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In new microbial-biogeochemical models, microbial carbon use efficiency (CUE) is often
assumed to decline with increasing temperature. Under this assumption, soil carbon
losses under warming are small because microbial biomass declines. Yet there is also
empirical evidence that CUE may adapt (i.e., become less sensitive) to warming, thereby
mitigating negative effects on microbial biomass. To analyze potential mechanisms of CUE
adaptation, I used two theoretical models to implement a tradeoff between microbial
uptake rate and CUE. This rate-yield tradeoff is based on thermodynamic principles and
suggests that microbes with greater investment in resource acquisition should have
lower CUE. Microbial communities or individuals could adapt to warming by reducing
investment in enzymes and uptake machinery. Consistent with this idea, a simple
analytical model predicted that adaptation can offset 50% of the warming-induced decline
in CUE. To assess the ecosystem implications of the rate-yield tradeoff, I quantified
CUE adaptation in a spatially-structured simulation model with 100 microbial taxa and
12 soil carbon substrates. This model predicted much lower CUE adaptation, likely due
to additional physiological and ecological constraints on microbes. In particular, specific
resource acquisition traits are needed to maintain stoichiometric balance, and taxa with
high CUE and low enzyme investment rely on low-yield, high-enzyme neighbors to
catalyze substrate degradation. In contrast to published microbial models, simulations with
greater CUE adaptation also showed greater carbon storage under warming. This pattern
occurred because microbial communities with stronger CUE adaptation produced fewer
degradative enzymes, despite increases in biomass. Thus, the rate-yield tradeoff prevents
CUE adaptation from driving ecosystem carbon loss under climate warming.
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INTRODUCTION
Climate warming is expected to alter biogeochemical processes in
ecosystems (Davidson and Janssens, 2006; Bardgett et al., 2008).
All of these processes are influenced by micro-organisms like bac-
teria and fungi, and many predictive models now include some
form of microbial control over biogeochemistry (Moorhead and
Sinsabaugh, 2006; Lawrence et al., 2009; Allison et al., 2010; Wang
et al., 2013; Wieder et al., 2013). In contrast to conventional
models in which decomposition is strictly a first-order process,
the new models couple microbial biomass with substrate pools
(Todd-Brown et al., 2012). This change in model structure, first
developed in detail by Schimel and Weintraub (2003), results
in biogeochemical rates that depend not only on donor pool
sizes (e.g., soil carbon) but also on recipient pools—specifically
microbial biomass.

The new microbial models are important because they may
be more biologically realistic, and their predictions differ from
conventional models under environmental change (Allison et al.,
2010; Wieder et al., 2013). At the global scale for instance, one of
these new microbial models reproduced existing distributions of
soil carbon more accurately than conventional models (Wieder

et al., 2013). In response to climate warming, this new model
showed a wider range of soil carbon outcomes compared to
conventional models, with either large losses or small changes
predicted depending on microbial physiological parameters.

Due to the dependence of biogeochemical rates on microbial
biomass pools, microbial models are sensitive to physiological
parameters that regulate microbial dynamics. Initial studies have
shown that carbon use efficiency (CUE) is one of these key
parameters (Allison et al., 2010; Sinsabaugh et al., 2013; Li et al.,
2014). CUE is defined as the fraction of microbial assimilation
that is allocated to biosynthetic processes (e.g., growth), with
the remainder typically respired (Steinweg et al., 2008; Manzoni
et al., 2012). Thus, greater CUE results in more microbial biomass
because more of the assimilated substrate remains in cells rather
than being respired.

Most of the initial studies with microbial models have included
scenarios in which CUE declines with increasing temperature
(Allison et al., 2010; Wang et al., 2013; Wieder et al., 2013;
Li et al., 2014). This relationship is based on empirical studies
that have found reductions in CUE with increasing temperature
in the range of 0.009 mg mg−1 ◦C−1 to 0.049 mg mg−1 ◦C−1

www.frontiersin.org October 2014 | Volume 5 | Article 571 | 1

http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/about
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/journal/10.3389/fmicb.2014.00571/abstract
http://community.frontiersin.org/people/u/41745
mailto:allisons@uci.edu
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Microbiology/archive


Allison Modeling microbial carbon use efficiency

(Devêvre and Horwath, 2000; Van Ginkel et al., 2000; Rivkin
and Legendre, 2001; Pietikäinen et al., 2005; Apple et al., 2006;
Steinweg et al., 2008), although the relationship is not always
consistent (Del Giorgio and Cole, 1998; Dijkstra et al., 2011).
Physiologically, CUE should decline with warming if respiratory
processes are more temperature sensitive than growth processes
(Farmer and Jones, 1976; Mainzer and Hempfling, 1976; Hall and
Cotner, 2007). Processes such as protein turnover and cell repair
might increase at higher temperatures, though the exact mech-
anism underlying the CUE-temperature relationship in soils has
not been determined (Bradford, 2013).

