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Some of the most extreme marine habitats known are the Mediterranean deep hypersaline
anoxic basins (DHABs; water depth ∼3500 m). Brines of DHABs are nearly saturated with
salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial
and protistan communities are reported from some DHAB water-column haloclines and
brines, the existence and activity of benthic DHAB protists have rarely been explored.
Here, we report findings regarding protists and fungi recovered from sediments of three
DHAB (Discovery, Urania, L’ Atalante) haloclines, and compare these to communities
from sediments underlying normoxic waters of typical Mediterranean salinity. Halocline
sediments, where the redoxcline impinges the seafloor, were studied from all three
DHABs. Microscopic cell counts suggested that halocline sediments supported denser
protist populations than those in adjacent control sediments. Pyrosequencing analysis
based on ribosomal RNA detected eukaryotic ribotypes in the halocline sediments from
each of the three DHABs, most of which were fungi. Sequences affiliated with Usti-
laginomycotina Basidiomycota were the most abundant eukaryotic signatures detected.
Benthic communities in these DHABs appeared to differ, as expected, due to differing brine
chemistries. Microscopy indicated that only a low proportion of protists appeared to bear
associated putative symbionts. In a considerable number of cases, when prokaryotes were
associated with a protist, DAPI staining did not reveal presence of any nuclei, suggesting
that at least some protists were carcasses inhabited by prokaryotic scavengers.
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INTRODUCTION
Redox boundaries in marine sediments can have significant geo-
chemical gradients, transitioning from fully aerated to anoxic
(lack of detectable dissolved oxygen) conditions within short ver-
tical distances (e.g., Cai and Sayles, 1996; Yucel, 2013). These
chemoclines are zones of intense biogeochemical cycling, involv-
ing all major elements including carbon, oxygen, nitrogen, sulfur,
and hydrogen as well as iron and manganese. While consider-
able effort has been dedicated to studying the biogeochemistry
of redox boundaries of marine sediments in neritic zones (e.g.,
Yucel, 2013), silled basins (e.g., Reimers et al., 1996; Bernhard
et al., 2003), and hydrocarbon seeps (e.g., Orcutt et al., 2005),
less is known regarding chemoclines in the deep bathyal to hadal
zones.

Microbial eukaryotes inhabiting marine chemoclines can be
numerous compared to those from nearby more aerated sites
(e.g., Bernhard et al., 2000; Edgcomb et al., 2011c). Addition-
ally, marine chemocline microbial eukaryotes typically have
associated prokaryotes existing as endobionts and/or ectobionts
(e.g., Esteban et al., 1995; Fenchel and Finlay, 1995; Bernhard
et al., 2000; Bernhard, 2003). Generally, in the cases receiving

dedicated study, evidence suggests these associations are mutu-
alistic or commensal. Investigations into the systematics and
physiologies of the partners in these putative symbioses often
yield surprising results, with multiple structured associations
(Camerlenghi, 1990; Edgcomb et al., 2011c) and novel cellular
adaptations (e.g., Bernhard and Bowser, 2008; Bernhard et al.,
2010a).

The deep bathyal Mediterranean has numerous deep hyper-
saline anoxic basins (DHABs; Figure 1 and also see Figure 1 in
Stock et al., 2013b), which are brine-filled bathymetric depres-
sions formed from the dissolution of subterranean Miocene salt
deposits exposed to seawater after tectonic activity (Camerlenghi,
1990). Due to the sequence of different chemical ions precipitat-
ing from seawater as it evaporates, different layers of those salt
deposits are characterized by differing chemistries. It follows that
DHABs differ in brine chemistry. In the three DHABs studied here,
Urania brine is the highest in free sulfide and methane, Discovery
brine is highest in chlorine and magnesium, and L’ Atalante brine
is highest in sodium, potassium, and sulfate (Table 1). Further
details on the brine chemistries are available in van der Wielen
et al. (2005).
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FIGURE 1 | Bathymetric map of L’ Atalante DHAB generated by

Seabeam. Red asterisk = approximate sample site.

These DHABs have been the topic of attention over the
last decade. In particular, the water columns overlying these
bathymetric features have received considerable study, for both
prokaryote communities (van der Wielen and Heijs, 2007;
Ferrer et al., 2012) and eukaryote communities (e.g., Alexander
et al., 2009; Edgcomb et al., 2009, 2011d; Stock et al., 2013a). The
sediments overlain by the brines have also been investigated for

their prokaryotic (e.g., van der Wielen and Heijs, 2007; Yakimov
et al., 2007; Ferrer et al., 2012) as well as metazoan constituents
(Danovaro et al., 2010). The benthic redoxclines of DHABs have
received less study (e.g., the study of Red Sea brine pool benthic
eukaryotes by Wang et al., 2014), probably due to their limited
spatial extent. Haloclines of DHABs are typically ∼2 m in verti-
cal thickness (van der Wielen et al., 2005; Hallsworth et al., 2007;
Yakimov et al., 2007). Thus, when the halocline impinges the
seafloor, the pitch of the bathymetric slope directly impacts the
lateral manifestation of the halocline (redoxcline) on the seafloor
(Figure 2).

