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INTRODUCTION

The human mouth is an excellent system to study the dynamics of microbial communities
and their interactions with their host. We employed oligotyping to analyze, with
single-nucleotide resolution, oral microbial 16S ribosomal RNA (rRNA) gene sequence
data from a time course sampled from the tongue of two individuals, and we interpret
our results in the context of oligotypes that we previously identified in the oral data
from the Human Microbiome Project. Our previous work established that many of
these oligotypes had dramatically different distributions between individuals and across
oral habitats, suggesting that they represented functionally different organisms. Here
we demonstrate the presence of a consistent tongue microbiome but with rapidly
fluctuating proportions of the characteristic taxa. In some cases closely related oligotypes
representing strains or variants within a single species displayed fluctuating relative
abundances over time, while in other cases an initially dominant oligotype was replaced
by another oligotype of the same species. We use this high temporal and taxonomic
level of resolution to detect correlated changes in oligotype abundance that could indicate
which taxa likely interact synergistically or occupy similar habitats, and which likely interact
antagonistically or prefer distinct habitats. For example, we found a strong correlation
in abundance over time between two oligotypes from different families of Gamma
Proteobacteria, suggesting a close functional or ecological relationship between them.
In summary, the tongue is colonized by a microbial community of moderate complexity
whose proportional abundance fluctuates widely on time scales of days. The drivers and
functional consequences of these community dynamics are not known, but we expect
they will prove tractable to future, targeted studies employing taxonomically resolved
analysis of high-throughput sequencing data sampled at appropriate temporal intervals
and spatial scales.

Keywords: human microbiome, oral microbiota, 16S ribosomal RNA, Haemophilus, Neisseria, Streptococcus,
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Our understanding of microbial community dynamics at the

Understanding microbial community dynamics requires knowl-
edge of the time scale over which microbial communities adapt
and change. Studies using rRNA gene-based approaches to inves-
tigate microbial communities sampled at intervals of weeks to
months found that these communities correlated to environmen-
tal conditions (Fuhrman et al., 2006; Dethlefsen et al., 2008;
Gilbert et al., 2012; Chow et al., 2013). Indications that changes
of interest may occur over shorter time scales led to studies that
sampled at daily intervals in a marine system and in the human
microbiome (Dethlefsen and Relman, 2011; Caporaso et al., 2011;
Koenig et al., 2011; Gajer et al.,, 2012; Martinez et al., 2013;
Needham et al., 2013; David et al., 2014). These studies estab-
lished that microbial communities are resilient, with episodic
shifts in community composition followed by reversion to pre-
vious states. Remarkably, within that overall stability, dramatic
fluctuations in community composition could occur on time
scales of the order of days.

species level has heretofore been hindered by the use of analysis
methods that cluster sequences into operational taxonomic units
(OTUs) based on arbitrary similarity thresholds. Such methods
have the twin drawbacks that they generate heterogeneous group-
ings of limited biological relevance and that they do not make
full use of available sequence information that would allow finer
taxonomic resolution. Many described microbial species differ
by only 1 or 2% in rRNA gene sequence, yet standard analysis
methods lump them together by clustering sequences that are
more than 97% identical. A recently developed computational
method called oligotyping (Eren et al., 2013) removes this hin-
drance. Oligotyping uses a calculation of Shannon entropy to
identify nucleotide positions of high variation (i.e., high infor-
mation content) in a dataset, and employs only these positions
to partition the sequence dataset into groups called oligotypes.
It exploits all available informative data, reduces the effect of
noise, and generates homogeneous groupings in the sense that
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nearly every read assigned to an oligotype, if classified individu-
ally by BLAST, would have the same taxonomic annotation (Eren
et al., 2014). Oligotyping allows the analysis of high-throughput
sequencing datasets with single-nucleotide resolution. A differ-
ent approach that also achieves single-nucleotide resolution has
recently been reported (Tikhonov et al., 2014).

Application of oligotyping to the human oral microbiota
presents an opportunity to analyze a tractable microbial com-
munity with a level of taxonomic resolution that permits dif-
ferentiation among important species and, in favorable cases,
analysis of within-species dynamics. The human mouth is an
excellent test bed for microbiome analysis for several reasons:
it is home to a well-studied microbial community for which
a highly curated Human Oral Microbiome Database (HOMD)
(www.homd.org) has been established (Dewhirst et al., 2010);
a high proportion of the human oral microbiota have been cul-
tured (65%); fully sequenced genomes are available for many
(50%) of the oral microbiota; and, importantly, a foundation for
defining the healthy human oral microbiome has been laid by
the Human Microbiome Project (HMP) (http://commonfund.
nih.gov/hmp/index.aspx) which sampled nine oral sites from
over 200 healthy individuals and generated millions of sequences
(Human Microbiome Project Consortium, 2012).

The oral microbiota may be deconstructed into overlapping
but distinct communities. For example, the human tongue is the
substrate for an abundant microbiota different in composition
from the microbiota on the teeth and on the mucosal surfaces
of the mouth, as first indicated by distinctive distribution of a few
taxa in DNA hybridization and early sequencing studies (Mager
et al., 2003; Aas et al., 2005; Socransky and Haffajee, 2005; Zaura
et al., 2009). Analysis of the HMP data confirmed the finding of
broad differences in the microbiome of the tongue dorsum as
compared to plaque and to the surfaces of the gums, cheek and
hard palate (Segata et al., 2012).

The application of oligotyping to the HMP data for the oral
microbiome (Eren et al., 2014), in combination with habitat
analysis of oligotype distribution across nine oral sites, iden-
tified a level of ecological and functional biodiversity in the
oral microbiome not previously recognized. We identified oral
site-specialists, established correlations between sites within indi-
vidual mouths, and revealed predominance of certain oligotypes
within individuals that would not have been seen with OTU clus-
tering. Some oligotypes differing by a few nucleotides or even
as little as a single nucleotide showed strikingly different distri-
butions across oral sites or among individuals, suggesting that
even single-nucleotide differences in the 16S rRNA gene can
act as markers for underlying, biologically significant differences
elsewhere in the genome.

