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Molecular surveys are revealing diverse eukaryotic assemblages in oxygen-limited ocean
waters. These communities may play pivotal ecological roles through autotrophy, feeding,
and a wide range of symbiotic associations with prokaryotes. We used 18S rRNA gene
sequencing to provide the first snapshot of pelagic microeukaryotic community structure
in two cellular size fractions (0.2–1.6 µm, >1.6 µm) from seven depths through the anoxic
oxygen minimum zone (OMZ) off northern Chile. Sequencing of >154,000 amplicons
revealed contrasting patterns of phylogenetic diversity across size fractions and depths.
Protist and total eukaryote diversity in the >1.6 µm fraction peaked at the chlorophyll
maximum in the upper photic zone before declining by ∼50% in the OMZ. In contrast,
diversity in the 0.2–1.6 µm fraction, though also elevated in the upper photic zone,
increased four-fold from the lower oxycline to a maximum at the anoxic OMZ core.
Dinoflagellates of the Dinophyceae and endosymbiotic Syndiniales clades dominated the
protist assemblage at all depths (∼40–70% of sequences). Other protist groups varied
with depth, with the anoxic zone community of the larger size fraction enriched in
euglenozoan flagellates and acantharean radiolarians (up to 18 and 40% of all sequences,
respectively). The OMZ 0.2–1.6 µm fraction was dominated (11–99%) by Syndiniales,
which exhibited depth-specific variation in composition and total richness despite uniform
oxygen conditions. Metazoan sequences, though confined primarily to the 1.6 µm fraction
above the OMZ, were also detected within the anoxic zone where groups such as
copepods increased in abundance relative to the oxycline and upper OMZ. These data,
compared to those from other low-oxygen sites, reveal variation in OMZ microeukaryote
composition, helping to identify clades with potential adaptations to oxygen-depletion.
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INTRODUCTION
Marine oxygen minimum zones (OMZs) support complex micro-
bial communities adapted for life under low oxygen con-
ditions. In the anoxic OMZ of the Eastern Tropical South
Pacific (ETSP) off Chile and Peru, aerobic respiration of sink-
ing organic matter combines with a decline in water col-
umn mixing to deplete dissolved oxygen to below detection
(<15 nM; Thamdrup et al., 2012). Oxygen depletion at the
ETSP OMZ core (∼100–400 m) selects for communities domi-
nated by bacteria and archaea (prokaryotes) capable of anaerobic
or microaerophilic metabolism (Stevens and Ulloa, 2008; Ulloa
et al., 2012). These microorganisms make important contribu-
tions to marine nitrogen, sulfur, and carbon cycling (Wright
et al., 2012), for example as mediators of nitrogen loss through
denitrification and anaerobic ammonium oxidation (Thamdrup
et al., 2006; Lam et al., 2009). Although most large multicellu-
lar eukaryotes are absent from anoxic marine waters, severely
oxygen-depleted layers in other OMZ regions contain a diverse
community of microbial eukaryotes (microeukaryotes) including

protists and fungi, as well as zooplankton with potential adapta-
tions to oxygen limitation (Orsi et al., 2012; Orsi and Edgcomb,
2013; Teuber et al., 2013). As suggested for a coastal OMZ (Orsi
et al., 2012), microeukaryotes in the ETSP OMZ may play impor-
tant ecological roles, for example through predation or symbi-
otic interactions with prokaryotes. However, while bacteria and
archaea in the ETSP OMZ are becoming better understood, and
numerous studies have examined benthic meiofaunal diversity
beneath OMZs (Neira et al., 2001; Levin, 2003), little is known
about pelagic eukaryote diversity in this unique oxygen-depleted
environment.

Marine microeukaryotes and zooplankton can significantly
affect the structure and function of prokaryote communities and
are now recognized as pivotal members of aquatic food webs in
numerical models of nutrient cycling and in paradigms of surface
and deep-ocean ecology (Arístegui et al., 2009). Protists impact
major nutrient cycles directly and indirectly, through grazing
on prokaryotic prey and consequent regeneration of nutrients,
and through direct modification of organic matter (sinking
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particulate and dissolved) (Taylor, 1982; Sherr and Sherr, 2002;
Tang et al., 2010). Zooplankton surfaces, guts, and fecal pellets are
habitats for bacterial growth (Tang et al., 2010), supporting local
cell densities orders of magnitude higher than in the surrounding
water (Grossart et al., 2003). Studies in oxygen deficient waters
of the North Pacific and the anoxic Cariaco Basin have revealed
unique protist communities with diversity and abundances vary-
ing along gradients of oxygen, sulfide, and methane concentration
(Taylor et al., 2001; Li et al., 2008; Lin et al., 2008; Edgcomb et al.,
2011a; Orsi et al., 2011, 2012). Anaerobic and microaerophilic
species of ciliates and euglenid flagellates seem to be enriched
in anoxic water layers (Lynn, 2008; Edgcomb et al., 2011b; Orsi
et al., 2011, 2012). Recent studies of marine sediments suggest
that some euglenids engage in symbiosis with nitrate reducing,
sulfur oxidizing, epibiotic bacteria (Bernhard et al., 2000; Yubuki
et al., 2009; Edgcomb et al., 2010). Cryptic symbioses between
ciliates and methanogenic archaea have been suggested to pos-
sibly contribute significantly to methanogenesis in OMZs (Orsi
et al., 2012). Furthermore, OMZs are known to harbor larger
zooplankton such as copepods with specific ecophysiological and
behavioral adaptations for persistence under low oxygen (e.g.,
reduced overall metabolic rates, enhanced activity of anaerobic
pathways, diel migrations) (Childress and Seibel, 1998; Teuber
et al., 2013). However, interactions of OMZ zooplankton with
other community members are not well understood.