The goal of this study was to investigate the microbial eukary-
otes in the redoxcline of Mediterranean DHAB sediments. Here
we report results describing the eukaryotic community composi-
tion and abundances. We include results from classic morphologic
analyses as well as from RNA-based sequencing efforts and a
fluorescence-labeling approach to identify active eukaryotes. For
comparison, we include data on microbial eukaryote communities
obtained from adjacent normoxic sediments.

MATERIALS AND METHODS
SAMPLE COLLECTION AND SALINITY
Samples were collected using the ROV Jason from 24 Novem-
ber to 6 December 2011. Most sediments for this study
were collected with the typical Deep Submergence Lab
(www.whoi.edu/groups/DSL/) Alvin-type pushcores (6.35-cm
diameter; hereafter referred to as “cores”) configured with a seal
to prevent contamination during ascent. Cores were collected
from nearby (within 100 m) aerated sediments, just upslope
from each DHAB. Thus, control samples at Urania and Dis-
covery were consistently from 1 to 3 m shallower water depths
than the halocline samples. Because ROV Jason is neutrally buoy-
ant, it was not possible to core deep in the DHAB brine. Thus,
cores of deep halocline sediments were obtained by Jason reaching
toward the brine with the ROV manipulator. The depth differential
between halocline samples did not exceed 2 m. Given the waters
depths for all samples were >3400 m, these depth differences are
negligible.

Table 1 | Geochemical data of DHAB brines and typical seawater (modified from van der Wielen et al., 2005).

Geochemistry Urania Discovery L’ Atalante Seawater

Coordinates (N) (E) 35 13.784; 21 28.943 35 17.150; 21 42.308 35 18.865; 21 24.338 --

Water depth (m) 3468 3582 3430 --

Density (103 kg m−3 ) 1.13 1.35 1.23 1.03

Na+ (mM) 3503 68 4674 528

Cl− (mM) 3729 9491 5289 616

Mg2 + (mM) 316 4995 410 60

K+ (mM) 122 20 369 11

SO4
2 − (mM) 107 96 397 32

HS− (mM) 16 1 2.9 2.6 × 10−6

CH4 (mM) 5.6 0.03 0.5 1.4 × 10−6

Coordinates and water depths reflect our approximate sampling area for each DHAB.
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FIGURE 2 | Underwater photographs showing small portion of

redoxcline impinging the seafloor in Urania (A), Discovery (B,D), and

L’ Atalante (C) DHABs, eastern Mediterranean. Note red laser spots on
seafloor in (C); dots are spaced 10 cm apart. N = normoxic control region;

UH = upper halocline zone; MH = mid-halocline zone; LH = lower
halocline zone; B = brine. Injector cores emplaced in Discovery upper and
mid-halocline (D) illustrate the ability to sample different zones. All images ©
Woods Hole Oceanographic Institution.

Upon ROV Jason recovery, all cores were taken as quickly as
possible (within 5 min) to the RV Atlantis environmental room
set at 9.5◦C (±0.5◦C), until further processing. Cores for micro-
electrode profiling were placed in an N2-flushed glove bag and
profiled as described below. Cores for quantification (counts) and
imaging were first sampled for their bottom-water salinity, mea-
sured via hand-held refractometer. Many samples needed to be
diluted up to 10-fold to register on the refractometer. The hand-
held refractometer was not expected to provide precise salinity
data, especially for the very high MgCl2 brine of Discovery, but
was intended as a relative indicator between samples from dif-
ferent halocline horizons in any given DHAB. After salinity was
recorded, each of these cores was sectioned into 1-cm intervals to
a depth of 3 cm. Each sediment slice was preserved in either 3.8%
formaldehyde or 3% TEM-grade glutaraldehyde in a 0.1 cacodylic
acid sodium salt buffer. In some cases, there was no overlying
bottom water due to full penetration or over-penetration of the
corer. In these cases, salinity data are not reported. In instances
where no salinity data was obtained from any given core, we esti-
mated salinity using published literature (Table 1) and confirmed
by our own water column high-range CTD data (collected for
a separate water-column study, data not shown), extrapolated
for specific core location relative to others with known salin-
ity and the halocline boundary. We designate halocline samples
by their relative location (depth, refractometer data) in the fol-
lowing descending order: upper halocline, mid-halocline, lower
halocline.