The HMP data provided an invaluable baseline for assess-
ing variation in the microbiome across a range of individu-
als whose health status was carefully documented. However,
this baseline represents a single “snapshot” in time from each
of the sampled individuals, meaning that the significance of
some distributional patterns of oligotypes remained unclear.
Some very closely related oligotypes, for example representing
different species of Streptococcus, were detected in the tongue
of every individual, but in widely different proportions in

different individuals; were these proportions a stable charac-
teristic of an individual’s microbiota or did they change over
time and over what time scales? Other closely related olig-
otypes apparently represented different strains within a sin-
gle species. For example, in the Neisseria flavescens/subflava
group, one or another of these oligotypes would dominate
the tongue community in an individual, making up 90% or
more of the reads of that taxon. Is one oligotype stably dom-
inant in each individual, or does the dominance relationship
fluctuate?

A time-resolved high-throughput sequencing dataset from the
tongue of two individuals (Caporaso et al., 2011) provided an
ideal opportunity to test the stability of these distributions over
time as well as to generate a more precise and unified descrip-
tion of the characteristic microbiota of the tongue. We carried
out oligotyping on this dataset and compared the resulting olig-
otypes to those detected in HMP data. Oligotyping, similar to
other de novo partitioning approaches, creates units that are
dataset-specific and not inherently comparable across datasets.
We overcame this limitation by making taxonomic assessments
for each oligotype by reference to the HOMD. This associa-
tion of oligotypes from separate datasets allowed us to apply
the insights gained from a large time-series study of two indi-
viduals to the analysis of a large cross-sectional study with
many individuals. It also provided resolution sufficient to dis-
criminate very closely-related taxa, so that for the first time we
can describe with species-level or near-species level precision
the overall composition and temporal dynamics of the tongue
microbial community.

METHODS

SAMPLE COLLECTION

This is a re-analysis of existing sequence data; procedures for
informed consent, institutional review board approval, and sam-
ple collection and sequencing are described in the original pub-
lications (Caporaso et al., 2011; The Human Microbiome Project
Consortium, 2012; Aagaard et al., 2013).

PREPARING THE SEQUENCE DATA

The study by Caporaso et al. (2011) describes in detail the sam-
ple collection, sequencing, and quality filtering of reads used in
this study. Briefly, one male and one female adult were sam-
pled approximately daily over 15 months (male) and 6 months
(female). The V4 region of the 16S rRNA gene was amplified
from tongue samples and amplicons were sequenced using the
Ilumina HiSeq platform (Illumina, Inc., San Diego, CA, USA).
We obtained the quality-filtered data from MG-RAST (http://
metagenomics.anl.gov/) using sample accession IDs 4457768.3
through 4459735.3. To eliminate the artificial length variation
among reads introduced by the original quality trimming, we re-
trimmed each read to 130 nucleotides, and removed the reads
that were shorter. For each sample with >20,000 reads we ran-
domly subsampled to 20,000 reads to minimize the sampling bias
in our results. The resulting dataset contained 508 samples and a
total of 7,538,132 sequencing reads. We used GAST (Huse et al.,
2008) to assign taxonomy at the family level to each read in the
dataset.
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OLIGOTYPING

We used oligotyping pipeline version 1.0 available from http://
oligotyping.org (Eren et al., 2013) on each taxonomic fam-
ily separately. For each family, we used the auto component
command (-c) to select the two nucleotide positions with the
highest Shannon entropy, partioning each family into up to eight
groups. Groups were further divided by manually adding addi-
tional nucleotide positions (using the -C parameter) based on the
recalculated Shannon entropy and on the absolute and relative
abundance distribution among samples of the unique sequences
within a grouping. No more than 5 nucleotide positions were
added in a single iteration. The minimum substantive abun-
dance threshold for an oligotype (-M) was set to 500 reads.
Upon completion of the oligotyping analysis for each family,
we concatenated the resulting observation matrices to gener-
ate a single observation matrix reporting counts (i.e. number
of reads assigned to each oligotype in each sample). We also
converted counts to percent abundances within each sample
and used these normalized relative abundances for all analyses
except the cross-correlation analysis which was performed on the
count data. We assigned taxonomic values to each oligotype by
a BLAST search using NCBI executables (--blast-ref-db) against
the HOMD RefSeq v.12.0 obtained from www.homd.org. Each
oligotype was assigned the taxonomy of the closest match(es) in
HOMD except for the one oligotype that had no match within
90% of any sequence in HOMD.

CROSS-CORRELATION AND AUTO-CORRELATION ANALYSIS

We carried out cross-correlation analysis using Matlab R2014a
(version 8.3) using the counts matrix for each oligotype (the
number of reads assigned to each oligotype in each sample) and
using the percent matrix (the counts normalized within each sam-
ple). Results using Pearson cross-correlation are shown (Matlab
function corr); we also carried out the same analysis using
Spearman and Kendall with comparable results. Significance (p-
value) was calculated using the corr function which employs a
Student’s t distribution for a transformation of the correlation.
We used the Bonferroni correction for multiple tests by multi-
plying significance estimates by 315 ~= 10°. Auto-correlation
analysis was carried out using the Matlab function xcorr on
percent-normalized data for the entire time course for each sub-
ject and for subsets of the male time course, and in each case was
evaluated over a window of plus or minus 21 days. Potential peri-
odicity of oligotype abundance was analyzed with Fourier trans-
forms using the Matlab functions £ft and periodogram. For
this analysis, linear interpolation was used to estimate the relative
abundance of oligotypes on days without sequencing data.