In some ocean regions, picoeukaryotes smaller than 3 µm
may be among the most abundant cells in the water column
(Moon-van der Staay et al., 2001; Massana et al., 2011), playing
roles in primary production, food web dynamics, and mineral
cycling (Fogg, 1995; Diez et al., 2001; Moon-van der Staay et al.,
2001; Worden et al., 2004). However, many of these smaller
microeukaryotes are new to science, and we are just beginning
to understand their ecology (Moon-van der Staay et al., 2001;
Worden et al., 2004). Because of their small size, picoeukary-
otes may be overlooked in gene surveys focusing only on larger
particulate size fractions of filtered water samples (>3.0 µm).
Indeed, no studies of OMZs have presented a size-fractionated
comparison of eukaryotic community structure. Characterizing
microeukaryote diversity and distribution among different OMZ
regions and size fractions is a necessary step toward quantifying
the ecological importance of these organisms for bulk chemical
cycling and eukaryote-prokaryote interactions in OMZs and for
clarifying the effects of severe oxygen depletion on planktonic
community structure.

Here, we use 18S rRNA gene amplicon sequencing to provide
a snapshot of eukaryote community structure in two size frac-
tions (0.2–1.6 µm, >1.6 µm) along a depth gradient through the
ETSP OMZ off northern Chile. To our knowledge, this is the first
community-level genetic survey of microbial eukaryotes in this
anoxic water column. We highlight differences between the two
size fractions, across the OMZ oxygen gradient, and make com-
parisons to 18S gene surveys from other marine environments.

MATERIALS AND METHODS
SAMPLE COLLECTION AND DNA EXTRACTION
Microbial community samples were collected from the ETSP
OMZ as part of the Center for Microbial Ecology: Research and

Education (C-MORE) BiG RAPA (Biogeochemical Gradients:
Role in Arranging Planktonic Assemblages) cruise aboard the
R/V Melville (18 November—14 December, 2010). Seawater was
sampled from seven depths spanning the oxic photic zone and
oxycline (5 and 32 m samples), the suboxic (O2 < 10 µm) upper
OMZ (70 m), the anoxic OMZ core (110, 200, 320 m), and the
oxic zone beneath the OMZ (1000 m) from a single site (20◦
05.0 S, 70◦ 48.0 W) off the coast of Iquique, Chile on November
19th (5 m), 20th (32 m), 21st (70, 110, 200, 320 m) and 23rd
(1000 m). Water was sampled from Niskin bottles on a rosette
containing a CTD profiler (Sea-Bird SBE 911plus) with a dis-
solved oxygen sensor and fluorometer. A peristaltic pump was
used to filter water (10 L) through an in-line prefilter (GF/A,
1.6 µm pore-size, 47 mm dia., Whatman) to retain larger eukary-
otes and a Sterivex™ filter (0.22 µm pore-size, Millipore) to retain
picoeukaryotes. Prefilters and Sterivex™ filters were saturated
with lysis buffer (∼1.8 ml; 50 mM Tris-HCl, 40 mM EDTA, and
0.73 M Sucrose) and frozen until analysis.

Genomic DNA was extracted as described in Ganesh et al.
(2014). Cells were lysed by adding lysozyme (2 mg in 40 µl of
Lysis buffer per filter) directly to a microcentrifuge tube contain-
ing a pre-filter or to the Sterivex™ cartridge, sealing the caps/ends,
and incubating for 45 min at 37◦C. Proteinase K (1 mg in 100 µl
lysis buffer, with 100 µl 20% SDS) was added and the tubes fur-
ther incubated for 2 h at 55◦C. Lysate was removed and DNA
was extracted once with Phenol:Chloroform:Isoamyl Alcohol
(25:24:1) and once with Chloroform:Isoamyl Alcohol (24:1). The
purified aqueous phase was concentrated using Amicon Ultra-4
w/100 kDa MWCO centrifugal filters. Purified DNA aliquots from
each depth and size fraction were used for PCR.