A recent study from the Harvard Forest warming experiment
found evidence that the temperature sensitivity of CUE may
decline in response to long-term warming (Frey et al., 2013).
There is also some evidence for seasonal changes in microbial
community CUE (Tucker et al., 2013). Several mechanisms could
lead to this “adaptation” of CUE. Over time, shifts in micro-
bial community composition or substrate use could reduce CUE
temperature sensitivity. More efficient microbial taxa might be
selected for, or microbes might switch to using substrates that
can be assimilated with greater efficiency. Still, if efficiency gains
are possible, why aren’t they already realized, even at lower
temperatures?

Many physiological studies going back decades show that
increased efficiency trades off against rates of resource con-
sumption (Pirt, 1965; Pfeiffer et al., 2001; Frank, 2010). Cells
with higher consumption rates have lower CUE and vice versa.
Rapid resource consumption requires more cellular machin-
ery such as uptake proteins, ribosomes, and metabolic enzymes
that increase respiratory costs. Increasing CUE by reducing
these costs therefore comes at the expense of a lower resource
acquisition rate.

For free-living, heterotrophic microbes, fast growth requires
metabolic machinery to degrade and take up complex resources
from the environment (Koch, 1985, 1997). This machinery takes
the form of extracellular enzymes and uptake proteins that tar-
get energy- and nutrient-containing molecules. Cells that have
a greater enzymatic capacity should process complex resources
more rapidly, but should also incur relatively greater respiratory
costs that reduce CUE. If these respiratory costs increase faster
than the benefits of enzyme production as temperatures rise, then
microbes might be expected to reduce enzyme investment with
warming.

The goal of this study was to model the consequences of
the rate-yield tradeoff for carbon cycling responses to temper-
ature increase. Although there is some empirical evidence that
community-level CUE adapts to temperature (Frey et al., 2013),
the mechanisms, implications, and generality of this response
are poorly known. Theoretical models offer a tractable means
of identifying potential mechanisms and generating testable
hypotheses.

I analyzed the rate-yield tradeoff with a simple analytical
model and with the DEMENT model (Allison, 2012). DEMENT
includes substrate feedbacks and represents microbial diversity
by assigning physiological traits to virtual taxa that compete
in a spatially-structured environment. Ecosystem process rates
(i.e., decomposition) and community properties (i.e., functional

diversity) emerge from the model dynamics (Follows et al., 2007).
The analytical model makes clear, idealized predictions about
the potential for microbial adaptation to temperature, whereas
DEMENT imposes additional constraints through substrate and
microbial interactions. I tested whether the potential for CUE
change under warming was similar for the two theoretical systems
and analyzed mechanisms underlying the differences between
models.

MATERIALS AND METHODS
ANALYTICAL MODEL
The analytical model was constructed to analyze the potential for
CUE adaptation in a spatially and taxonomically homogeneous
microbial community. The model objective was to find the CUE
that maximizes microbial growth (G), which is assumed to equal
the uptake rate (U) times CUE (ε):

G = U ∗ ε (1)

where U follows the Arrhenius relationship with temperature
(T; ◦C):

U = Uref ∗ exp

[(
−Ea

R

)(
1

T + 273
− 1

Tref + 273

)]
(2)

Uref is the uptake rate at the reference temperature (Tref = 20◦C),
Ea is the activation energy for uptake, and R is the ideal gas con-
stant (8.314 J mol−1 K−1). CUE is assumed to vary linearly with
T, where εint is intrinsic CUE at 20◦C and mT is the temperature
sensitivity of CUE:

ε = εint + mT ∗ (T − Tref ) (3)

To implement the growth-yield tradeoff, εint is assumed to vary
linearly with reference uptake rate with intercept ε0 and slope mU .