ANALYSIS OF V3-V5 READS FROM HMP DATA FOR MULTIPLE TIME
POINTS

We used the HMP 16S sequence data from the V3-V5 region.
Quality filtering and trimming, chimera removal, and taxonomic
assignment of reads were previously performed (The Human
Microbiome Project Consortium, 2012) using mothur (Schloss
etal., 2011) and the reads were uploaded into a MySQL database.
From this data we selected subjects from whom two tongue dor-
sum samples were available with at least 600 reads from each

sample. We counted the number of reads assigned to each genus
in each sample, and clustered this abundance data using the
Morisita-Horn dissimilarity index.

BLAST SEARCHES OF MICROBIAL GENOMES

We conducted BLAST searches at HOMD (www.homd.org)
using blastn against all oral microbial genomic DNAs anno-
tated by HOMD, and at NCBI (www.ncbi.nlm.nih.gov) using
megablast against all completed microbial genomes and against
draft genomes of Haemophilus and Neisseriaceae.

RESULTS

OLIGOTYPING RESULTS

We used oligotyping to re-analyze time series data sampled from
the tongues of two individuals at up to 396 time points (Caporaso
etal., 2011). We oligotyped each of the 17 most abundant bacte-
rial families, selecting sets of sequence reads based on their family-
level taxonomic assignment using GAST (Huse et al., 2008). These
17 families together represented 99% of reads in the combined
tongue data set, and this family-level oligotyping achieved a sim-
ilarly comprehensive result to the phylum-level oligotyping of
HMP data as previously described (Eren et al., 2014) but with
lower complexity in the supervision process. The number of
nucleotides we used to define oligotypes in the time series data
set ranged from 3 (for Actinomycetaceae and Bacillales) to 24 (for
Neisseriaceae). We partitioned the data into 315 oligotypes (Table
S1) and assigned taxonomic identification to each by BLAST
search of the representative sequence for each oligotype against
the Human Oral Microbiome Database (HOMD, Dewhirst et al.,
2010). Oligotyping of 16S rRNA gene tag sequence data from the
tongue dorsum as well as eight other oral sites for 148 individu-
als sequenced in the V3-V5 region, and 77 individuals sequenced
in the V1-V3 region, was previously described (Eren et al., 2014).
Results from that study provide the foundation for the current
study.

PHASE TRANSITION OF A MICROBIAL COMMUNITY

With the single-nucleotide resolution achievable by oligotyp-
ing, strains or variants within a taxon that differ in their rRNA
sequence are in principle detectable and their population dynam-
ics open to analysis. We previously found, for example, a case of
closely-related oligotypes within the genus Neisseria, in which the
Neisseria population on the tongue of each subject was dramati-
cally different from the mean abundance of the oligotypes across
all sampled subjects. Remarkably, the Neisseria population on an
individual tongue was generally dominated by one or another of
these oligotypes (Figure 1 and Eren et al., 2014). To understand
the cause of this distributional pattern, it is important to know
whether the differences between individuals are stable, or whether
populations within individuals change over time.

When only a single sample is analyzed from each of many
individuals, as in Figure 1, it is impossible to assess whether pop-
ulations within an individual are stable or dynamic. Most indi-
viduals possessed a population in which a single oligotype made
up at least 90% of the Neisseria reads, but the oligotype varied
from individual to individual, suggesting the possibility of multi-
ple stable states, each dominated by a single Neisseria oligotype.
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FIGURE 1 | Neisseria oligotypes in the tongue. Human Microbiome Project
data from the tongue, sequenced in the V1-V3 region. The four oligotypes
with at least 0.5% mean abundance across all sampled individuals are shown
with their percent identity to N. flavescens, the closest match in HOMD.
Colored bars represent the relative abundance of these four oligotypes in
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samples from an individual tongue; the 64 samples shown are those in which
these Neisseria oligotypes represented a total of at least 10 reads. The bar on
the left represents the relative abundance of each of these four oligotypes
averaged across all 64 tongue samples. The heat map shows the similarity of
each pair of oligotypes. Data are from Eren et al. (2014).

However, some individuals had populations lacking a dominant
oligotype. Did the more mixed populations represent short-lived
transitions between the stable states in individuals who were by
chance sampled during the transition? Alternatively, did certain
individuals stably maintain a mixed Neisseria population?
Oligotyping of a time series from the tongue of two individ-
uals (Figure 2) answered some of these questions and provided
plausible explanations for the observed distributions. Most of the
Neisseria in both subjects consisted of three major oligotypes,
shown in Figure 2 as light blue (Neisseria A), dark blue (Neisseria
B), and green (Neisseria C) with a small amount of a fourth olig-
otype shown as magenta (Neisseria D). The Neisseria population
in both subjects was initially dominated by type C, which was the
only Neisseria oligotype detectable in the first three samples from
the female and two samples from the male. The additional types
A and B then became detectable in both individuals, increasing
rapidly as a proportion of the total Neisseria (Figure 2). In the
female, type A was initially the more abundant of these two, but
rapidly faded in abundance relative to type B, which became the
dominant Neisseria in the female after approximately day 35. In
the male, by contrast, type B increased and then decreased in rel-
ative abundance several times before diminishing in proportion
until its abundance was negligible and the population was dom-
inated by type A after approximately day 100. These dynamics
display two main characteristics which, taken together, may be
termed a phase transition. The major behavior is one of stability.
For most of the time, the oligotype distribution within an individ-
ual was essentially invariant, irrespective of whether the dominant
oligotype in the individual was type A or type B. The second prop-
erty was of abrupt transition to an alternate oligotype. The time
series data showed several instances in which a community ini-
tially dominated by one oligotype became transiently mixed and

then transitioned to a state where one oligotype was dominant.
These properties suggest that the evenly mixed populations of
Neisseria on the tongue found in some individuals in the HMP
data are transient states. Occasional replacement of the dominant
oligotype argues against strong founder effects and priority effects
for this taxon in the tongue microbiota. Throughout these tran-
sitions the fourth oligotype, type D, did not participate in the
apparently competitive or exclusionary dynamics of types A and
B, but persisted in relatively stable proportion in the community,
likely demonstrating a subdivision of functional/ecological roles
even among these very closely related taxa.

