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The majority of caves are formed within limestone rock and hence our understanding
of cave microbiology comes from carbonate-buffered systems. In this paper, we describe
the microbial diversity of Roraima Sur Cave (RSC), an orthoquartzite (SiO4) cave within
Roraima Tepui, Venezuela. The cave contains a high level of microbial activity when
compared with other cave systems, as determined by an ATP-based luminescence
assay and cell counting. Molecular phylogenetic analysis of microbial diversity within
the cave demonstrates the dominance of Actinomycetales and Alphaproteobacteria in
endolithic bacterial communities close to the entrance, while communities from deeper
in the cave are dominated (82–84%) by a unique clade of Ktedonobacterales within the
Chloroflexi. While members of this phylum are commonly found in caves, this is the first
identification of members of the Class Ktedonobacterales. An assessment of archaeal
species demonstrates the dominance of phylotypes from the Thaumarchaeota Group
I.1c (100%), which have previously been associated with acidic environments. While the
Thaumarchaeota have been seen in numerous cave systems, the dominance of Group
I.1c in RSC is unique and a departure from the traditional archaeal community structure.
Geochemical analysis of the cave environment suggests that water entering the cave, rather
than the nutrient-limited orthoquartzite rock, provides the carbon and energy necessary
for microbial community growth and subsistence, while the poor buffering capacity of
quartzite or the low pH of the environment may be selecting for this unusual community
structure. Together these data suggest that pH, imparted by the geochemistry of the host
rock, can play as important a role in niche-differentiation in caves as in other environmental
systems.
Keywords: orthoquartzite, cave, Ktedonobacterales,Thaumarchaeota, geomicrobiology

INTRODUCTION
The majority of caves form in soluble rock such as limestone, a
sedimentary rock mainly comprised of calcium carbonate (Klim-
chouk et al., 2000). Classic cave formation, or speleogenesis,
normally occurs through the chemical dissolution of this rock
by water, which becomes acidified via carbonic acid when passing
through CO2-rich soils. Occasionally microbially derived acids,
such as sulfuric acid, can also lead to the dissolution of caves
(Palmer and Palmer, 2000; Klimchouk, 2007; Barton, 2013). Once
formed, caves provide a unique portal into the deep subsurface
(up to ∼2,000 m) in which to study geomicrobial interactions
and processes under relatively stable conditions. As most caves
are formed in limestone the majority of microbiology carried
out in caves has been described in such systems (Sarbu et al.,
1996; Angert et al., 1998; Groth et al., 2001; Northup et al., 2003;
Chelius and Moore, 2004; Spear et al., 2007; Macalady et al., 2008;
Banks et al., 2010; Bhullar et al., 2012; Cuezva et al., 2012; Barton,

2014). Such studies demonstrate microbial species often adapted
to oligotrophy, with a dominance of Alpha- and Betaproteobacteria,
presumably involved in nitrogen fixation, along with signifi-
cant populations of Firmicutes and Actinobacteria, suggesting an
important role for heterotrophic interactions and carbon turnover
(Barton, 2014). Nonetheless, when deep-sequencing technologies
are used to examine these environments, the results suggest that
there is much to learn about the depth and breadth of microbial
physiology in caves (Tetu et al., 2013; Ortiz et al., 2014).

The insoluble, glass-like nature of orthoquartzite (a quartz-
cemented sandstone) makes it resistant to the weathering processes
that routinely form caves; sandstone caves are traditionally shal-
low, near-surface features formed via aeolian or tectonic processes
(Turkington and Paradise, 2005); however, tropical sandstones
demonstrate karst-like solution features. The recent exploration
within the Tepui Mountains of Venezuela has identified a large
number of caves, including some of the longest and deepest
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sandstone caves in the world (Wray, 1997; Auler, 2004; Aubrecht
et al., 2008, 2011; Smida et al., 2008; Piccini and Mecchia, 2009).
The exact mechanism of this cave formation remains unclear,
although it appears that the water-mediated dissolution of the
quartz cements plays an important role, as evidenced by the for-
mation of sandy sediments on surfaces within the cave (Piccini
and Mecchia, 2009; Aubrecht et al., 2011). As orthoquartzite rock
remains relatively impermeable to the movement of water, this
dissolution appears to occur via surface water penetrating uncon-
silidated layers within the rock massif (Piccini and Mecchia, 2009;
Aubrecht et al., 2011). As such, these caves would be considered
‘karst’ systems in the traditional sense, although their morphology
appears to be unique to the Tepui mountains of Venezuela and
Brazil (Aubrecht et al., 2011).