εint = ε0 + mU ∗ Uref (4)

Substituting Equations (2–4) into Equation (1), differentiating G
with respect to Uref , and solving the differential equation for Uref

yields:

Uref = −ε0 + mT ∗ (T − Tref )

2mU
(5)

Substituting Equation (5) into Equation (4) yields:

εint = ε0 − mT ∗ (T − Tref )

2
(6)

Thus if higher uptake rates trade off against lower CUE, the model
predicts that intrinsic CUE must increase linearly as tempera-
ture increases in order to maximize growth. Greater intrinsic CUE
helps offset the decline in realized CUE with increasing tempera-
ture. However, greater intrinsic CUE comes at the cost of reducing
uptake potential, Uref . The analytical model was analyzed with
parameters given in Table 1 but with mU equal to −0.2 and −0.4
to represent high and low tradeoff scenarios, respectively.
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Table 1 | Values and units for model parameters.

Variable Value Units Interpretation (with reference if available)

t 5000 Day Number of iterations

NE 50 Number of enzymes in community

NS 12 Number of substrates

NU 14 Number of uptake transporters

NB 100 Number of taxa

Ea 35 kJ mol−1 Activation energy for uptake

EaK 20 kJ mol−1 Activation energy for Km (German et al., 2012)

KmESlope 10 mg enzyme day cm−3 Slope for Km – VE relationship

KmEInt 0 mg cm−3 Intercept for enzyme Km – VE relationship

KmUSlope 0.2 mg biomass day cm−3 Slope for Km – VU relationship

KmUInt 0 mg cm−3 Intercept for uptake Km – VU relationship

VE 100 mg substrate mg−1 enzyme day−1 Vmax for enzymes

VU 5 mg substrate mg−1 biomass day−1 Vmax for uptake

λSlope −0.8 Fractional change in cellulose decay per unit lignocellulose index

ES 1 Minimum number of enzymes capable of degrading each substrate

UM 1 Minimum number of uptake transporters capable of taking up each monomer

Emax 40 Maximum number of enzymes a taxon may produce

θ 1 Coefficient determining strength of specificity-efficiency tradeoff

ε0 0.5 mg mg−1 Intercept for C use efficiency function (Thiet et al., 2006)

mT −0.016 mg mg−1◦C−1 C use efficiency temperature sensitivity (Allison et al., 2010)

mE −0.1, −0.2 mg mg−1 C use efficiency change with enzyme investment

mU −0.1, −0.2 mg mg−1 C use efficiency change with uptake investment

ZEC 5×10−5 mg mg−1 Per enzyme C cost as a fraction of uptake rate

βEC 5×10−5 mg mg−1 day−1 Per enzyme C cost as a fraction of biomass

ZEN 0.3 mg mg−1 Per enzyme N cost as a fraction of C cost (Sterner and Elser, 2002)

L 0.1 day−1 Leaching rate

τE 0.04 day−1 Enzyme turnover rate (Allison, 2006)

τB 0.02 day−1 Bacterial turnover rate (Schimel and Weintraub, 2003)

τF 0.01 day−1 Fungal turnover rate (Rousk and Bååth, 2007)

FMS 0.045 mg mg−1 Initial monomer present as a fraction of initial substrate

DB 0.1 Initial bacterial cell density per lattice point

DF 0.004 Initial fungal cell density per lattice point

CB 0.825 mg mg−1 Bacterial C fraction (Sterner and Elser, 2002)

NB 0.160 mg mg−1 Bacterial N fraction (Sterner and Elser, 2002)

PB 0.015 mg mg−1 Bacterial P fraction (Sterner and Elser, 2002)

CF 0.900 mg mg−1 Fungal C fraction (Sterner and Elser, 2002)

NF 0.090 mg mg−1 Fungal N fraction (Sterner and Elser, 2002)

PF 0.010 mg mg−1 Fungal P fraction (Sterner and Elser, 2002)