To avoid the possibility that pressure and temperature changes
during ascent may cause death of some fraction of the eukaryotic

community, a subset of cores were incubated in situ using
the viability indicator CellTracker™ Green CMFDA (chloroflu-
oromethyl fluorescein diacetate; Life Technologies). CellTracker
Green relies on active esterases, which are known to function
in at least one DHAB brine (Ferrer et al., 2005). For these
samples, push corers were emplaced on the seafloor and left
for ≥24 h prior to collection. These pushcores were mod-
ified to allow injection of the CellTracker Green using the
ROV manipulator. Similar “injector” cores have been employed
before for seafloor incubations using the same fluorescent probe
(Bernhard et al., 2009). During the next Jason dive (2–3 days later),
these cores were removed from the seafloor per standard pro-
cedure and brought to the sea surface. Because only one dive
was executed in L’ Atalante, those incubations were begun early
on the dive and terminated after recovery later that day, result-
ing in incubation times of approximately 12.5 h. The injector
cores were sectioned and preserved in glutaraldehyde as noted
above.

SEDIMENT PROFILING AND SAMPLING FOR RNA EXTRACTION
In the environmental room on RV Atlantis, designated cores con-
taining overlying site water were profiled for dissolved oxygen
with a vertical resolution of 0.25 mm in a N2-filled glove bag
using polarographic microelectrodes (Visscher et al., 1991). These
cores were then subsampled from each core center using a ster-
ile 20-ml syringe (∼1.4 cm inside diameter) with the Luer end
removed. These syringe cores were frozen at −80◦C and trans-
ported to WHOI, where they were slightly thawed to enable
slicing of the subcore. The surface 2 cm of the subcore was
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placed in conical centrifuge tubes and stored at −80◦C until RNA
extraction.

CHARACTERIZATION OF SEDIMENT EUKARYOTES USING SMALL
SUBUNIT RIBOSOMAL RNA (SSU rRNA)
RNA from approximately 8 g of the top 2 cm from each frozen
syringe subcore was extracted using an optimized protocol with the
RNA Power Soil kit (MoBio, USA). Major modifications included
introduction of three cycles of freeze-thaw (−80◦C, 5 min., 65◦C,
5 min.), bead beating with 2 × 5 min. intervals on a horizon-
tal vortexer, an overnight nucleic acid precipitation, and a 1-hour
centrifugation during the precipitation step. In addition, we intro-
duced two DNAase treatments using TurboDNAase (Ambion,
USA). Removal of DNA was confirmed by PCR using general
eukaryotic primers. RNA was purified using the MEGAclear kit
(Ambion, USA). Reverse transcription of the purified RNA sam-
ples was performed using the QuantiTect kit (Qiagen, USA). Tag-
pyrosequencing of the eukaryotic small subunit rRNA (18S rRNA)
gene was performed using PCR amplification of the V4 region of
the 18S rRNA gene and the primer pair TAReuk454FWD1 (5′-
CCAGCA(G/C)C(C/T)GCGGTAATTCC-3′) and TAReukREV3
(5′-ACTTTCGTTCTTGAT(C/T)(A/G)A-3′). In brief, a one-step,
30-cycle PCR reaction was performed using GoTaq polymerase
(Promega, USA). PCR conditions included: 94◦C for 3 min, fol-
lowed by 30 cycles of 94◦C for 30 s; 55◦C for 40 s; 72◦C for
1 min; and a final elongation step at 72◦C for 5 min. Fol-
lowing PCR, all amplicon products (ca. 450 bp) from different
samples were purified using the MinElute Reaction Cleanup kit
(Qiagen, USA). In parallel, blank extractions and amplification
reactions were performed to check for contamination. Distinct
tags (multiplex identifiers) were used for each of the samples.
Amplicon libraries were sequenced utilizing the Roche 454 FLX
Titanium platform and reagents following manufacturer’s guide-
lines at the MR DNA (Molecular Research LP, Shallowater, TX,
USA) sequencing facility.

Denoising of the flowgrams was performed using Acacia (Bragg
et al., 2012). Processing of the resulting sequences, i.e., trim-
ming and quality control was performed using QIIME (Caporaso
et al., 2010). Sequences with ≥380 bp and no ambiguous base
calls and no homopolymers ≥6 bp were included in further
analysis. All sequences were binned into operational taxonomic
units (OTUs) and were clustered (average neighbor algorithm)
at 97% sequence similarity identity. Taxonomic assignments
were made using BLAST within QIIME. Sequences have been
deposited in the GenBank SRA archive under the accession
number SRP049010.

QUANTIFICATION AND IMAGING OF PROTISTS USING MICROSCOPY
At WHOI, pushcore samples preserved in either glutaraldehyde
or formalin on the ship were used for morphologic documenta-
tion and/or quantification. Percoll density gradients were used
to isolate the eukaryotes (Starink et al., 1994), subjecting to
each established gradient 0.5 ml of sample from the surface
1 cm. The eukaryote-laden supernatant of each density gradi-
ent was filtered onto one 2-μm blackened polycarbonate filters
and mounted with Citifluor AF1: Vectashield: 1× PBS (Phos-
phate buffered saline; 11:2:1) media containing 1 mg/ml DAPI

(4′,6-diamidino-2-phenylindole) on a microscope slide under a
coverslip. Eukaryotes were counted from each filter [up to 60 fields
were counted at 400× magnification on a Zeiss Axio Imager M2
upright microscope with differential interference contrast (DIC)
and phase contrast optics, until 350 cells per filter were counted].
For each sample, eukaryotes were isolated from three separate Per-
coll gradients. Thus, three replicate filters were counted for each
sample.

