evolution of lysins (Diaz et al., 1990). This review
will outline the characteristics and the remarkable potency of
engineered lysins in killing pathogenic bacteria both in vitro
and in vivo.

THE ACTION MODEL OF LYSINS
Differing from the traditional antibiotics, the anti-infective activ-
ity of lysin comes from its direct cell lysis upon contact with the
bacterial cell wall. Lysins are expressed and accumulated in the
cytosol of the host cell at the end of the phage replicative cycle
(Young, 1992). With the help of another protein, the holin, lysins
get access to their peptidoglycan substrate and cause rapid cell
lysis (Wang et al., 2000). The holin-lysin system is essential for
host cell lysis, and the molecular mechanisms underlying the pro-
cedure of “lysis from within” has been well discussed previously
(Young and Wang, 2006).

When applied exogenously as recombinant enzymes, lysins
have been demonstrated to cause rapid lysis of Gram-positive
bacteria (Loessner et al., 1995). It is this potent ability to cause
“lysis from without” of pathogenic Gram-positive cells upon
direct contact with peptidoglycan that has laid the foundation of
exploiting lysins as enzybiotics (Abedon, 2011). However, in the
case of Gram-negative bacteria, the outer membrane hinders the
access of lysins to their peptidoglycan substrates in the cell wall
and therefore, their antibacterial is limited.

THE MODULAR STRUCTURE OF LYSIN
Most frequently, lysins displayed a typically modular structure
of at least two distinct domains (Villa and Crespo, 2010). That
is an N-terminal CD and a C-terminal CBD, corresponding to
their two basic functions: enzymatic hydrolysis and substrate
recognition (Figure 1). In a few cases, lysins, particularly staphy-
lococcal lysins, have been found to have more than one CDs and
one CBD (Navarre et al., 1999; Rigden et al., 2003; Donovan
et al., 2006b; Sass and Bierbaum, 2007; Obeso et al., 2008).
Extraordinarily, a bacillus phage lysin, plyG, has been shown to
have one CD and two separate binding domains, a CBD and a
spore binding domain (SBD) (Yang et al., 2012). And the C1
streptococcal phage lysin, PlyC, is shown by crystallization to be a
multimeric enzyme composed of eight cell wall binding subunits
for each catalytic subunit (Nelson et al., 2006; McGowan et al.,
2012).

Although CBD is necessary for most lysins, truncation of some
lysins to remove the CBD can result in improved lytic activity
without loss of specificity (Loessner et al., 1999; Horgan et al.,
2009; Fenton et al., 2010a). One good example is lysin Ply187, the
CD from lysin Ply187 (N-terminal 157 amino acids) has a much
higher amidase activity than the whole lysin (Loessner et al.,
1999).

Generally, the CD gets access to and specifically cleaves the
major bonds in the peptidoglycan via the specific recognition of
the CBD. The substrates of CBDs are postulated to be unique and
conserved molecules in the cell walls that are essential for bac-
terial viability, usually neutral polysaccharides that are restricted
to particular species or even strains. For instance, pneumococcal
phage lysin targets choline, an indispensable cell wall molecule for
anchoring in S. pneumonia (Garcia et al., 1988; Hermoso et al.,
2003). The CBDs of Listeria phage lysins can even distinguish
various serotypes of Listeria species in liquid or food samples
(Loessner et al., 2002; Schmelcher et al., 2010; Eugster et al., 2011;
Eugster and Loessner, 2012). Because of the relatively indepen-
dent functions of these two domains, engineered lysins can be
constructed by shuffling these domains from different origin or
fusing them with other molecules. By doing so, the chimera may
be empowered with new characteristics, including binding speci-
ficity, killing spectrum, solubility, stability, activity and so on.

FIGURE 1 | Lysin-based murein hydrolases. (A) The schematic structure of
lysin, chimeolysin and artilysin. MPP, membrane penetrating peptides. (B)

The cleavage sites of lysin-based murein hydrolases in the peptidoglycan. 1,

N-acetyl muramidases; 2, N-acetylmuramoyl-L-alanine amidases; 3,
L-alanoyl-D-glutamate endopeptidases; 4, interpeptide bridge
endopeptidases; 5, N-acetyl-β-D-glucosaminidases.
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Table 1 | The structural composition and characteristics of engineered lysins.

N-terminal donor C-terminal donor Property Antimicrobial spectrum Ref.