Cl 0.090 mg mg−1 Tolerance on C fraction

Nl 0.040 mg mg−1 Tolerance on N fraction

Pl 0.005 mg mg−1 Tolerance on P fraction

Cmin 0.086 mg cm−3 Threshold C concentration for cell death

Nmin 0.012 mg cm−3 Threshold N concentration for cell death

Pmin 0.002 mg cm−3 Threshold P concentration for cell death

CBmax 2 mg cm−3 C concentration threshold for bacterial reproduction

CFmax 50 mg cm−3 C concentration threshold for fungal reproduction

FB 0.5 Initial biomass fraction of fungi

ρy 0.05 Probability of fungi dispersing in y direction

δ 1 lattice point Maximum dispersal distance

T 15, 20 ◦C Temperature

x 100 Lattice length

y 100 Lattice width
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DEMENT MODEL
To represent CUE changes in complex microbial communities,
I used the DEMENT simulation model (Allison, 2012) with a
modification to represent fungal growth strategies. DEMENT is
a spatially-explicit, agent-based model of organic matter decom-
position driven by extracellular enzymes. Microbial cells are
located on a lattice (100 × 100 points) with wrap-around bound-
aries, and multiple cells may occupy the same lattice point. The
model represents microbial diversity through the random assign-
ment of physiological and enzymatic traits to virtual taxa. Taxa
with favorable traits in a given environment increase in abun-
dance. Tradeoffs among traits can be represented as correlations;
for example, a taxon that is randomly assigned a high enzyme
production rate will be assigned a low CUE.

For this study, I simulated 100 taxa (50% bacteria and 50%
fungi initially) that could each produce between 0 and 40
hypothetical extracellular enzymes. Individual enzyme activi-
ties were assigned at random, with each enzyme targeting at
least 1 of 12 organic substrates. Enzymes degrade substrates
into monomers that microbial cells target with uptake proteins.
Each taxon was assigned between 1 and 14 uptake proteins
that each target at least 1 monomer or inorganic N or P pro-
duced through mineralization. Enzymes and uptake proteins
were assigned to taxa at random, but taxa were forced to pos-
sess uptake proteins for at least 1 organic monomer and for all
the monomers released by the extracellular enzymes they were
assigned.

Enzyme and uptake kinetics follow the Michaelis-Menten rela-
tionship. Vmax and Km values were held constant across different
enzymes and across different uptake proteins (Table 1). However,
enzymes active against more than one substrate had reduced Vmax

values under the assumption of a specificity-efficiency trade-
off. Uptake potential was assumed to be proportional to cell
mass. Enzyme production has a constitutive component propor-
tional to cell biomass and an inducible component proportional
to monomer uptake. Enzyme and uptake Vmax and Km fol-
low the Arrhenius relationship with temperature. Note that the
previous version of DEMENT assumed linear temperature of
Km, but I used Arrhenius dependence here to be more con-
sistent with empirical data (German et al., 2012; Stone et al.,
2012). DEMENT is stoichiometrically constrained and tracks
C, N, and P. Substrate stoichiometry is fixed for each chem-
ical compound, and monomer stoichiometry follows substrate
stoichiometry (Table 2). Enzyme stoichiometry is also fixed and
constant across enzymes. Microbial biomass stoichiometry is par-
tially homeostatic such that it may vary within limits determined
by cell quota ranges for C, N, and P. Following monomer uptake,
excess C is respired and excess nutrients are mineralized. Note that
excess C respired due to stoichiometric constraints is not counted
in calculations of intrinsic CUE.

Microbial biomass turns over due to starvation or random
death. Starvation occurs when one or more nutrient quotas fall
below minimum values. Random death is a first-order process
with rate constant τ . Enzyme decay is also a first-order process.
Dead microbes and decayed enzymes each enter their own sub-
strate pools; the stoichiometry of the dead microbial biomass pool
is unconstrained.

To incorporate fungi into DEMENT, I assumed that fungal cell
size is larger, dispersal of dividing cells is directional, and that
nutrients can be translocated across the entire lattice for fungal
taxa. Bacterial dispersal occurs within one lattice point at random
directions after the progenitor cell reaches a threshold biomass.
This representation generates globular colonies as expected for
bacteria. To mimic fungal growth, I increased the minimum cell
C for division to 25 times the bacterial value and introduced a
directionality parameter which is the total probability of moving
either up or down the y axis of the lattice. Fungal turnover was
assumed to be slower than bacterial turnover by a factor of 2. To
implement nutrient translocation, the nutrient quotas for all cells
of a given fungal taxon were set to the lattice average at the start
of each model iteration, effectively mixing the nutrients across all
cells within a fungal taxon.