DIFFERENCES AMONG INDIVIDUALS ARE COMPARABLE TO
FLUCTUATIONS OVER TIME

The stable dominance of one oligotype of Neisseria in each indi-
vidual, relative to the other Neisseria oligotypes, occurred in a
context of rapid fluctuation in the abundance of Neisseria and
all other taxa as a proportion of the total community. The over-
all behavior of the system was a dynamic equilibrium with rapid
fluctuations in relative abundance but without long-term direc-
tionality, as shown in Figures 3, 4. Figure 3 shows the relative
proportions of the five most abundant Streprococcus oligotypes
over time in each individual. The most abundant Streptococcus
oligotype overall, labeled Streptococcus A in the figure, is identical
to S. mitis, S. oralis, and S. infantis in the V4 region; this olig-
otype ranged in abundance from 9 to 75% of the Streptococcus
in the female subject and from 10 to 92% of the Streptococcus
in the male (Figure 3A). Relative abundance of taxa not only
ranged widely but also changed quickly as seen, for example, in
samples 269 and 270 from the male subject, in which the rel-
ative abundance of S. mitis/oralis/infantis dropped from 78 to
10% of the Streptococcus in the sample over the course of a
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FIGURE 2 | Neisseria oligotypes in time series data from the tongue.
Oligotypes with at least 0.56% mean abundance in at least one of the two
individuals are shown. Colored bars represent the relative abundance of each
of the four oligotypes in a single sample; data shown is for days 0 to 185 and
gray bars represent days for which data is unavailable. The heat map shows
the similarity of each pair of oligotypes. Neisseria A (oligo_001 in Table S1) is
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(oligo_011) and Neisseria D (oligo_024) are each 99.2% identical to the

N. subflava reference sequence; and Neisseria C (oligo_017) is identical to the
reference sequences for N. mucosa, N. flava, N. pharyngis, N. oralis, and
Neisseria spp. Human Oral Taxon (HOT) 015 and 018. All are within 98%
identity of one another.

single day (Table S1). For comparison, the corresponding olig-
otypes identical to S. mitis, S. oralis, and S. infantis sampled
from the tongue dorsum of multiple individuals from the HMP
together ranged from 1 to approximately 90% of the Streptococcus
genus on the tongue (Figure 3B and Eren et al., 2014). Thus,
a substantial fraction of the range of variability observed
across individuals was also observed within a single individual
over time.

The proportions of Neisseria and Streptococcus can be seen
in the context of other major tongue dorsum oligotypes in
Figure 4. The major oligotypes shown in the figure each ranged
from double-digit abundance to near-absence in samples over the
course of the time series. The wide fluctuations in sample compo-
sition within an individual raised the question of the significance
of differences between individuals compared to the variation
that exists within an individual over time. OTU-level analysis
of the tongue dorsum time course data showed that between-
subject UniFrac distances were greater than within-subject dis-
tances (Caporaso et al., 2011), and likewise OTU-level analysis
of HMP data showed between-subject differences within a body
site greater than within-subject differences (Human Microbiome
Project Consortium, 2012). Such inter-individual differences are
also reflected in our oligotyping analysis, in the form of some-
times widely differential mean abundances of oligotypes between

the two individuals, such as a greater abundance of Neisseria in the
male and a greater abundance of several Streptococcus oligotypes
in the female (Figures 3, 4, and Table S1). These differences are
concrete examples of the underlying taxon composition that leads
to higher community dissimilarity scores between than within
individuals. However, we wondered whether the summary statis-
tic of average community dissimilarity was obscuring the magni-
tude of the shifts in community composition within individuals
over time and giving a misleading impression about the relative
importance of differences between and within individuals.

For a quantitative comparison of variation within and between
subjects in these different studies, standard beta-diversity indices
are not calculable because the studies analyzed different regions
of the 16S rRNA gene and employed different amplification and
sequencing protocols. However, some of the HMP subjects were
sampled on more than one visit, affording the opportunity to
assess the variability over time in these individuals compared to
variation between subjects measured using the same study proto-
col. To make this comparison we identified 104 subjects for whom
tongue dorsum samples from the V3-V5 region were available
from two different visits, which were separated by 30-359 days
(Aagaard et al., 2013). Reads in these samples had previously been
trimmed and classified to genus using standard HMP pipelines
(The Human Microbiome Project Consortium, 2012). Using data

www.frontiersin.org

November 2014 | Volume 5 | Article 568 | 5


http://www.frontiersin.org
http://www.frontiersin.org/Systems_Microbiology/archive

Mark Welch et al.

Dynamics of tongue microbial communities

Female

100% |.,. m ""|"'

60%
40%
20%

\|||||| il

30 -

1 1 1
o o o
— o~ N

- N N m M

SIM

.100

99

98

.97

FIGURE 3 | Streptococcus oligotypes in the tongue. (A) Relative
abundance of Streptococcus oligotypes in time series data from the tongue.
Oligotypes with at least 0.5% mean abundance in at least one of the two
individuals are shown. Colored bars represent the relative abundance of each
of the five oligotypes in a single sample; data shown is for days 0 to 185 and
gray bars represent days for which no data is available. The heat map shows
the similarity of each pair of oligotypes. Streptococcus A (oligo_003 in Table
S1) is identical to the reference sequences for 6 species in HOMD including
S. mitis, S. mitis biovar 2, S. infantis, S. oralis, and Streptococcus spp. HOT
070 and 071; Streptococcus B (oligo_008) is identical to the reference
sequences for 7 species in HOMD including S. parasanguinis |,