CHIMEOLYSIN

ClyS Phage Twort lysin plyTW,
endopeptidase

phiNM3 lysin Highly soluble,
superiority to mupirocin
for skin decolonization

Staphylococci Daniel et al., 2010;
Pastagia et al., 2011

Lys168-87 E. faecalis phage F168/08
lysin, CHAPa

Phage 87 lysin Lys87b Highly soluble, broad
antimicrobial activity

Staphylococci, E. faecalis,
E. faecium, S. pyogenes

Fernandes et al.,
2012

Lys170-87 E. faecalis phage F170/08
lysin, amidase

Phage 87 lysin Lys87b Highly soluble, broad
antimicrobial activity

Staphylococci, E. faecalis,
E. faecium, S. pyogenes

Fernandes et al.,
2012

PRF-119 Phage K lysin plyK, CHAP Lysostaphin, SH3b like
domain

Very good activity Staphylococci Idelevich et al.,
2011

λSA2-E-Lyso-SH3b Phage λSA2 lysin,
endopeptidase

Lysostaphin, SH3b like
domain

Increased activity and
extended lytic
spectrum

Staphylococci, Streptococci Becker et al., 2009;
Schmelcher et al.,
2012

λSA2-E-LysK-SH3b Phage λSA2 lysin,
endopeptidase

LysK, SH3b like domain Increased activity and
extended lytic
spectrum

Staphylococci, Streptococci Becker et al., 2009;
Schmelcher et al.,
2012

B30-182-Lyso Phage B30 lysin,
endopeptidase

Lysostaphin, SH3b like
domain

Extended lytic
spectrum and binding
capacity

S. aureus, S. uber,
S. agalactiae,
S. dysgalactiae

Donovan et al.,
2006a

Ply187AN-KSH3b Phage 187 lysin Ply187,
amidase

LysK, SH3b like domain Improved lytic activity Staphylococci Mao et al., 2013

ClyH Phage 187 lysin Ply187,
amidase

phiNM3 lysin Improved lytic activity
and extended lytic
spectrum

Staphylococci, S. sobrinus Yang et al., 2014

Ply187N-V12C Phage 187 lysin Ply187,
amidase

Lysin PlyV12, SH3b like
domain

Extend lytic spectrum Staphylococci,
Streptococci, Enterococci

Dong et al., 2014

ARTILYSIN

P128 tail-associated enzyme of
Phage K

Lysostaphin, SH3b like
domain

High lytic activity Staphylococci Vipra et al., 2012

P16-17 Phage p68 lysin p16, CHAP Minor coat protein 17 of
phage p68b

Highly soluble S. aureus Manoharadas
et al., 2009

CLL lysin Cpl-1, lysozyme LytA C-terminal domain Altered binding
capacity

Streptococci Diaz et al., 1990

CLA LytA amidase domain Lysin Cpl-1 binding
domain

Altered binding
capacity

Streptococci Diaz et al., 1990

Art-085 SMAP-29 peptide Lysin KZ144 Kills Gram-negative
bacteria

P. aeruginosa, P. syringae,
P. putida

Briers et al., 2014a

Pesticin-like T4 lysozyme Pesticin Kills Gram-negative
bacteria

Yersinia, E. coli expressing
FyuA

Lukacik et al., 2012

LoGT series Various peptidesc Various lysinsd Kills Gram-negative
bacteria

P. aeruginosa, A. baumannii,
E. coli, S. Typhimurium

Briers et al., 2014b

aCHAP: cysteine and histidine-dependent aminopeptidase/hydrolase.
bThe characters of these CBDs cannot be confirmed for their sequences are unavailable.
cThese peptides include α4, MW1, MW2, polycationic peptide (PCNP), hydrophobic pentapeptide (HPP), Parasin1 (Pa1), and lycotoxin1 (Ly1).
d These lysins include OBPgp279 (YP_004958186.1), PVP-SE1gp146 (YP_004893953.1), phiKZgp144 (NP_803710.1), 201ϕ2-1gp229 (YP_001956952.1), CR8gp3.5,

P2gp09 (NP_046765.1), and PsP3gp10 (NP_958065.1).
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CHIMEOLYSIN
A chimeolysin could be designed to have an improved lytic activ-
ity, or a broader lytic spectrum, compared with its parental
enzyme (Table 1). For instance, the specific lytic activity of
Ply187AN-KSH3b, a chimeolysin constructed by fusing the
amidase of lysin Ply187 with the LysK SH-3b CBD, was 10-fold
higher than that of its parental lysin Ply187AN (Mao et al., 2013).
Specifically, by adding the non-SH3b-like CBD of phiNM3 to
the CD of Ply187 (giving rises to chimeolysin ClyH) yielded a
3.7–13.6 fold increase in lytic activity against S. aureus (Yang
et al., 2014). ClyH could even lysis S. sobrinus, a streptococci
that Ply187 could not lyse at all. Similar results are seen with
a chimeolysin Ply187N-V12C, however in this case, the chime-
olysin has an extended lytic activity against S. dysgalactiae, the
main pathogen of cow mastitis (Dong et al., 2014).

In some cases, the lytic spectrum of a chimeolysin may be
altered by changing its CBD. The streptococcal λSa2 prophage
endolysin has a strong lytic activity against multiple strepto-
coccal strains but not staphylococcal pathogens (Donovan and
Foster-Frey, 2008). Replacing its Cpl-7 CBD with a staphylococcal
SH3b domain from either lysostaphin or LysK resulted in a 5-fold
increase in staphylolytic activity, and surprisingly, the chimera
also maintained significant streptolytic activity (Becker et al.,
2009). Similarly, bioengineering different CBDs of Listeria phage
lysins provides extended recognition and binding properties
(Schmelcher et al., 2011).