To implement the rate-yield tradeoff in DEMENT, intrinsic
CUE was assumed to decline in proportion to the number of
extracellular enzymes and uptake proteins possessed by a taxon.
Enzyme investment is expressed as a value fE between 0 and 1
that represents the fraction of enzymes possessed out of the total
possible (40 in this case). Likewise, uptake investment fU is the
fraction of uptake proteins possessed out of the total possible (14
in this case). Intrinsic CUE was expressed as a linear function of
these two fractions:

εint = ε0 + fE ∗ mE + fU ∗ mU (7)

Note that this relationship is mathematically similar to Equation 4
with Uref = fE + fU and assumes that maintaining more genes for
enzymes and uptake results in a higher metabolic burden on the
cell. During simulations, this assumption means that taxa with
greater investment in enzymes and uptake respire a greater frac-
tion of C upon monomer uptake. There is also a separate biomass
cost in terms of C and N associated with enzyme production.

To test for CUE adaptation in DEMENT, I ran paired, 5000-
day simulations at 15 and 20◦C under a low CUE tradeoff scenario
(mE = mU = −0.1) and a high CUE tradeoff scenario (mE =
mU = −0.2). Simulations were initialized with random place-
ment of taxa at an expected mean density of 0.1 bacterial cells
or 0.004 fungal cells per lattice point. Because fungal cells are 25
times larger, their initial frequency is lower to hold biomass den-
sity constant. I used the same random seed for each pair of 15 and
20◦C simulations to hold initial conditions constant and elimi-
nate variation due to different enzyme traits and positioning of
taxa on the lattice. Twenty pairs of simulations were run for each
scenario. Substrate chemistry reflected litter inputs of southern
California grassland (Allison et al., 2013). Initial pools and fluxes
are given in Table 2.

Simulation outputs were analyzed by examining the change
in intrinsic CUE, microbial biomass, and substrate pools with
a 5◦C increase in temperature. Community-level intrinsic CUE
was calculated as a biomass-weighted average across the 5000-
day simulation. Microbial biomass and substrate pool sizes were
also averaged across the simulation. Differences among paired
simulations were analyzed with one-sample t-tests. Relationships
among the three output variables were assessed with linear
regression.
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Table 2 | Initial pool sizes, input rates, and activation energies (EaS ) for decay of chemical substrates in the DEMENT model.

Initial pool (mg cm−3) Input rate (mg cm−3 day−1) EaS (kJ mol−1)

C N P Substrate Monomer

Dead microbe 0 0 0 0 0 37

Dead enzyme 0 0 0 0 0 35

Cellulose 146.89 0 0 0.4024 0.01811 36

Hemicellulose 85.86 0 0 0.2352 0.01058 35

Starch 12.21 0 0 0.0335 0.00151 35

Chitin 5.00 0.8325 0 0.0137 0.00062 37

Lignin 48.51 0.4043 0 0.1329 0.00598 39

Protein 1 10.60 2.0970 0 0.0290 0.00131 35

Protein 2 10.60 2.0970 0 0.0290 0.00131 35

Protein 3 10.60 2.0970 0 0.0290 0.00131 35

Organic P 1 12.48 0 0.4785 0.0342 0.00154 36

Organic P 2 1.82 0.7975 0.4785 0.0050 0.00022 34

The distribution of chemical substrates is based on Allison et al. (2013). Activation energies are based on McClaugherty and Linkins (1990) and Trasar-Cepeda et al.

(2007).

RESULTS
ANALYTICAL MODEL
Based on Equation (6), the analytical model predicts a change
in intrinsic CUE equivalent to one-half the CUE change forced
by temperature increase. This change in intrinsic CUE is asso-
ciated with a linear decline in reference uptake rate as tempera-
ture increases (Figure 1). Thus, greater intrinsic CUE trades off
against uptake potential, reflecting the underlying rate vs. yield
assumption of the analytical model.

Equation (6) also shows that the magnitude of CUE adaptation
is independent of the tradeoff magnitude. Thus, steeper trade-
offs are not expected to increase the potential for adaptation. In
contrast, growth rates decline as the tradeoff increases because
the effective cost of uptake increases (Figure 1). At the limit of
no tradeoff, there is no cost to investing in growth and therefore
growth is maximized at infinite uptake investment.

DEMENT MODEL
In line with the analytical model, DEMENT showed a signifi-
cant (P < 0.001, t-test) increase in intrinsic CUE with warming
under the high tradeoff scenario (Figure 2). Yet the magnitude of
adaptation was only 0.014 mg mg−1 out of the 0.080 mg mg−1

of temperature-induced change in CUE. For the low tradeoff sce-
nario, the magnitude of adaptation was even lower, at 0.004 mg
mg−1. Under the high tradeoff scenario, this level of adapta-
tion corresponds to an average reduction of ∼1.4 enzyme genes
plus ∼0.5 uptake genes, whereas the decline would have to be
4 genes (and 1.4 uptake genes) to match the analytical model.
Thus, the taxa that are most abundant under warming had only
slightly fewer enzyme genes compared to the dominant taxa
under control conditions.