Because the filter impedes imaging, the specimen-laden side
of a subset of filters from selected samples was blotted onto a
drop of mounting media atop a microscope slide, covered with
a coverslip and then sealed. The mounted slide was scanned for
eukaryotes appropriate for imaging (clean, larger, mostly unob-
structed specimens). Images were taken either with an Olympus
BX51 upright epifluorescence microscope with DIC and phase
contrast optics and an Olympus DP70 color digital camera or
the Zeiss Axio Imager M2 and a Canon EOS Rebel color digital
camera.

Non-quantitative aliquots of samples incubated on the seafloor
with CellTracker Green were similarly subjected to Percoll extrac-
tion, DAPI staining and/or imaging, although specimens were
also examined under 480-nm excitation and 520-nm emis-
sion to determine if they had active esterases at the time of
incubation.

RESULTS
PORE-WATER DISSOLVED OXYGEN
Dissolved oxygen in control cores remained detectable to depths
deeper than 1 cm (Figure 3A). In all but one of the halocline
cores, oxygen was detectable in overlying waters (Figures 3B,C).
At the sediment-water interface of halocline cores, [O2] was typi-
cally below 21 μM. Oxygen remained detectable to at least 2.0 cm
depth in 7 of the 12 halocline cores. In some halocline cores (i.e.,
L’ Atalante dive 611 core 1 and core 6; Discovery dive 609 core
10), oxygen remained detectable at the deepest measured horizon
(2.5 cm). Oxygen was near the detection limit (<3 μM) through-
out the top 2.5 cm in core 608 c 11 (Urania); this core was not
analyzed for eukaryotes.

BOTTOM-WATER SALINITY
Salinity in bottom waters within 10 cm of the sediment–water
interface of cores from Discovery and L’ Atalante varied widely.
Salinity was not measured from cores collected in and near Ura-
nia DHAB. Control cores had bottom-water salinities of 41–50.
The highest salinity measured was 220 (L’ Atalante; Table 2); the
highest salinity measured in Discovery was 146. We reiterate that
these salinities do not represent brine characteristics per se but
allow relative comparisons between pushcores collected within
each halocline.

PROTIST MORPHOTYPES
Protist morphotypes were detected from every habitat (nor-
moxic control, upper halocline, mid-halocline, lower halocline)
in each sample examined for this purpose (Table 2). A num-
ber of morphotypes were observed (Figures 4–8). For example,
what appeared to be a thecate foraminifera was observed in
a control sample (Figure 4A), but none of these were noted
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FIGURE 3 | Depth profiles of the oxygen concentrations in overlying waters and sediments of pushcores collected for this study, presented by DHAB

and general habitat. From left to right: Normoxic (control; A); Upper Halocline (B); Lower Halocline (C).

Table 2 | Samples from cruise AT18-14 analyzed for counts, imaging (DAPI and/or CTG imaging), and rRNA sequencing.

DHAB Habitat Salinity Sample (dive#,

core#)

Type of core Collection

date, 2011

Interval

analyzed (cm)

Analysis

Urania Normoxic control ND 607-08, cB Injector pushcore 30 November 0–1 Counts

Normoxic control ND 608, cl Pushcore 30 November 0–2 rRNA

Halocline ND 607-08, cE Injector pushcore 30 November 0–1 Counts

Halocline ND 608, c09 Pushcore 30 November 0–2 rRNA

Discovery Normoxic control ND 609, cl2 Pushcore 2 December 0–2 rRNA

Mid-halocline ND 609, cl7 Pushcore 2 December 0–2 rRNA

Mid-halocline 85 610, cl4 Pushcore 3 December 0–1 Counts

Mid-halocline 102 609-610, cH Injector pushcore 3 December 0–1 Imaging

Lower halocline ND 610, c9 Pushcore 3 December 0–1 Imaging

Lower halocline 100 610, cl5 Pushcore 3 December 0–2 rRNA

Lower halocline 106 609-10, cL Injector pushcore 3 December 0–1 Counts

L’ Atalante Upper halocline 41 611, c06 Pushcore 6 December 0–2 rRNA

Upper halocline 44 611, c5 Pushcore 6 December 0–1 Imaging

Mid-halocline 53 611, clO Pushcore 6 December 0–1 Counts

Lower halocline 100 611 cl3 Pushcore 6 December 0–2 rRNA

Lower halocline 220 611, cl7 Pushcore 6 December 0–1 Counts

All cores analyzed for rRNA were also profiled for oxygen. Additional cores that were profiled for oxygen but not used for any faunal analyses are omitted. Salinity data
are based on refractometer readings, which are likely inaccurate for athalassohaline brines such as Discovery. ND = no data.