18S rRNA GENE PCR AND AMPLICON SEQUENCING
A 450-bp fragment spanning the variable V4 region of the 18S
rRNA gene was PCR amplified using the universal forward primer
3NDF and the universal reverse primer V4_euk_R1 (Bråte et al.,
2010). Primers were appended with Roche 454 sequencing adap-
tors and sample-specific barcodes as described in the protocol
established for the Human Microbiome Project by the Broad
Institute (Jumpstart Consortium Human Microbiome Project
Data Generation Working Group, 2012). Reactions (25 µl) were
performed with 50–150 ng template DNA in Platinum PCR
Mastermix (Invitrogen) and run on an Eppendorf Mastercyler
thermocycler. The PCR program for amplification was: 94◦C for
2 min, followed by 34 cycles of 30 s at 94◦C, 30 s at 59◦C, 60 s at
72◦C with a final extension at 72◦C for 7 min. Amplicons were
purified using the QIAQuick PCR Clean-Up Kit, quantified on
a Qubit® 2.0 Fluorometer, and pooled at equimolar concentra-
tions. Pooled, barcoded amplicons were sequenced unidirection-
ally using the Roche Genome Sequencer FLX Instrument with
Titanium chemistry. All sequence data generated in this study will
be made publicly available in the NCBI Sequence Read Archive
and is accessible under BioProject ID number PRJNA263803.

DATA ANALYSIS
Amplicons were analyzed according to established protocols
using the QIIME package (Caporaso et al., 2010). Barcoded
18S datasets were de-multiplexed and filtered to remove low
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quality sequences using default parameters (minimum quality
score = 25, minimum sequence length = 200, no ambiguous
bases allowed). De-multiplexed sequences were clustered into
Operational Taxonomic Units (OTUs) at 97% sequence similarity,
with taxonomy assigned to representative OTUs from each clus-
ter by queries against the Protist Ribosomal Reference database,
PR2 (as of March 2014, Guillou et al., 2012). OTU counts were
rarefied and alpha diversity was quantified at a uniform sequenc-
ing depth based on the lowest sequence count from the protist
only subset at 70 m (N = 1308 sequences) using the phyloge-
netic diversity (PD) metric (Faith, 1992). To evaluate differences
in community composition between samples, sequences were
aligned using the PyNAST aligner in QIIME and beta diversity
was calculated using the weighted Unifrac metric, which com-
pares samples based on the phylogenetic relatedness (branch
lengths) of OTUs in a community, taking into account relative
OTU abundance (Lozupone and Knight, 2005). Sample related-
ness based on Unifrac was visualized using a two-dimensional
Principal Coordinate Analysis.

RESULTS
OXYGEN
As reported previously (Ganesh et al., 2014), the sample site
was characterized by steep vertical gradients in dissolved oxygen
(Figure 1). Oxygen concentrations measured with the SBE sen-
sor ranged from ∼250 µM at the surface to below 5 µM through
the OMZ core (∼100–400 m), before increasing below 400 m
to ∼60 µM at 1000 m. Prior measurements using high sensitivity
switchable trace oxygen sensors with resolution in the nanomo-
lar range indicate that the ETSP OMZ core is anoxic, with oxygen
concentrations below 30 nM (Revsbech et al., 2009; Thamdrup
et al., 2012). The base of the photic zone (1% surface PAR)
occurred at ∼40 m, with chlorophyll concentration peaking at
32 m (1.97 µg l−1).

FIGURE 1 | Dissolved oxygen concentration and phylogenetic diversity

as a function of water column depth. Diversity data points are mean
values based on rarefaction of OTU counts at a standardized sequence
count (n = 1308 per sample).

PHYLOGENETIC DIVERSITY
Following removal of low quality reads, 44,975 and 109,141
sequences representing both protist and metazoan taxa were
analyzed to assess diversity in the 0.2–1.6 µm (picoeukaryote)
and >1.6 µm size fractions, respectively (median per sample:
6760 and 15,564 for small and large size fractions; Table 1,
Figure 1). In the >1.6 µm fraction, phylogenetic diversity (PD),
which measures the total branch length connecting all OTUs
in the 18S rRNA gene phylogeny, peaked at 32 m within the
primary chlorophyll maximum, but was comparable between sur-
face (5 m) and anoxic (110–320 m) depths (Figure 1). In contrast,
PD of the picoeukaryote fraction was bimodal with depth, peak-
ing first within the chlorophyll maximum layer, declining to a
minimum along the oxycline, and then progressively increas-
ing four-fold within the OMZ to peak again at 300 m, where
diversity was equivalent to that observed at 32 m and almost two-
fold higher than that of the >1.6 µm fraction at the same depth
(Figure 1).

COMMUNITY COMPOSITION
Eukaryote community composition differed substantially along
the OMZ oxygen gradient and between size fractions (Figure 2).
Based on weighted Unifrac distances, sequences of the >1.6 µm
fraction were less similar across depths compared to the
0.2–1.6 µm fraction (Figure 2E), reflecting a broader range of
major taxonomic groups in the larger fraction. Indeed, exclud-
ing the 5 m surface sample, samples of the 0.2–1.6 µm fraction
were dominated by a single Order (Syndiniales). The >1.6 µm
fraction from the oxic sub-OMZ (1000 m) and both size frac-
tions from the surface (5 m) sample were relative outliers,
clustering apart from those of the oxycline and OMZ depths
(Figure 2E).