Roraima Tepui, a 2,700 m high massif consisting of quartz
(SiO2) cemented horizontal and gently dipping fluvial sandstones
(quartz arenites), is located at the intersection of Venezuela,
Guyana and Brazil (Figure 1; Briceno et al., 1990; Santos et al.,
2003). The surface of the Tepui demonstrates extensive micro-
bial colonization that has dramatically changed the landscape,
covering exposed surfaces with a thick (mm–cm) characteris-
tically black endolithic community comprised of Cyanobacteria
and fungi (Gorbushina et al., 2001). Located within this massif is
Roraima Sur Cave (RSC; aka Cueva Ojos de Cristal; Figure 1), one
of the longest quartzite caves yet described at over 16 km in length
(Galan et al., 2004; Smida et al., 2008).

Due to the limited weathering and the poor nutrient avail-
ability of orthoquartzite, the Tepui mountains are often bare

FIGURE 1 | (A) Geographic location of Roraima Tepui; (B) Microbial colonies
are present across the ceilings in locations within the cave; the microbial
colonies are obvious as white markings against the pink/red color of the
orthoquartzite; (C) Map of Roraima Sur Cave, showing the extent of the
16 km cave system, including the location of the three sampling sites used.
Map used with permission from the University of Oxford Speleological
Society and the Sociedad Venezolana de Espeleología.

or covered only with a thin soil (Maguire, 1970; Allen and
Hajek, 1989; Michelangeli, 2000). In the absence of signifi-
cant soils, surface ecosystems are nitrogen limited, which has
led to an abundance of carnivorous plants in the local flora
(Maguire, 1970; Steyermark, 1979). Due to the poor buffer-
ing capacity (when compared to carbonates) and the limited
nutrient availability of orthoquartzite, we anticipated that any
microbial activity within RSC would be minimal. Nonetheless,
during a reconnaissance trip significant microbial activity was
observed on exposed surfaces within the cave (Figure 1B) and
appeared to be linked to a stream flowing through the cave.
Examining these microbial communities using molecular tech-
niques demonstrated that the cave contains an unusual microbial
ecosystem dominated by both members of the Chloroflexi (Class
Ktedonobacterales) and Thaumarchaeota, and is unlike any pre-
vious community described in carbonate caves (Northup et al.,
2003; Chelius and Moore, 2004; Spear et al., 2007; Tetu et al., 2013;
Barton, 2014; Ortiz et al., 2014). Our results suggest that nitrogen
and the poor buffering by quartz may distinguish the micro-
bial communities of sandstone caves from comparative carbonate
systems.