in halocline samples. Small (3–5 micron) eukaryotes that were
seen under fluorescence microscopy appeared to be consis-
tent with flagellates, dominated microscopic counts in terms
of abundance, but the most photogenic protists were cili-
ates (Figures 5–7). Not all protists had discernable nuclei.
When no nuclei or few prokaryotes via DAPI were observed,

the specimen was deemed dead (Figures 4C,D). In some
cases, nuclei were visible in both DIC and DAPI images (e.g.,
Figures 5A,B,D,E and 7A,C,D,E but DAPI staining of nucleus
not shown). In other cases, even though prokaryotic associates
(see below) were discernable by DAPI staining, nuclei that should
also be discernable via DAPI staining were not obvious (e.g.,
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FIGURE 4 | Light micrographs. (A,B) Thecate foraminifer from 611 c3
(L’ Atalante control), paired images showing DIC (A) and
epifluorescence (B) of DAPI staining. Note the nucleus and lack of
associated prokaryotes (B) in the well-vacuolated cytoplasm (A). This
specimen was considered living at the time of fixation. (C,D) protist

carcass from 609-610 cL (Discovery lower halocline), paired images
showing DIC (C) and epifluorescence (D) of DAPI staining. Note the
lack of a DAPI labeled nucleus and presence of a few prokaryotes.
This specimen was considered dead at the time of fixation.
Scales = 10 μm.

FIGURE 5 | Light micrographs of ciliates from Urania halocline.

(A,C) Possible armophorean, Metopus-like ciliate from 608 c11. (A,B) Paired
images showing DIC (A) and epifluorescence (B) of DAPI staining. Box in
(B) shows area depicted in (C). Note the nucleus (B) and endobionts
(B,C). (D,E) Possible karyorelictid or hypotrich/strichothrich ciliate from 607

c10. DIC image (D) of large endobiont-bearing ciliate, somewhat masked by
debris, shown in ( E; epifluorescence of DAPI staining at slightly higher
magnification). Note nucleus. (F) Ciliate from 607 c10 shown in double
exposure of DIC and DAPI epifluorescence. Note macro- and micronucleus.
Scales: B = 50 μm; C = 10 μm; D, E = 25 μm; F = 10 μm.
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FIGURE 6 | Light micrographs of protists from Discovery DHAB.

(A–C) Ciliate from 609 c14 (mid-halocline). (A–C) Paired images
showing DIC (A,B) and epifluorescence (C) of DAPI staining. Note
the nucleus (C) and lack of abundant prokaryotic associates (C).

(D,E) Paired images showing DIC (D) and epifluorescence (E) of
protist from 610 c9 (lower halocline). Note lack of obvious single large
nucleus and presence of possible endobionts or parasites/scavengers.
Scale bars = 20 μm.

FIGURE 7 | Light micrographs of ciliates from L’Atalante DHAB. (A,C)

Ciliate from 611 c5 (upper halocline); paired images showing DIC (A) and
epifluorescence (B,C) of DAPI staining. Note the nucleus in (A); DAPI
staining of the nucleus also occurred (not shown). Also note the abundant
endobionts (B,C), mostly at protist periphery. (D,E) Specimen from 611 c10
(mid-halocline); paired images showing DIC (D) and epifluorescence (E) of
DAPI staining. Note the nucleus and lack of prokaryotic associates. (F,G)

Specimen from 611 c10; paired images showing DIC (F) and epifluorescence
(G) of DAPI staining. Note the nucleus (somewhat out of the plane of view in
G) and abundant endobiont associates. (H–K) Specimen from 611 c10; DIC
image (H) along with paired images (I–K) showing darkfield (I) and
epifluorescence (J,K) of DAPI staining. Note the nucleus (* in I), ectobionts
(arrows) and aggregated endobiont associates (arrowheads). Scales:
C,G = 100 μm; E = 25 μm; H,K = 50 μm.
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FIGURE 8 | Light micrographs of protists incubated in both CellTracker

Green and DAPI. (A–C) Specimen from 607-608 cB (Urania control); paired
images showing DIC (A) and epifluorescence (B,C) of CellTracker Green
labeling (B) and DAPI (C) staining. Note the fluorescence of the
cytoplasm, the nucleus (C), and absence of abundant associated
prokaryotes. (D–F) Ciliate from 607-608 cE (Urania halocline); paired
images showing DIC (D) and epifluorescence (E,F) of CellTracker Green
labeling (E) and DAPI (F) staining. Note fluorescence of the cytoplasm,
the macronucleus, and micronucleus (F) and lack of prokaryotic
associates. (G–I) Ciliate from 609-610 cH (Discovery upper halocline);
paired images showing DIC (G) and epifluorescence (H,I) of CellTracker
Green labeling (H) and DAPI (I) staining. Note the lack of prokaryotic
associates. (J–L) Unidentified protist from 609-610 cL (Discovery lower
halocline). Note the nucleus and scattered bacteria on exterior. Scales:
A,G = 10 μm, D = 100 μm, J = 50 μm.