Table 1 | 18S rRNA gene amplicon sequencing statistics.

Sample Count OTU1

TOTAL sequences 196,0272

Mean length 410 bp

TOTAL unique OTUs 2331

5 m 0.2–1.6 µm 4679 463

5 m >1.6 µm 26,127 639

32 m 0.2–1.6 µm 6760 620

32 m >1.6 µm 12,943 946

70 m 0.2–1.6 µm 2036 47

70 m >1.6 µm 15,564 462

110 m 0.2–1.6 µm 8097 205

110 m >1.6 µm 14,868 440

200 m 0.2–1.6 µm 5633 270

200 m >1.6 µm 13,388 504

320 m 0.2–1.6 µm 7148 692

320 m >1.6 µm 9562 382

1000 m 0.2–1.6 µm 10,622 310

1000 m >1.6 µm 16,689 660

1Observed number of operational taxonomic units (>97% nucleotide similarity).
2Total sequences before quality filtering.
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FIGURE 2 | Community taxonomic composition in the (A) >1.6 µm

fraction based on all 18S rRNA gene sequences. (B) >1.6 µm fraction with
metazoan sequences excluded. (C) 0.2–1.6 µm fraction based on all
sequences. (D) >1.6 µm fraction based only on sequences matching

metazoa. (E) shows a principle component analysis of community taxonomic
relatedness based on all sequences from both size fractions, as quantified by
the weighted Unifrac metric. Depths within the OMZ are circled. (F) 0.2–1.6 µm
size fraction based only on sequences matching Syndiniales dinoflagellates.

The separation of the surface samples was due partly to their
enrichment in metazoan and haptophyte sequences (45–72% of
total, compared to 3–13% for sub-surface depths; Figure 2C). The
diversity of the metazoan pool peaked at 5 m (Figure 2D), with
groups such as the Appendicularia (Urochordata) and arthro-
pods over-represented relative to OMZ depths (Figure 2D). In
contrast, cnidarians and ctenophores comprised the bulk of the
metazoan sequences in the larger size fraction within and below
the OMZ. Sequences matching copepods (Maxillopoda) declined
in relative abundance from the primary chlorophyll layer (32 m)
to the upper OMZ, but increased again to a local maximum at the
OMZ core (200, 320 m; Figure 2D).

Protists were abundant (45–96%) at all depths but com-
prised the vast majority (>85% of total) of the eukaryote
community within the oxycline and OMZ (Figure 2B). Several
groups followed clear depth-specific trends. Euglenozoan flag-
ellates of the class Diplonemea represented a major portion
of the OMZ community, comprising 18% of total sequences
from the larger size fraction at 200 m, but were almost absent
(<2%) from oxycline and surface communities. Ciliate sequences
related to the Litostomatea were only observed in the 110 m
and 200 m OMZ depths, although in low abundance (0.5–1.5%

of all sequences). Photosynthetic algae of the Cryptophyta,
Haptophyta, Picobiliphyta, Choanoflagellida, and Stramenopiles
(diatoms) were confined primarily to the surface, represent-
ing ∼20% of the sequence pool from the larger size fraction at 5 m
(Figure 2B). In contrast, radiolarians in this fraction became pro-
gressively more dominant with depth, with unidentified members
of the Acantharea peaking at the upper and lower OMZ bound-
aries (110 and 320 m), accounting for 42 and 41% of sequences,
respectively, and Polycistenea radiolarians peaking at over 1/3 of
protist sequences at 1000 m beneath the OMZ (Figure 2B).

The most consistently abundant protist OTUs were simi-
lar to uncultured Dinophyceae and the predominantly parasitic
dinoflagellate taxon Syndiniales. These groups were detected at
all depths, representing 42–68% of all protist sequences in the
larger size fraction. Aside from a decline in Dinophyceae rep-
resentation at 1000 m (to ∼7%), sequence abundance within
Dinophyceae and Syndiniales in the larger size fraction did not
differ notably between oxic and OMZ depths (Figure 2B). In con-
trast, the picoeukaryotic fraction (excluding that of the surface
sample) was dominated by Syndiniales dinoflagellates (53–99% of
total), which showed substantial depth-specific variation in clade
diversity across depths (Figure 2F). Syndiniales diversity peaked

Frontiers in Microbiology | Aquatic Microbiology October 2014 | Volume 5 | Article 543 | 4

http://www.frontiersin.org/Aquatic_Microbiology
http://www.frontiersin.org/Aquatic_Microbiology
http://www.frontiersin.org/Aquatic_Microbiology/archive


Parris et al. Microeukaryote diversity in the Chilean OMZ

at the surface and again within the OMZ, with Group II clades 5,
21, and 30 enriched at the OMZ depths (Figure 2E) and Group II
clade 7 being the most abundant group at all other depths.