S. parasanguinis Il, S. australis, and Streptococcus spp. HOT 057, 065, 066,
and 067; Streptococcus C (oligo_012) is identical to the reference sequences
for S. peroris and Streptococcus spp. HOT 068 and 074; Streptococcus D
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abundance across all sampled individuals are shown, and are assigned the
name of the closest match in HOMD; where the closest match is not 100%
identical, the percent identity is shown. In addition to the taxa listed in the
key, the oligotype identified as S. oralis/infantis/mitis biovar 2 is also identical
to Streptococcus spp. HOT 055, 058, 061, and 070 and the oligotype
identified as S. mitis/australis/oneumoniae is also identical to Streptococcus
spp. HOT 070, 071, and 074. Data for (B) are from Eren et al. (2014).
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FIGURE 4 | Time series of abundant oligotypes. The 11 oligotypes shown include the 8 most abundant in each subject; 5 oligotypes are in the top 8 in both
subjects. Colored bars represent the abundance of each oligotype in each sample; gray bars represent days for which no data is available.

on the number of reads classified into each genus for each of these
samples, we carried out a cluster analysis using the Morisita-Horn
dissimilarity index. Figure 5 shows the resulting clusters. For each
of the 104 subjects, the two samples from different time points are
connected by an arc. As can be seen in the figure, for some sub-
jects the two samples from different time points cluster tightly
together (short arcs), but for many subjects the two samples are
located in different clusters (long arcs). These clusters can be
related back to the taxon composition of each sample; for exam-
ple, the cluster colored in light blue consists of samples that are
more than 50% Streptococcus while samples in the cluster shown
in red have a high proportion of Fusobacterium. This analysis
supports the conclusion that many of the apparent microbiome
differences between individuals seen in the HMP data are a
result not of stable differences from person to person, but of
the limited information that results from “snapshot” sampling a
continuously changing system (an individual tongue) at a single
time point.

CORRELATED ABUNDANCE BETWEEN MEMBERS OF DIFFERENT
GENERA

The time series abundance data permit an assessment of the
degree of correlation or anti-correlation in the abundance of indi-
vidual oligotypes. Such an assessment would provide a basis for
inferring significant biological associations of taxa. Remarkably,
the data showed strong correlations between pairs of oligotypes
both within a taxon and across taxa (Figure S1).

The strongest correlation was between two oligotypes that
are among the 10 most abundant in the dataset and whose
best match in HOMD is to the same taxon, Veillonella parvula.
One, oligo_007, is identical to the V. parvula reference sequence
and the other, oligo_009, differs from it by a single nucleotide
(Figure 6A). The strength of their correlation suggests either that
they are in an extraordinarily close symbiosis or that they rep-
resent two distinct rTRNA genes present in the same cell. One
advantage of the oral microbiome as a study subject is the pres-
ence of sequenced genomes for a high fraction of oral microbial
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FIGURE 5 | Cluster analysis of individuals sampled by HVIP at two visits.  the two samples from each subject. Short arcs indicate subjects whose
Each dot represents a tongue dorsum sample from one of 104 individuals community composition was similar at the two visits; long arcs indicate
sampled at two visits at least 30 days apart. Samples were classified to subjects whose second sample was substantially different in composition
genus and clustered using the Morisita-Horn dissimilarity index. Arcs connect ~ from the first.
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taxa (Dewhirst et al., 2010), allowing a direct test of the possibility
that any two given rRNA genes are present in a single organ-
ism. We carried out a BLAST search of genomic DNA using the
HOMD web site (HOMD.org) and found both V. parvula oligo-
types in the sequenced genome of V. parvula DSM 2008/ATCC
10790. We conclude that the two tightly correlated V. parvula
oligotypes represent two sequences found in the same organism.

In contrast to the V. parvula oligotypes, another strongly-
correlated pair of oligotypes (oligo_024 and oligo_030) represent
species in different taxonomic families: one member of the pair
differs by a single nucleotide from the Haemophilus parainfluen-
zae reference and the other differs by a single nucleotide from
the Neisseria subflava reference (Figure 6B). Partially or com-
pletely sequenced genomes are available for N. subflava as well
as the related taxa N. flavescens and N. mucosa, and for H. parain-
fluenzae as well as the related H. influenzae and H. haemolyticus,
among others. BLAST searches revealed that the H. parainfluen-
zae oligotype oligo_030 is no more than 87% identical to any
region of any sequenced Neisseria genome, while the reverse is
true for the N. subflava oligotype oligo_024: it is no more than
87% identical to any sequenced Haemophilus genome. We con-
clude that these two oligotypes reside in different organisms, and
their strong correlation reflects either a close symbiotic interac-
tion between them, or strong specialization of both organisms to
the same micro-habitat.

The abundance traces of the two pairs of oligotypes shown in
Figures 6A,B are nearly identical to those obtained by other inves-
tigators who analyzed the same dataset using an entirely different
method aimed at identifying biologically meaningful units with
single-nucleotide resolution (Tikhonov et al., 2014). This simi-
larity supports the general validity of both methods. However,
we reach opposite conclusions concerning which of these pairs
is made up of sequences present in the same genome and which
are in different genomes. We conclude based on whole-genome
sequences that the two Veillonella sequences are in the same
genome and that the Haemophilus and Neisseria sequences are
in different cells. Tikhonov et al. confined their analysis to the
sequences per se. Based on autocorrelation coefficients, they con-
cluded that the two sequences which we identify as Veillonella
are at least partially contributed by different cells and that the
sequences we identify as Haemophilus and Neisseria likely origi-
nate from the same cells. We believe our conclusions benefit from
the genome-mining and cross-referencing to HOMD, but future
work is necessary to determine which conclusion is correct.

The most abundant oligotypes in the tongue time series
dataset are not strongly correlated with one another. For exam-
ple, the two most abundant oligotypes in the dataset, which are
identical to the HOMD reference sequences for N. subflava and
H. parainfluenzae, each make up more than 10% of the entire
dataset and have abundance distributions that are weakly cor-
related with each other (Figure 6C and Figure S1). The weak
correlation of these highly abundant oligotypes contrasts with
the tight correlation of their lower-abundance variants discussed
above and suggests differences in the underlying biology of the
high- and low-abundance types. Possibly, the high-abundance
oligotypes represent generalist organisms that do not require spe-
cialized habitat or tight taxon-taxon associations. Alternatively,

the more abundant oligotypes may encompass a heterogeneous
collection of organisms with identical V4 regions of the 16S rRNA
gene but with distinctive habitat requirements.