Figures 6D,E). Some samples (i.e., 610 c14; 610 cL; 611 c10;
611 cC) had numerous filamentous bodies that were likely fun-
gal hyphae or, perhaps, filamentous bacteria similar to Beggiatoa,
although well-developed Beggiatoa mats were not observed. More-
over, Beggiatoa sequences were not detected in our samples

(Kormas et al., unpublished data). Metazoa that were found
(Bernhard et al., unpublished data) are not considered in this
contribution.

PROKARYOTE ASSOCIATES
Although protist populations were not quantified for presence of
prokaryotic associates (i.e., endobionts, ectobionts), many cil-
iates had endobionts (Figures 5B,C,E and 7B,C,G,J,K), while
others did not (e.g., Figures 5C,F, 7E, and 8F). Ectobionts
were noted on a few specimens (Figures 7J,K), and clumps
of endobionts were seen in a halocline ciliate from L’ Atalante
(Figures 7J,K).

PROTIST VIABILITY SUGGESTED BY CELLTRACKER GREEN
In the aliquots examined for both CellTracker Green labeling and
DAPI labeling, esterase-positive (i.e., CellTracker Green labeled)
protists were observed that had easily distinguishable nuclei, either
in addition to or exclusive from any associated ecto- and/or
endobionts (Figure 8). Such specimens were observed in nor-
moxic and some halocline samples (i.e., 607–608 cB and cE;
609–610 cL).

MICROSCOPIC QUANTIFICATION OF PROTISTS
Densities of protists varied within haloclines at Discovery Basin
and between basins (Figure 9). The mean protist density of the five
halocline samples (mean ± SD; 11.71 × 104 cells/cm3 ± 3.94) was
significantly higher than the protist density at the normoxic (Ura-
nia control) sample, (3.60 × 104 cells; one-sample t-test, t = 4.599;
df = 4, p = 0.010; Figure 9).

MOLECULAR SIGNATURES OF PROTISTS AND FUNGI
After quality trimming and removal of non-protistan sequences
and fungal sequences, the number of eukaryotic reads obtained
from each sample analyzed for eukaryote diversity varied

FIGURE 9 | Number of protists per unit cubic centimeter of sediment

(in situ), presented for each habitat. Error bars represent the SD
resultant from counts of triplicate subsamples from each sample. Urania
control = 607-08 cB; Urania halocline = 607-08 cE; Discovery upper
halocline = 610 c14; Discovery mid-halocline = 609-10 cL; L’ Atalante upper
halocline = 611 c10; L’ Atalante lower halocline = 611 c17.
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drastically, with the most reads (6546) in the Discovery upper
halocline, followed by both L’ Atalante halocline samples (539
reads in lower halocline, 390 reads in upper halocline), and Urania
halocline (82 reads) and Urania normoxic control (75 reads). For
two of the samples analyzed, the number of curated reads was too
low and these were excluded from the graphical representation.
Discovery mid-halocline had a total of 8 reads, where most were
Ustilaginomycotina Basidiomycota (not shown). Discovery lower
halocline had a total of 6 reads, where most were Chlorophyceae
(not shown).

A higher number of orders of eukaryotic taxa based on
SSU rRNA signatures was detected in the Urania aerated con-
trol sample compared to the halocline samples, implying that
alpha diversity may be lower inside these DHABs. The only
exception was L’ Atalante upper halocline, which also had rel-
atively high diversity (Figure 10). In four of these five sam-
ples, the majority of eukaryotic reads were fungal, with most
being affiliated to Ustilaginomycotina Basidiomycota. L’ Atalante
upper halocline was dominated by Chlorophyceae. Other groups
with high diversity were Syndiniophyceae (L’ Atalante upper
halocline, Urania aerated) and Dinophyceae (L’ Atalante upper
halocline) Dinophyta. Rhizarians were also present, sometimes

in considerable proportions (13%, L’ Atalante upper halocline),
mostly as Radiolaria.