DISCUSSION
As observed in other low oxygen marine waters (Table 2), the
ETSP OMZ harbors a diverse community of microeukaryotes
with complex patterns of taxonomic structuring across oxygen
gradients and between cellular size fractions. Phylogenetic diver-
sity of eukaryotes in the >1.6 um size fraction, which presumably
captures the majority of eukaryotic biomass, peaked in the oxic,
photic zone in the layer of maximum chlorophyll fluorescence.
This pattern is consistent with the hypothesis that resource avail-
ability supports a greater number of niches for microeukaryotes.
Enhanced diversity in the photic zone may also be driven by a
greater overall abundance in near-surface waters of larger organ-
isms (metazoa) acting as hosts for symbiotic or parasitic protists.
Interestingly, diversity within the larger size fraction from anoxic
OMZ depths was equivalent to that at the surface (5 m) and
in the oxic bottom water. The overall diversity trend in the
larger size fraction did not vary substantially when only protists
were analyzed (Figure 1), indicating that metazoan sequences had
negligible effects on diversity calculations.

The relationship between picoeukaryotes and oxygen in OMZs
is not well understood. In contrast to the larger size fraction, the
0.2–1.6 µm fraction in the ETSP was most diverse at the OMZ
core. This pattern differs from that observed in seasonally anoxic
waters where microeukaryote diversity (0.22–2.7 µm) and species
richness declines as oxygen decreases below 20 µM (Orsi et al.,
2012). However, the presence of sequences from metazoans and
larger protists (e.g., radiolarians) in the 0.2–1.6 µm fraction sug-
gests that a portion of the DNA in this size range likely originated
from lysed cells and that diversity patterns in this fraction should
be interpreted cautiously. Nonetheless, depth-specific diversity
trends in the picoeukaryote fraction do not directly parallel those
of the larger size fraction. A similar decoupling was observed
in a recent analysis of size-fractionated prokaryotic communi-
ties at this ETSP site where diversity decreased from the surface
to anoxic waters in the small size fraction while increasing in
the larger size fraction (Ganesh et al., 2014). Though limited
to a single depth profile, our data indicate that relationships
between environmental variables, notably oxygen concentration,
and community diversity metrics vary depending on the subset of
the community being examined, indicating that estimates of bulk
eukaryote diversity and inferences of diversity-environment link-
ages in this system may require examination of multiple microbial
size classes.

The composition of the OMZ eukaryote community in the
larger size fraction was presumably strongly influenced by the
community in the overlying oxic, photic zone. The majority
of non-metazoan sequences in this fraction were found at the
surface (5 m) and at the depth of maximum chlorophyll fluo-
rescence (32 m), and included diverse algae, particularly photo-
synthetic haptophytes, cryptophytes, unaffiliated Dinophyceae,
and Stramenopiles (diatoms), as well as heterotrophic radio-
larians belonging to the Acantharea and putative endosymbi-
otic dinoflagellates of the Syndiniales. Although haptophyte and

cryptophyte sequence abundance became negligible upon the
transition out of the photic zone and into the OMZ, radio-
larians, Dinophyceae and Syndiniales dinoflagellates remained
dominant community members at all depths. The consistent
signal from dinoflagellates may, to an unknown extent, reflect
their presence as sinking dinospores resulting from near-surface
infections, or alternatively, their presence in sinking, inactive or
dead metazoan hosts. Similarly, Stramenopile sequences mostly
related to photosynthetic diatoms were detectable at all depths
and in both size fractions, though at low abundance (<2%).
Stramenopiles, diatoms in particular, are known to form dense
blooms in upwelling zones, sink rapidly when no longer growing,
and are major constituents of OMZ eukaryotic communities at
the surface and most likely as sinking particulate organic matter
at anoxic depths (Table 2, Smetacek, 1985; Montero et al., 2007).
The low relative abundance of stramenopiles in this dataset may
indicate that we sampled between blooms of these taxa or during
a bloom of other algal species. We cannot rule out the possi-
bility that some of the diatom sequences recovered from anoxic
depths represent active cells. It has been shown, for example, that
some diatoms may respire nitrate to persist during periods of dark
anoxia (Kamp et al., 2011), raising the possibility that even tran-
sient (sinking) members of the OMZ microeukaryote assemblage
may contribute to bulk elemental cycling in anoxic waters.