Daniel et al. constructed chimeolysins to solve the solubil-
ity problems associated with natural lysins. By fusing the CD
of phage Twort lysin to the CBD of phiNM3 lysin, they cre-
ated a highly soluble chimera, ClyS, which was shown to have
potent anti-infective efficacy against MRSA in a murine sepsis
model (Daniel et al., 2010). ClyS has also shown superior to
mupirocin for skin decolonization of methicillin-resistant and
-sensitive S. aureus strains in mice (Pastagia et al., 2011). In
another work, Fernandes et al. were able to improve the solubility
and antimicrobial activity of Lys87, via substituting its CD with a
CD from an enterococcal lysin that is highly soluble (Fernandes
et al., 2012).

There is also an example of a chimeolysin that was designed
to avoid resistance to phages. The chimera PRF-119 has been
proven to kill four phage-resistant S. aureus mutants (Idelevich
et al., 2011), and at the same time, showed very good activities
against S. aureus with MIC90 of 0.391 μg/ml for 398 MSSA and
776 MRSA clinical isolates, respectively.

ARTILYSIN
Artilysin denotes an engineered enzybiotic created by fusing
a fragment of a natural lysin with peptides or other proteins
(Figure 1). One outstanding application is to design artilysins
against Gram-negative bacteria (Table 1). In recent research,
Briers et al. (2014a) designed an artilysin with a highly efficient
antibacterial activity against multidrug resistant strains and per-
sisters of Pseudomonas aeruginosa, by fusing a sheep myeloid
antimicrobial peptide with 29 amino acids residues (SMAP-29)
to the N-terminus of the endolysin KZ144. SMAP-29 is an α-
helical cathelicidin found in sheep leukocytes that can pass the
outer membrane of Gram-negative bacteria via a self-promoted

uptake pathway (Skerlavaj et al., 1999). It is well known that
antimicrobial peptides kill bacteria either by disrupting the cyto-
plasmic membrane or by crossing the membrane and acting
on intracellular targets, however, such peptides are cytotoxic to
mammalian cells (Maher and McClean, 2006; Dawson and Liu,
2009). Meanwhile, the natural form of lysin KZ144 could not kill
P. aeruginosa cells directly, but was effective against membrane-
permeated cells, which are obtained by treatment with chloro-
form (Briers et al., 2007), or under high hydrostatic pressure
(Briers et al., 2008). Surprisingly, the artilysin overcomes the dis-
advantages of its both donors. The artilysin not only kills the
P. aeruginosa cells directly, but also shows no cytotoxicity, indi-
cating that the application of bacteriophage lysins as enzybiotics
must not be limited only to Gram-positive pathogens.

Very recently, Briers and coworkers described a series of
artilysins that are highly active against Gram-negative pathogens.
For instance, artilysin LoGT-23, can cause a reduction of 5.5 log,
5.2 log, 2.4 log and 1.5 log for P. aeruginosa, Acinetobacter bau-
mannii, E. coli and Salmonella Typhimurium within 30 min in
the presence of 0.5 mM EDTA, respectively. The in vivo efficacy
of some artilysins have also been tested in a Caenorhabditis ele-
gans bacterial infection model, indicating that artilysins may have
broad anti-infective applications.

In another example, Lukacik et al. constructed a pesticin-like
hybrid toxin that kills specific Yersinia and pathogenic E. coli
strains, by attaching an FyuA targeting domain to the N-terminus
of T4 lysozyme (Lukacik et al., 2012). The hybrid could pass
the out membrane in order to reach the peptidoglycan layer
through the interaction with the outer membrane transporter
FyuA. Moreover, the hybrid toxin can evade the pesticin immu-
nity protein (Pim) indicating that it may be a potential candidate
for in vivo therapy over pesticin. Because FyuA is more common
in pathogenic bacteria, the hybrid toxin harbors a great potential
to kill pathogenic bacteria specifically.

CONCLUDING REMARKS
Bacteriophage lysins demonstrate several highly desirable proper-
ties compared with antibiotics, which include novel antimicrobial
mechanisms, high specificity and activity against multidrug resis-
tant pathogens, as well as a low possibility of developing resis-
tance. The huge number of phages existing on earth supports
great resources for lysin discovery. Meanwhile, the modular struc-
ture of lysins provides a great chance to create engineered lysins
with desired properties, which may include extended killing spec-
tra, enhanced killing activity, and improved solubility. Through
rational design of natural lysins, artilysins can even kill Gram-
negative bacteria that are resistant to natural lysins. Taken all
these together, engineered lysins represent a new class of enzybi-
otics that are powerful and readily available to fight the emerging
antimicrobial resistance.
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