DISCUSSION
Based on microscopic and sequencing analyses, protists and fungi
were present in all our sediment samples, including lower halo-
cline (higher salinity) samples. Eukaryote densities in the control
(normoxic) sediments were roughly similar to densities of other
protist communities in some oxygenated bathyal sediments (i.e.,
off Southern California, CA, USA; Bernhard et al., 2000), but
higher than those in other normoxic bathyal sediments (i.e., Coral
Sea; Alongi,1987). Densities of protists in the DHAB halocline sed-
iments were approximately equal to those in bathyal chemocline
sediments of a silled basin off Baja California (i.e., Soledad Basin;
Bernhard and Buck, 2004) but were only about one third those
of the eukaryote community of bacterial mat chemocline sedi-
ments of Santa Barbara Basin, CA, USA (Bernhard et al., 2000).
The detected densities might be considered surprisingly high
given the oligotrophic nature of the Mediterranean (e.g., Kress
et al., 2003; Pujo-Pay et al., 2011; Huertas et al., 2012; Tanhua
et al., 2013). Even though none of the haloclines supported
well-developed bacterial mats, our quantitative data suggests

FIGURE 10 | Relative abundance (%) of rRNA signatures of unicellular eukaryotic groups of the DHAB sediments based on V4 SSU rRNA pyrotags

clustered at 97% similarity. Taxonomic assignments were performed using BLAST implemented in QIIME against SILVA 111 database.
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that the haloclines of these DHABs are inhabited by diverse
eukaryotes, seemingly supporting higher numbers of eukary-
otic microbes than the surrounding normoxic deposits. In deep
oxic and oligotrophic Mediterranean waters above DHABs, pro-
tist counts are very low, ∼15-223 cells mL−1, but within the
water-column haloclines (e.g., Urania halocline), protist num-
bers can rival those in near-surface waters, ∼1071 ± 117cells
mL−1 (Pachiadaki et al., in press). Our quantitative observations
from the three DHAB benthic halocline habitats had two orders
of magnitude more protists than in documented DHAB water-
column haloclines (Edgcomb et al., 2011d; Pachiadaki et al., in
press).

To determine whether protist density showed a relationship
with salinity or chemical constituent, we plotted our protist density
data (Figure 9) with published data on the seawater chemistry of
each DHAB (Table 1). In general, higher protist densities occurred
with higher concentrations of HS−, Mg2+, and SO4

2 to a threshold
(Figure 11). Protist densities decreased with the highest concen-
trations of sulfide and magnesium. No relationship was apparent
between salinity and protist density. Refractometer readings of
salinity for athalassohaline brines such as Discovery are problem-
atic, and therefore comparisons to thalassohaline brines such as
Urania and L’ Atalante are difficult. Protist density may relate to
the differing cation chemistries in each of the DHABs (Table 1) and
whether encountered specimens were living or dead (see below).
Statistical analyses to test for trends were not performed as protist

FIGURE 11 | Abundances of protists per cubic centimeter, calculated

from microscopic counts, presented with respect to inferred chemical

parameter in overlying waters. Chemical constituent data from van der
Wielen et al. (2005).

data from replicate cores at each habitat and halocline site were
not available.

Although a minority, a considerable number of protists sup-
ported associated prokaryotes. These putative symbionts were
more commonly endobionts than ectobionts. In one case, what
appeared to be clumped endobionts were noted (Figures 7J,K).
This pattern is somewhat similar to observations of another ciliate
with multiple endobionts in a structured configuration, inhabit-
ing chemocline sediments (Edgcomb et al., 2011c). Alternatively,
these clumped endobionts may be in food vacuoles. It is possi-
ble that some of the DAPI signals detected in some eukaryotic
specimens were actually of other smaller protists. For example
Figures 6D,E may show numerous parasitic protists inside a rem-
nant cell of another eukaryote of unknown affinity. We recovered
some sequences of Syndiniales, which are parasitic dinoflagellates
known to sometimes occur in deep-sea hydrothermal vent settings
(e.g., Sauvadet et al., 2010).

Observed protists may not have been living individuals but
merely locales of prokaryote infestation. Specifically, anaerobic
bacteria and/or archaea may have inhabited protists as suggested
by the lack of a nucleus/nuclei in some protists (Figures 7D,E and
8B,C) yet presence of copious endo- or ectobionts evidenced by
DAPI staining. Prokaryote presence within degrading foraminifera
cytoplasm has been documented in hydrocarbon seep habitats
(Bernhard et al., 2010b). Ribosomal RNA can be preserved in
the high salinity environments of DHAB haloclines and brines
(Hallsworth et al., 2007), and therefore, an unknown fraction of
taxa whose rRNA signatures were detected here may represent
inactive or dead and preserved cells. The detection of rRNA sig-
natures of the photosynthetic Chlorophyceae in halocline samples
in this study supports this suggestion, although the same signa-
tures were detected in oxic normal saline sediments, which argues
against preservation, and for the possibility that they may still be
active. Ribosomal RNA signatures of additional photosynthetic
organisms have previously been reported from deep marine sedi-
ments (Orsi et al., 2013). The potential for preservation of rRNA,
particularly under anoxia and hypersaline conditions means that
we must interpret rRNA-based data from these habitats cautiously,
and find support for activity from microscopical observations
and other types of molecular data. Furthermore, although here
we report positively labeled eukaryotes with CellTracker Green
(i.e., esterase activity), bacteria also react to this fluorogenic probe
(Bernhard et al., 2003) could cause the eukaryotes to appear posi-
tively labeled. In sum, the protists present in the halocline samples
may have been dead and only appeared to be inhabitants of
these extreme habitats. Indeed, it may be that eukaryote car-
casses, or “pickled protists” have been in the DHAB haloclines and
brines since their formation. Estimates of Eastern Mediterranean
DHAB formation are, at a minimum, 2000 years (Wallmann et al.,
1997).