Although broad similarities in microeukaryote composition
were observed across depths, several groups were enriched within
the anoxic zone. Euglenid flagellates matching most closely to
Diplonema and ciliates of the Litostomatea increased in relative
abundance in the OMZ, particularly in the larger size fraction.
Diverse euglenids and ciliates are common inhabitants of anaer-
obic and microaerophilic marine waters (Bernard and Fenchel,
1996; Hayward et al., 2003; Orsi et al., 2011, Table 2). Clone-
based molecular studies of OMZs have identified a new class of
euglenids (Symbiontida) that are closely related to diplonemids,
common in low oxygen waters, and appear to host sulfide-
oxidizing, nitrate-reducing epibiotic bacteria (Edgcomb et al.,
2010; Orsi et al., 2011, 2012). Many different ciliates, including
those in the class Litostomatea, have been recovered from molecu-
lar and visual studies of low oxygen sites (Lynn, 2008; Stock et al.,
2009; Edgcomb and Bernhard, 2013; Edgcomb and Pachiadaki,
2014; Pachiadaki et al., in press). Ciliates found in anaerobic
habitats all have mitochondria or mitochondria-like organelles
called hydrogenosomes, and pyruvate oxidation via H2-excretion
appears to be central to their anaerobic lifestyle (Fenchel and
Finlay, 1991). Taxa known to inhabit anoxic marine habi-
tats include the karyorelictids, prostomatids, haptorids, trichos-
tomatids, entodiniomorphids, suctorids, scuticocilliatids, het-
erotrichids, odontostomatids, oligotrichids, and hypotrichids,
some of which may be facultative anaerobes (Corliss, 1979;
Fenchel and Finlay, 1995). Ciliates are often important graz-
ers of abundant prokaryotes found along oxyclines, including in
the deep sea (e.g., Lin et al., 2008; Pachiadaki et al., in press),
and hence, may contribute significantly to nutrient cycling along
OMZ oxygen gradients. Perispira ovum, a litostomatean cili-
ate, has been shown to prey heavily on euglenids, sequestering
their chloroplasts and mitochondria as a potential mechanism to
cope with low oxygen, thus acquiring the ability to function as
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Table 2 | Relative abundance of dominant taxa across diverse low oxygen sites.

Site Oxygena Taxonomic groupb Relative% References Methodc Sequences

North Pacific Ocean Oxic at 5 m Ciliophora 20 Countway et al., 2010 CS 524

Oxic site, January Unknown alveolate 20

sampling Dinophysceae 16

Oxic at 150 m Polycistenea 70

Marine Alveolate Group I 12

Acantharea 3

Oxic at 500 m Polycystenea 55

Marine Alveolate Group II 23

Marine Alveolate Group I 7

Hamelin Pool, Shark Anoxic 1–2 cm Litostomatea (Ciliophora)* 40 Edgcomb and Bernhard,
2013

A, CS >96

Bay microbialites Labyrinthulida (Stramenopiles) 10–20

Permanent anoxic
basin

Foraminifera (Rhizaria) 10–20

Oxic 0–1cm Dinophysceae (Protodinium) 10–20

Labyrinthulida (Stramenopiles) 10–20

Cariaco basin Oxic Radiolarians (RAD-3, RAD-19) 90 Orsi et al., 2011 CS 6489

Permanent anoxic MAST Stramenopiles 5

basin Novel Alveolates 5

Anoxic Radiolarians (RAD-3, RAD-19) 72

MAST Stramenopiles 11

Novel Alveolates* 14

Euglenozoa* 1.5

Anoxic/Sulfidic Radiolarians (RAD-3, RAD-19) 60

MAST Stramenopiles 17

Novel Alveolates* 14

Euglenozoa* 9

Indian Ocean Oxic Surface Marine alveolates I 20–35 Not et al., 2008 CS 541

Oxic site Dinophysceae 10–25

MAST Stramenopiles 10–20

Oxic Chl max Marine alveolates I 10–30

Radiolarians 15–40

MAST Stramenopiles 5–15

Saanich Inlet Oxic Stramenopiles 40–50 Orsi et al., 2012 A 4987

Seasonally anoxic Dinophysceae 20–30

Fjord Suboxic Stramenopiles 30–40

Dinophysceae 30–40

Anoxic Stramenopiles 15–25

Ciliophora* 15–20

Dinophysceae 15–20

Saanich Inlet Anoxic at 200 m Dinophysceae 21 Unpublished A 2000

Seasonally anoxic Dinophyta (Syndiniales)* 17 data Edgcomb

Stramenopiles 15

Gulf of Mexico Oxic Surface Coscinodiscophyceae 39 Rocke et al., 2012 CS 175

Seasonally anoxic Dinophysceae 40–50

Prasinophytes 10

Anoxic Dinophysceae 80

Polycystenea 9

Novel Alveolates* 6

(Continued)
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Table 2 | Continued

Site Oxygena Taxonomic groupb Relative% References Methodc Sequences

North Pacific Oxic Surface Ciliophora 27 Schnetzer et al., 2011 CS 856
Coastal upwelling Stramenopiles 20

Dinophysceae 14
Suboxic Alveolate Group II* 35

Acantharea* 19
Polycystenea 16

Anoxic Alveolate Group II* 36
Ciliophora* 16
Acantharea* 13

Gotland Deep Suboxic Ciliophora* 43 Stock et al., 2009 CS 600
Seasonally anoxic Fungi 30

Choanoflagellida 11
Anoxic/Sulfidic Jakobida 71

Fungi 6
Ciliophora* 5

Thetis Anoxic Fungi 37 Stock et al., 2012 CS 192
Hypersaline anoxic
basin

Ciliophora* 20

Stramenopiles 20

Sippewissett salt
marsh

Suboxic Unknown Stramenopiles 26 Stoeck et al., 2003 CS 42

Unknown Alveolates

(Ciliophora)*
26

Black Sea Suboxic Stramenopiles 42 Wylezich and Jürgens,
2011

CS 258

Permanently Ciliophora* 36
anoxic Dinoflagellates 19

Anoxic/Sulfidic Stramenopiles 42
Ciliophora* 33
Euglenozoa* 8

Mariajer Fjord
Permanently anoxic

Anoxic Alveolates (mainly

Ciliophora)*
41 Zuendorf et al., 2006 CS 307

Stramenopiles 28

ETSP OMZ Oxic at 5 m Metazoa 55 This study A 196,027
Permanently anoxic Dinophysceae 15