Stochastic processes in DEMENT led to variation in substrate
dynamics and the degree of CUE adaptation across simulations.
Runs with greater CUE adaptation had greater microbial commu-
nity biomass (Figure 3A) and significantly greater gains in soil
C with warming (Figure 3B). There was also variation in sub-
strate dynamics, with substrate concentrations inversely related
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FIGURE 1 | Relative growth rate as a function of intrinsic carbon use

efficiency (CUE) at different temperatures from the analytical model

under the (A) high tradeoff (mU = −0.4) and (B) low tradeoff

(mU = −0.2) scenarios.

to their associated enzyme concentrations. For instance, starch
concentrations increased in the example simulation shown in
Figure 4 due to a low abundance of taxa with starch-degrading
enzymes. Due to random trait assignment and population
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FIGURE 2 | Mean ± SE (A) intrinsic carbon use efficiency (CUE), (B)

total substrate carbon, and (C) total microbial biomass carbon under

high and low tradeoff scenarios at 15 vs. 20◦C in the DEMENT model.

Significant differences between temperatures are noted with an asterisk
(P < 0.01, paired t-test).

dynamics, substrate dynamics differed widely across replicate
simulations.

The high tradeoff scenario showed a clear suppression of high-
enzyme taxa in most runs compared to the low tradeoff scenario.
High-enzyme taxa were unable to increase their biomass due to
low CUE values (Figure 4). Overall, the high tradeoff scenario
had significantly lower community mean intrinsic CUE, greater
substrate pools, and lower average microbial biomass (P < 0.001,
t-test, n = 40 for all three variables). With a weaker tradeoff,
taxa with >30 enzyme genes often achieved high abundance and
contributed to relatively lower substrate pools.

DISCUSSION
Previous modeling studies have shown that soil C dynamics
are sensitive to changes in CUE (Allison et al., 2010; Li et al.,
2014), but the physiological mechanisms underlying such changes
have not been identified. The rate-yield tradeoff is an established
principle in microbiology that provides a mechanistic explana-
tion for changes in CUE (Pirt, 1965; Pfeiffer et al., 2001; Frank,
2010). The analytical model combines this mechanism with linear

FIGURE 3 | Relationship between change in intrinsic carbon use

efficiency (CUE) with 5◦C warming (20◦C minus 15◦C) and change in

(A) microbial biomass carbon or (B) substrate carbon. Linear regression
statistics are given for the combined high and low tradeoff scenarios in the
DEMENT model.

temperature dependence of CUE and Arrhenius uptake kinet-
ics. The model demonstrates that microbial growth is maximized
when CUE adaptation equals one-half the temperature-induced
change in CUE. Microbial growth declines as the steepness of the
rate-yield tradeoff increases due to lower conversion of resource
uptake into biomass.

In contrast to the analytical model, DEMENT suggests a
much lower potential for adaptation. Intrinsic CUE was only
0.014 mg mg−1 greater with 5◦C warming, whereas the differ-
ence predicted by the analytical model was 0.04 mg mg−1. A
key difference between the analytical model and DEMENT is
the way growth scales with enzyme investment. The relation-
ship is linear in the analytical model but not in DEMENT. Taxa
with more enzymes do not necessarily grow faster in DEMENT
because some enzymes have redundant functions. Also, the spa-
tial structure of DEMENT means that substrate concentrations
can be drawn down in the local environment of individual cells.
Thus, there are diminishing returns on increasing enzyme and
uptake investment. Importantly, this spatial structure allows for
coexistence of taxa that fall along different points on the rate-yield
tradeoff (MacLean, 2007; Bachmann et al., 2013).
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FIGURE 4 | Substrate dynamics (A,D), microbial dynamics (B,E),

and mean microbial abundance vs. the number of enzymes

possessed by each taxon (C,F) in a selected pair of high

tradeoff DEMENT simulations at 15◦C (A–C) and 20◦C (D–F).

Line colors in (B,E) correspond to the number of enzymes shown
in (C,F).