Additional, moderately positive correlations exist among pairs
of oligotypes from widely different taxa such as Streptococcus,
Haemophilus, and Alloprevotella (Figure S1) and likely result from
a preference for similar habitats or environmental conditions. In
contrast, the fourth and fifth most abundant oligotypes overall,
whose sequences are identical to the Fusobacterium periodonticum
and Prevotella melaninogenica reference sequences, are moder-
ately anticorrelated (Figure 6D); this anticorrelation could result
from an active antagonism between two taxa or from a prefer-
ence for incompatible microhabitats. In sum, correlation analysis
of the time series data provides strong indications of possible
functional or habitat associations among diverse taxa.

ARE THE FLUCTUATIONS IN OLIGOTYPE ABUNDANCE PERIODIC?
Casual inspection of the time series data gives the impression
that the oligotype fluctuations could be periodic. One possible
hypothesis for periodic variation in the composition of the tongue
microbiome is a periodic variation in host activity such as might
occur over weekends as opposed to the workweek. We tested
for reproducible periodicity in the data by carrying out auto-
correlation and Fourier transform analysis for each oligotype.
Auto-correlations were evaluated over a window of plus or minus
21 days. Consistent with the observation of rapid fluctuations,
the auto-correlation signal was strongest for a one-day time lag,
which agrees with the results of Tikhonov et al. (2014). However,
no consistent signal was observed for any of the abundant olig-
otypes either with auto-correlation or with Fourier analysis that
would suggest a weekly or other periodicity. A few minor oligo-
types showed a weak signal corresponding to weekly periodicity
but the signal was not of sufficient magnitude to admit of a strong
conclusion. Proper evaluation of such a possibility will require a
directed investigation.

A CHARACTERISTIC TONGUE MICROBIOTA

Oligotyping three datasets from the tongue (one time course and
two broad samplings of individuals) showed that a limited num-
ber of species-level or near-species-level taxa consistently make up
the majority of the microbiota on the tongue. Detailed taxonomic
comparison of oligotypes across these datasets is not straight-
forward, because different regions of the 16S rRNA gene were
sequenced in each case: V4 for the time course data and V1-V3
and V3-V5 for the HMP data. Nonetheless, taxonomic assess-
ments can be made by comparing each sequence to a curated
reference database, the HOMD, and using the matching reference
sequence(s) as an estimate of the taxonomy of the oligotype.
Twenty such reference sequences, or groups of closely related ref-
erence sequences, collectively account for 91-93% of the reads
from each dataset (Figure 7). Eighteen of these 20 were detected
in every sample or nearly every sample from both individuals in
the time series (Table S1). Thus, while the temporal core micro-
biome in this dataset is composed of only a small fraction of
the taxa that are detectable (Caporaso et al., 2011), this tempo-
ral core nonetheless constitutes the majority of the organisms on
the tongue.
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FIGURE 6 | Time series correlation analysis. The abundance of each and Haemophilus parainfluenzae (oligo_030) (p << 0.0001). (C) Two
oligotype, measured in reads, is plotted for each sample from day 66 oligotypes identical to Neisseria subflava (oligo_001) and Haemophilus
through 420 in the male subject, and the Pearson correlation coefficient parainfluenzae (oligo_002) are weakly correlated (Pearson, p = 0.18 after
for each pair of oligotypes over this data range is shown above the plot. Bonferroni correction; Spearman, p < 0.01 after Bonferroni correction).
(A) Two strongly correlated oligotypes matching the taxon Veillonella (D) Oligotypes identical to Fusobacterium periodonticum (oligo_004) and
parvula (oligo_007 and oligo_009 in Table S1) (p << 0.0001). (B) Strongly Prevotella melaninongenica (oligo_005), showing moderate anti-correlation
correlated oligotypes 99.2% identical to Neisseria subflava (oligo_024) (p << 0.0001).

In contrast to these similarities, there are also differences
among the abundant taxa present in the time series com-
pared to the HMP data. Several taxa are relatively depauper-
ate in the time series data set compared to HMP, including
Actinomyces spp., Leptotrichia spp., and Porphyromonas sp. HOT

279; these differences may reflect true characteristics of the
microbiomes of the sampled individuals, or may result from
primer bias or other technical differences in experimental proce-
dures. The genus Rothia is represented in all three datasets but
the oligotypes representing this genus do not match the same
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The characteristic microbiota of the tongue
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FIGURE 7 | The characteristic microbiota of the tongue. Colored
bars represent the mean abundance of the taxa that consistently
occur in the time series and HMP datasets. For each of the taxa
shown, the HOMD reference sequence for the taxon is at least
98.5% identical to one or more oligotypes that make up at least

Leptotrichia spp.

0.5% of the time series tongue data (Female, Male) and/or the
V3-V5 and V1-V3 tongue dorsum data from the HMP Exceptions to
the 98.5% identity criterion (Rothia spp. and Oribacterium sp. HOT
108) indicate cases where a precisely matched reference sequence
may not yet be represented in HOMD.

species consistently across datasets. This inconsistency may be
explained by technical or biological differences, but an alter-
native possibility is that sequences from this genus represent
one or a few taxa that are consistently present across datasets
but have 16S rRNA gene sequences divergent from the refer-
ence sequences currently represented in HOMD. For such a
taxon the closest match in the V1-V3 region may be to one
reference sequence; in the V4 region its closest match may be
to a different reference sequence, and these differences in tax-
onomic assignment in the different regions may obscure the
consistency with which the identical taxon is present across
datasets.