Prymnesiophysceae 5
Oxic at 32 m Dinophysceae 27

Dinophyta (Syndiniales) 26
Acantharea 17

Oxic at 70 m Dinophysceae 32
Dinophyta (Syndiniales) 24
Metazoa 16

Anoxic at 110 m Acantharea* 43
Dinophysceae 27
Dinophyta (Syndiniales)* 16

Anoxic at 200 m Dinophysceae 40
Euglenozoa* 18
Dinophyta (Syndiniales)* 16

Anoxic at 320 m Acantharea* 40
Dinophysceae 25
Dinophyta (Syndiniales)* 8

a Low oxygen samples are in bold, Oxic, O2 above 15 µM; Suboxic, O2 below 15 µM; Anoxic or Anoxic Sulfidic, no O2.
bDominant taxa, bold font with an asterisk highlight taxa shared among multiple low oxygen sites but not common at oxic sites.
cSequencing Method, CS, cloning and Sanger sequencing; A, Amplicon sequencing.
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mixotrophs in environments where mixotrophy confers a com-
petitive advantage (Johnson et al., 1995). The lifestyle of litosto-
matean ciliates in the core of this OMZ, well outside of the photic
zone, can only be speculated upon, and if these ciliates are active,
other adaptive mechanisms may be present within taxa not nor-
mally described from dark, anoxic, deep water columns. Within
both of these diverse groups (ciliates and euglenids detected
in this study), physiological adaptions to oxygen depletion and
mutualistic associations with prokaryotes may enable persistence
in OMZs.

Dinoflagellates of the order Syndiniales showed clear depth-
specific differences. This group predominated within the
0.2–1.6 µm size fraction, increasing in richness at the OMZ core
and contributing to an overall peak in diversity at this depth
(Figures 1, 2E). The Syndiniales are thought to be exclusive
endoparasites of macrozoans and other protists (Moreira and
López-García, 2003; Chambouvet et al., 2008) and are frequently
reported as the most abundant picoeukaryotes in environmen-
tal clone libraries from diverse ocean sites (López-García et al.,
2001; Countway et al., 2007; Not et al., 2007; Sauvadet et al.,
2010). Syndiniales are known to play important roles in con-
trolling blooms of different taxa, and these parasitoids complete
their life cycle in less than 3 days, releasing hundreds of free-
living dinospores (<2 µm) in the process (Chambouvet et al.,
2008; Guillou et al., 2008). The abundance of dinospores may
contribute to dominance of Syndiniales in many environmental
surveys. Although the diversity and environmental distribution
of Syndiniales are not fully understood, prior evidence shows that
Groups I and II are present at hypoxic and suboxic sites (Guillou
et al., 2008), with Group II more common than Group I below
the photic zone. Here, Syndiniales Group II clades 5, 21, and
30 increased in relative abundance within the ETSP OMZ com-
pared to more oxygenated waters above and below. Conversely,
Clade 7 (Group II), the dominant Syndiniales group within the
oxycline and in the oxic depths, decreased in abundance at the
OMZ core. Some Group II clades (specifically 1, 2, and 14) are
parasites of other dinoflagellates and appear to show host speci-
ficity (Chambouvet et al., 2008). It is unclear whether the verti-
cal distribution and ecological contributions of these and other
Syndiniales clades in the ETSP OMZ are driven by free-living
Syndiniales cells or by associations with hosts whose distribu-
tions vary with depth (assuming host lysis and release of cells into
the picoeukaryotic fraction). Indeed, clone libraries from anoxic
waters appear to contain members of the Dinophysceae sharing
low similarity to known dinoflagellates who may serve as hosts to
Syndiniales (Stoeck et al., 2003; Wylezich and Jürgens, 2011).

Radiolarian protists related to Acantharea were also enriched
in the OMZ. This may suggest they are also transported to the
OMZ interior as sinking cells from the surface, potentially as
aggregates or in association with fecal pellets (Turner, 2002).
However, sequences affiliating with Radiolaria are frequently
extremely abundant in environmental surveys of oxygen-depleted
water columns (e.g., Not et al., 2008; Countway et al., 2010;
Edgcomb et al., 2011a; Table 2). In the ETSP, acantharids peaked
in proportional abundance at the upper portion of the OMZ
(110 m) and again at 320 m in the anoxic core. Acantharids are
mixotrophs that are common in surface waters, especially in