The presence of pickled protists may explain some of the
observed trends of protist abundance (densities) with respect
to water chemistry (Figure 11), at least for some constituents.
More specifically, for Mg2+ and HS−, it is plausible that the
observed protist peak abundances coincide with the approximate
maximum tolerance of protists for the constituent being con-
sidered (Figures 11A,C). Regarding Mg2+, although an upper
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limit for prokaryotic life may be ∼2 M (Hallsworth et al., 2007),
concentrations exceeding 0.2 M MgCl2 may be inhospitable to
protists (Figure 11A). Similarly, DHAB environments exceeding
∼1.5 mM HS− (Figure 10C) and ∼200 mM SO4

2− (Figure 11B)
may not support living protist populations. Thresholds proba-
bly also depend on concentrations of additional constituents and
their possible synergistic interactions in these brines, so general-
izations involving habitats with typical marine salinities are likely
invalid.

At least some protists were living in normoxic and halocline
DHAB sediments, as evidenced by positive CellTracker Green
labeling along with DAPI analysis indicating the lack of associated
microbes but the presence of a nucleus or nuclei (e.g., Figure 8).
Importantly, we do not assert positive DAPI staining indicates via-
bility, as we are aware that DNA can be preserved in DHAB brines
(e.g., Borin et al., 2008). Regardless, at least some protists lacking
prokaryotic associates appear to inhabit upper, mid-, and lower
DHAB halocline sediments.

Our assertion that filamentous items are most likely Fungi is
supported by the recent microscopic observations documenting
filamentous fungi in the oxycline and deep anoxic zones of the
Black Sea (Sergeeva and Kopytina, 2014). The rRNA sequence
data suggest that Fungi dominate the eukaryotic community in
the MgCl2-dominated Discovery basin upper halocline, and in
the L’Atlante basin lower halocline, confirming previous findings
of high abundance of Fungi in the lower haloclines of DHAB
water columns (Stock et al., 2012; Pachiadaki et al., 2014). Fungi
were also reported to dominate the DNA libraries of the hyper-
saline sediments from a Red Sea brine pool (Wang et al., 2014).
In that study, cultured representatives from those brine sedi-
ments were affiliated to Ascomycota, while in the present study
the majority of retrieved ribotypes of Fungi from the halo-
cline sediments were identified as Basidiomycota, suggesting that
different halotolerant (or halophilic) fungal groups might have
adapted to different local environments. The libraries from the
lower haloclines of both Discovery and L’ Atalante share the
same most abundant OTU. This OTU showed high nucleotide
identity (99% with 100% sequence coverage) with an uncul-
tured Malassezia isolate [KC487833] from the hypersaline Lake
Tyrrell, VIC, Australia (Heidelberg et al., 2013). Recently and
Amend (2014) provided evidence that the genus Malassezia is cos-
mopolitan and probably of great importance in deep-sea extreme
environments. Interestingly, we have retrieved the same OTU
(99% of sequence similarity) in the anoxic lower halocline water
layer of another DHAB, Thetis (JF308281; Stock et al., 2012), as
well as in the anoxic marine Cariaco Basin (GU824665; Edgcomb
et al., 2011a), in the anoxic fjord Saanich Inlet (HQ866112; Orsi
et al., 2012) and in the deep subsurface marine sediment of Peru
Margin (GU972524; Edgcomb et al., 2011b). The marine species
of Malassezia remain uncultured, so we cannot yet infer much
about the ecology and trophic status of this OTU found in our
survey.

Our data also support the notion that increasing salinity (e.g.,
L’ Atalante basin rRNA profiles) leads to a decrease in relative
abundance of selected groups, e.g., a decrease in abundance within
Dinophyceae, Cryptophyceae, Centroheliozoa, and Acantharea in
the lower halocline sample from L’ Atalante basin relative to the

upper halocline. The dominance of chlorophyte signatures in the
Urania basin upper halocline sample suggests decreased protist
diversity possibly due to the relatively high sulfide concentrations
there.

The application of metatranscriptomics to these communities
may be the only feasible means at present to fully resolve eukary-
ote activity (i.e., gene expression) and their inhabitation of these
DHAB haloclines (Pachiadaki et al., unpublished data). Future
efforts may reveal novel taxa and heretofore unknown biochemical
pathways in these spatially restricted benthic habitats.
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