DISCUSSION

MICROBIAL COMMUNITY DYNAMICS FOLLOWED USING

OLIGOTYPING

Understanding the forces that shape microbial communities in
the human microbiome requires following dynamic changes in

these communities over time. Rapid decreases in the cost of DNA
sequencing have made it possible to generate the large amounts
of data required for studies of dynamics, but analysis methods
limited to the genus or OTU level have limited the opportuni-
ties for analyzing the dynamics within a single species or between
closely related species. This study provides an example of the
single-nucleotide taxonomic resolution of oligotyping which, in
turn, enables analysis of microbial dynamics and associations
that would otherwise not be possible if taxa were lumped into
heterogeneous groups.

PHASE TRANSITIONS OF OLIGOTYPES

Our observation of changing relative abundance of Neisseria olig-
otypes on the tongues of two different individuals showed that
in these instances, replacement of an initially dominant oligo-
type occurred over a time scale of days, and the newly dominant
type remained dominant for the rest of the months-long sam-
pling period. Thus the period of transition was relatively abrupt
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in comparison to the duration of the subsequent dominant phase.
The causes both of the replacement, and of the stable domi-
nance, remain uncertain. After the first few days of sampling the
two oligotypes that became dominant were different in the two
individuals but were detected in nearly every sample from each
of them. It is possible that these two oligotypes newly invaded
the tongue habitat of these individuals near the beginning of the
time course and, once present, proliferated in what was for them
a favorable environment. Alternatively, it is possible that they
were present but simply below the detection limit for the first
few days, and their sudden proliferation was caused by changes
in the oral environment or the surrounding microbiota, changes
perhaps occasioned by the daily sampling itself. In both individ-
uals the oligotype that was not dominant nevertheless persisted
in low abundance, showing that (unsurprisingly for the oral
environment) dispersal is not the limiting factor regulating the
abundance of these taxa in a given mouth. The dynamics dis-
played by these oligotypes are similar to the behavior of some
closely-related 97% OTUs in a time series of gut and saliva sam-
ples from two individuals (David et al., 2014), in which rapid
transitions are followed by extended periods of stable dominance
of one of the OTUs. A similar pattern was also observed in the
within-species dynamics of Staphylococcus epidermidis in a time
series from the gut microbiome of a premature infant (Sharon
et al., 2013) in which the changes in strain abundance were at
least partially attributable to the dynamics of infecting bacterio-
phage. The extended dominance periods we observe are difficult
to explain as a consequence of phage-driven dynamics, however,
unless one invokes development of host resistance or changes in
phage infectivity (Sharon et al., 2013) or the presence of mul-
tiple strains that have different virus sensitivities and that are
succeeding one another, but which are indistinguishable in 16S
rRNA gene sequence (Fuhrman, 2009) and thus undetectable
with this data.

IMPLICATIONS OF HIGH VARIABILITY IN TAXON RELATIVE
ABUNDANCE OVER TIME

The high variability and rapid change in microbial communi-
ties in the time series data set were noted by Caporaso et al.
(2011) as well as the contribution of blooms of particular genus-
level taxa to the dissimilarity of the overall community over
time. Our oligotyping results extend these findings to the species-
or near-species level, as shown in the example of Streptococcus
in which dramatic changes occur in the relative, as well as the
absolute, abundance of each oligotype as a proportion of the
genus abundance over time. From our analysis of the HMP
data for the Streptococcus community of many individuals at
a single time point, it was evident that a number of major
Streptococcus taxa were present in every individual; however it
was not possible to determine whether their abundances fluc-
tuated over time or whether communities in some individuals
were strongly and continually biased in favor of one or another
taxon. Our results with the time-series data for the tongue dor-
sum suggest that a substantial portion of the variation in taxon
abundance occurring between individuals in the HMP data can
be explained by the temporal variation of abundance within
individuals.

This high variability has implications for the fine-scale spatial
and metabolic structure of the tongue flora. Given our obser-
vation of a consistent, characteristic tongue dorsum microbiota
over time and across individuals, one could hypothesize that these
taxa comprise a tightly integrated community with finely tuned
metabolic interactions with one another and with cells of differ-
ent microbial species intimately intermingled at micron scales in
a relatively constant stoichiometry. The high overall variability
in relative abundance among these taxa, however, argues against
such a hypothesis. Rather, the microbiota likely constitute a num-
ber of distinct assemblages occupying different spatial positions,
preferring different environments, or succeeding one another
over time. Certain subsets of the assemblage that show correlated
distribution, such as the oligotypes identified with H. parain-
fluenzae and members of the N. subflava group, may constitute
a functional unit. Other anti-correlated subsets, however, such as
the oligotypes identified with F. periodonticum and P. melanino-
genica, may reflect that the corresponding taxa interact in an
antagonistic fashion or that they prefer different environmental
conditions.

The reasons underlying the large fluctuations in relative
abundance across taxa are an interesting question for further
study. Disturbances caused by oral hygiene procedures and
ingestion of food or liquids occur with higher frequency than
the observed community fluctuations and are unlikely to be
the sole driver of these fluctuations. For an assemblage resid-
ing on a shedding epithelial surface, the sporadic availabil-
ity of new surfaces for colonization may give a temporary
advantage to taxa that are more effective initial colonizers or
may be, by chance, spatially well-positioned to colonize new
habitat. Alternate explanations include changes in activity of
the host immune system, diurnal physiological changes, the
dynamics of bacteriophage populations, competition, or stochas-
tic variation. Sporadic changes in host behavior may also be
responsible.

THE USE OF HOMD TO CONNECT ORAL OLIGOTYPE DATASETS

Short regions of the rRNA gene have limitations for high-
resolution identification and differentiation of microbes.
Potential confusion arises when taxa of interest are differ-
entiated by only one or a few nucleotides in the sequenced
region, but these limitations can be mitigated by making
use of taxonomic information to relate distinct datasets to
one another.