eutrophic environments (Gilg et al., 2010), where they have been
shown to host large numbers of photosynthetic eukaryotic sym-
bionts (Michaels, 1991; Michaels et al., 1995). They are thought
to be the most significant biological regulators of strontium in the
ocean as they construct their cell walls entirely of strontium sul-
fate. Interestingly, these taxa are in very low abundance (<3%)
at 200 m and at intermediate abundance (14–15%) in the oxic
32 and 70 m samples. The acantharid-affiliated OTUs that were
abundant in the OMZ at 110 and 320 m were also present at sur-
face depths, suggesting the transport of these taxa into the OMZ
via sinking particles. However, we did not observe an even dis-
tribution of these signatures at depths between the surface and
320 m, and so the patchy distribution of this group is inconsistent
with a uniform flux of dead or dying radiolarians from the photic
zone. Measurements of absolute abundance along with indicators
of metabolic activity would be required to confirm and interpret
this pattern.

Over half of all sequences at the surface (>1.6 µm fraction)
were affiliated with metazoans (Figures 2A,D). While the dom-
inant urochordate signal detected at the surface was lost in the
transition into the OMZ, cnidarian, ctenophore, and Maxillipoda
(copepod)- associated sequences detected at the surface were
present in anoxic depths at low abundance (<10% of total
sequences). Sequences matching jellyfish (Cnidaria) dominated
the metazoan sequence pool in the anoxic zone. Diverse jellyfish
have been observed in the oxycline and upper hypoxic layers of
the OMZ of the Eastern Tropical North Pacific (Beatteay, 2012,
unpublished), consistent with the observed tolerance of many jel-
lyfish to hypoxia (Elliott et al., 2012). Copepods have also been
observed in diverse low oxygen waters where they exhibit species-
specific depth distributions (Saltzman and Wishner, 1997) and
may possess physiological adaptations such as reduced respiration
that allow persistence for brief periods under hypoxia (Teuber
et al., 2013). Here, sequences matching copepods increased in
relative abundance from the oxycline to the anoxic OMZ core
before declining again at 1000 m, raising the potential that these
organisms may occupy a niche within the anoxic zone where they
may escape predation or have less competition. Additional taxo-
nomic and physiological characterizations are needed to confirm
the presence of a metazoan community adapted specifically to the
extreme oxygen depletion observed in the ETSP.

COMPARISONS TO OTHER LOW OXYGEN SITES
The taxonomic trends in the ETSP show broad similarities to
those observed at other low oxygen marine sites, as well as notable
differences, which may reflect the unique habitat characteris-
tics of an OMZ. The relative dominance of dinoflagellate and
radiolarian signatures in the ETSP OMZ has been observed at
several other oxygen-depleted sites in upwelling regions, includ-
ing the Black Sea, Mariager Fjord, North Pacific, Saanich Inlet,
and the Gulf of Mexico (Table 2), although due to poten-
tially high ribosomal RNA gene copy numbers in these groups,
these observations must be interpreted with caution until they
are confirmed by microscopy or another method. Signatures
of ciliates and euglenids were more abundant in our libraries
from within the OMZ core and are also common in molecu-
lar surveys from other low oxygen environments. For example,
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litostomatean ciliates were identified in an Eastern Mediterranean
anoxic basin (Edgcomb and Bernhard, 2013) and signatures of
other diverse ciliates, including novel lineages have been recov-
ered from Mariager fjord, the Black Sea, Baltic Sea, and the North
Pacific (Table 2). Euglenid signatures were abundant in molec-
ular surveys of both the Black Sea and Cariaco Basin (Table 2).
Stramenopiles appear to be common across anoxic environments,
but were rarely detected in our ETSP OMZ dataset.

The sequences recovered from many of these “low oxygen”
groups vary by region and often do not match known sequences
in public databases that would enable finer taxonomic assign-
ments (Orsi et al., 2012; Stock et al., 2012; Edgcomb and
Bernhard, 2013). This highlights a general gap in knowledge of
the underlying diversity in oxygen-depleted waters. Furthermore,
studies of eukaryote diversity in low oxygen waters have utilized
an array of sampling methods, sample sizes, and analysis tools,
making it challenging to directly compare diversity metrics across
sites (Stock et al., 2009; Edgcomb et al., 2011a; Orsi et al., 2011;
Rocke et al., 2012). For example, the analysis of multiple size frac-
tions in our study identifies contrasting patterns of phylogenetic
diversity with depth in the OMZ, suggesting knowledge of the
effect of environmental gradients (e.g., oxygen) on community
structure may be biased depending on sample collection and pro-
cessing strategy. Together, the increasing volume of sequence data
from diverse low oxygen regions suggests geographic differences
in protist communities in different oxygen-poor habitats, and
high levels of uncharacterized microeukaryote diversity (Stoeck
et al., 2003; Zuendorf et al., 2006; Not et al., 2008; Schnetzer
et al., 2011; Orsi et al., 2012). Resolving linkages between envi-
ronmental parameters and diversity of microeukaryotes in OMZs
will require application of uniform sampling methods across
diverse low oxygen waters, as well as studies that couple gene sur-
veys to genomic or ecophysiological measurements to link OTU
distributions to functional activity.
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