At the same time, microbes in DEMENT are constrained in
their ability to reduce enzyme and uptake investment. Unlike in
the analytical model, enzymes in DEMENT catalyze specific reac-
tions on distinct chemical substrates. Reducing enzyme number
increases the probability of missing an essential function for a
given environment. Warming selects for taxa with fewer enzymes
(and higher intrinsic CUE), but taxa require a minimum number
of genes to access carbon, nitrogen, and phosphorus resources.

Thus, stoichiometric requirements can constrain CUE adaptation
in DEMENT, consistent with previous studies on the importance
of substrate stoichiometry for CUE and other microbial processes
(Keiblinger et al., 2010; Sinsabaugh et al., 2013; Mooshammer
et al., 2014).

Some taxa in DEMENT cooperate through consortia that
reduce the number of resource acquisition genes needed by
each individual taxon. Consortia are evident in Figures 4B,E as
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coupled oscillations in population sizes of different taxa. Similar
behavior was observed in an earlier spatially-explicit model with
multiple nutrients but fewer taxa (Folse and Allison, 2012).
Temperature increase might be expected to favor cooperation
among taxa with fewer genes and higher CUE, but this pattern is
not observed in the simulations. Rather, consortia represent inter-
dependencies among taxa, such that temperature-induced reduc-
tions in high-enzyme, low-CUE taxa also reduce the abundances
of co-occurring low-enzyme, high-CUE taxa.

Another distinct feature of DEMENT is that CUE adaptation is
sensitive to the strength of the rate-yield tradeoff. Weakening the
tradeoff results in significantly less CUE adaptation. This pattern
may be due to the greater change in enzyme investment required
to achieve the same amount of CUE adaptation. For example, the
average number of enzymes would have to decline by 8 in the
complex model in order to achieve 50% adaptation under the low
tradeoff scenario. Such a decline should be achievable in terms
of average resource flux because the optimal number of enzymes
starts out higher under low tradeoffs. Yet such a large decline
might be selected against due to the stoichiometric constraints
and microbial interactions already discussed. In DEMENT, the
change in enzyme number appears to be constrained to a small
value near 1 regardless of the tradeoff scenario.

DEMENT clearly shows that even if CUE does adapt, the
effect on substrate degradation runs counter to previous mod-
els (Allison et al., 2010; Wieder et al., 2013). Higher levels of CUE
adaptation result in greater microbial biomass pools, as expected,
but greater biomass does not reduce substrate pools (Figure 3).
In contrast, the change in substrate pools under warming is more
positive in simulations with greater CUE adaptation. This pattern
is driven by the rate-yield assumption: microbes with greater CUE
have fewer enzymes, which reduces rates of substrate degradation.
In previous studies, there was no mechanism or cost associated
with CUE adaptation, so this feedback did not occur (Allison
et al., 2010; Wieder et al., 2013).

It is difficult to know without more empirical data whether the
analytical model or DEMENT is closer to reality. The analytical
model requires many fewer parameters, but it lacks key features
of the soil environment that are captured by DEMENT. Adding
complexity such as nutrient stoichiometry, spatial structure, and
functional diversity results in more potential constraints on CUE
as temperature changes. Regardless of which model is closer to
reality, one can conclude that additional complexity reduces the
potential for CUE adaptation.

Another open question is how the DEMENT results apply
to different soil environments. The current model focuses on
plant litter decomposition, but the approach could be applied
to other environments such as mineral soils or wetlands with
adjustments to the parameters and diffusion constraints. Mineral
interactions are now represented in some microbial models, albeit
at larger scales than DEMENT (Wang et al., 2013; Wieder et al.,
2014). DEMENT can also incorporate additional physiological
traits to define microbial life history strategies in other envi-
ronments (Evans and Wallenstein, 2014). The current model
represents bacterial and fungal heterotrophs, but symbionts,
pathogens, or autotrophs could be included by adding new trait
relationships.

Although the analytical model predicts CUE adaptation, there
is little evidence from DEMENT that CUE will adapt to warming
through reduced investment in resource acquisition. Adaptation
requires a reduction in genes essential for stoichiometric bal-
ance, microbial interactions, and resource flux. Even when CUE
adaptation occurs, the rate-yield tradeoff results in lower func-
tional potential for decomposition in DEMENT. Thus, physio-
logical mechanisms lead to unexpected constraints on the climate
response of microbial communities and their associated rates of
carbon cycling. Future empirical work should focus on measur-
ing the temperature sensitivity of CUE across ecosystems and its
potential for adaptation under warming.
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