An example in the data shown here is the time series oligotype
labeled Streptococcus D (Figure 3A). This oligotype is identical in
the V4 region to the HOMD reference sequence for S. gordonii
but is also only a single nucleotide different from the HOMD
reference sequence for Streptococcus parasanguinis. Additional
information about the likely taxonomy of this oligotype comes
from the HMP datasets from V1-V3 and V3-V5; neither of
these datasets shows a significant contribution of S. gordonii to
the tongue microbiota, while both show a substantial contri-
bution of S. parasanguinis (Figure 3B). Evaluation of the time
series data in the context of the HMP data therefore suggests
that Streptococcus D is more accurately identified as a variant
of S. parasanguinis. Similar considerations apply to the Neisseria
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oligotypes (Figure 1). The species N. flavescens, N. subflava, and
N. flava form a phylogenetically distinct group according to
whole-genome sequence data (Bennett et al., 2013) and are shown
by HMP data to be important in the tongue microbiota (Eren
etal., 2014). In the V4 region there are only 1 or 2 nucleotide dif-
ferences between these taxa, leading to ambiguity in identification
of the time series oligotypes in the absence of additional informa-
tion. This information can be found in HMP data: using V1-V3
sequences, the abundant oligotypes of this group are unequiv-
ocally identified as most similar to N. flavescens, which differs
from N. flava and N. subflava by 11 nucleotides in the oligotyped
region of V3. These two examples demonstrate the power of a
well-curated database and applying multiple lines of evidence to
the identification of taxa.

THE CORE TONGUE MICROBIOME

With the species-level description of its consistent core micro-
biome that we present here, the tongue becomes one of only
a small number of habitats for which a numerically abundant
core microbiome has been described at the species level. Our
results support the conclusions of Kraal et al. (2014) who analyzed
whole-genome shotgun samples from the HMP and concluded
that the species Veillonella dispar was abundant in every tongue
microbiome sampled and that three other species (S. parasan-
guinis, S. salivarius, and P. melaninogenica) each were abundant
in at least 87% of tongues sampled. Given the close similarity of
the microbiomes of the tongue and of saliva (Mager et al., 2003;
Eren et al., 2014) it is not surprising that the set of genus-level
taxa detected in all or nearly all saliva samples by Stahringer et al.
(2012) is also concordant with our set of core taxa, as is the set of
genera found in all saliva samples by Lazarevic et al. (2010). The
presence of a consistent core tongue microbiota argues against the
idea that many functions in the overall oral microbial community
can be carried out by any one of a number of interchangeable
taxa, and argues instead for the presence of niche specialists
whose role is not readily filled by alternative taxa (Fuhrman,
2009). The relative simplicity of the core tongue microbiota con-
trasts with the hundreds of taxa that are described from the
mouth as a whole (Dewhirst et al., 2010), many of which are
specialized to a subset of habitats within the mouth (Eren et al,,
2014). It may be a general characteristic of microbial ecosystems
to appear enormously complicated when considered at spatial
scales that lump together disparate habitats, but to resolve into
more tractable communities when the habitat is accurately and
narrowly defined.

MAKING FULL USE OF THE INFORMATION IN HIGH-THROUGHPUT
SEQUENCING DATA SETS

There is a growing recognition that high-throughput sequencing
data contains information that is not fully expressed by partition-
ing the data into conventional OTUs. Some form of partitioning
is necessary because both neutral variation in natural popu-
lations and sequencing errors create a profusion of sequence
variants without underlying biological meaning. However, OTUs
that are defined purely by a threshold of sequence similarity are
phylogenetically and ecologically heterogeneous and inconsistent
(Prosser et al., 2007; Schloss and Westcott, 2011; Koeppel and

Wu, 2013; Schmidt et al., 2014). Alternative approaches make
use of the fact that the noise arising from neutral variation and
sequencing errors is randomly distributed with respect to ecology.
For example, an approach termed “distribution-based clustering”
employs information about the distribution of sequences among
habitats or samples to differentiate noise from meaningful varia-
tion and thus inform the definition of taxonomic units (Preheim
et al., 2013). In a “denoising” approach (Tikhonov et al., 2014),
sequencing error and temporal cross-correlation were analytically
distinct but temporal cross-correlation analysis was used to deter-
mine which unique sequences were “real,” i.e., not attributable to
noise.

Oligotyping is an information theory-based approach that
employs Shannon entropy to identify nucleotide positions of
high variation within a dataset (Eren et al., 2013), thereby dis-
tinguishing meaningful variation from sequencing errors (Huse
et al., 2007; Minoche et al., 2011). Like the cross-correlation
approaches, the Shannon entropy method has the capacity
to discriminate among closely related taxa at the sub-species
level. However, unlike these other approaches, the Shannon
entropy method partitions the data into oligotypes indepen-
dent of cross-sample correlations. This independence means that
habitat or temporal correlation analysis can be employed at a
later stage in data analysis, providing an independent way of
assessing the biological meaning and distinctiveness of sequence
variants.

For the human oral microbiome, the presence of a highly
curated database and a large number of sequenced genomes pro-
vides an additional layer of analytic power. Sequence differences
that rise above the level of noise, as identified by oligotyping
or cross-correlation, can be associated with known taxa via the
HOMD, allowing the comparison of data across datasets even
when different regions of the 16S rRNA gene were employed for
sequencing. Distinguishing whether oligotypes represent differ-
ent 16S rRNA genes within a single organism or are tags for dif-
ferent organisms is enabled by access to full genomes. This cross-
dataset analysis and genome-mining capability greatly expands
the usefulness of datasets. In summary, we have used high-
resolution taxonomic analysis of high-throughput time series
data to provide insight into the microbial population dynam-
ics of the tongue. Our results have revealed phase transitions
of closely related taxa and unanticipated associations of taxa
from different genera. We expect that our approach will permit
future, targeted analyses of specific microbial interactions and
dynamics.
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