MATERIALS AND METHODS
SAMPLE SITES AND ATP ANALYSES
Roraima Sur Cave is located at the end of a surface sinkhole on
Roraima Tepui that takes a stream draining through surface veg-
etation before entering the cave. This water flows into the cave
at ∼0.5–2.0 m3 s−1 depending on rainfall. Three sampling sites
were used within the cave, which appeared to representative of an
‘average’ surface (did not contain any obvious microbial growth)
and were 55, 90, and 300 m from the cave entrance (Figure 1).
These three sites were: Cricket Pool (CP), a ceiling site ∼2.5 m
above a still pool in which foraging crickets have been observed
(P. Sprouse, personal communication, 2005); Red River (RR),
a ceiling site in a 1.5 m high paleo-passage that is character-
ized by the high abundance of iron minerals; and Lago Grande
(LG), located on a wall ∼2 m away from the largest lake within
the cave. Due to the ongoing speleogenesis of the cave, all sam-
pled surfaces were coated with unconsolidated, sandy sediments
(Aubrecht et al., 2011). Approximately 10 g of these sediments
collected for analysis at each sample site within the cave in Jan-
uary 2007. Ceiling and wall sediments were collected using a
sterile scoop. Control samples were collected from outside of the
cave entrance from areas without obvious Cyanobacterial growth;
however, this material had not undergone the same erosional pro-
cesses as the cave samples and remained in its cemented, rock-like
state. Samples for DNA extraction were stored in 70% ethanol
and kept at 4◦C until arrival in the lab, whereupon samples were
frozen at −80◦C. Each site was swabbed for ATP by swabbing
an ∼2 cm2 area using a portable luminescent Checklite-HS ATP
assay (Kikkoman International, Noda, Japan; Venkateswaran et al.,
2003).

MICROSCOPY AND CELL COUNTS
Unless otherwise stated, all chemicals were obtained from Sigma
Chemical (St. Louis, MO, USA). Samples for cell counting were
fixed in 4% paraformaldehyde/phosphate buffered saline (PBS)
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on site for 4 h, followed by washing with PBS and storage
in 50% methanol/PBS. Samples were kept at 4◦C until arrival
in the lab, whereupon samples were frozen at −20◦C. For cell
enumeration, 1 cm3 of sediment was washed in 1 × PBS and
resuspended in 10 mL SYBR Green I/PBS for 15 min. To count
cells, 10 μl of sample was then place on a microscope slide and
examined under fluorescence on a Nikon Eclipse E600 microscope
with a B-2E/C band-pass emission FITC filter and Remote Focus
Z-stage controller (Nikon, Melville, NY, USA). An ocular grid of
100 μm2 at 1000 × magnification with a vertical range of 100 μm
allowed the number of cells within a known volume of sediment
(0.001 mm3) to be counted visually. The number of cells per cm3

of wall material for an average of nine observations was calcu-
lated as: average number of visualized cells × [1/volume measured
(0.001 mm3)] × (1/dilution factor) × 1000]. For scanning electron
microscopy (SEM) analysis, paraformaldehyde-fixed samples were
washed in 70% ethanol/PBS, and dehydrated in an ethanol/PBS
series to 100%. Samples were dried in a critical point dryer using
liquid CO2 before examination under vacuum using a FEI Quanta
200 ESEM (Hillsboro, OR, USA).

MOLECULAR TECHNIQUES
Genomic DNA was obtained from 1.5 g of cave sediment by
first blocking the quartz with 2 μg of UV-irradiated polydI-dC
(Barton et al., 2006), followed by the PowerSoil DNA Kit (MO
BIO, Carlsbad, CA, USA). Even with crushing, we were unable
to obtain amplifiable DNA from the rock-like surface control
samples. To amplify the 16S ribosomal RNA gene sequence, a
40 μl PCR reaction containing 10 μl 2X Taq Master Mix (New
England Biolabs, Ipswich, MA, USA; 10 mM Tris-HCl, 50 mM
KCl, 1.5 mM MgCl2, 0.2 mM dNTPs, 5% Glycerol 0.08% NP-40
0.05% Tween-20, 0.5 units of Taq DNA Polymerase) ∼100 mM
of each primer, and 50 ng of template gDNA was set up using
the bacterial primers 8F (5′ – AGA GTT TGA TCM TGG CTC
AG – 3′) and 1391R (5′– GAC GGG CGG TGW GTR CA –
3′; Spear et al., 2005). PCR amplification was carried out with
a hot-start at 94◦C for 8 min, followed by 30 s at 94◦C, 45 s at
58◦C and 1 min at 72◦C for 30 cycles. This was followed by a
elongation cycle at 72 ◦C for 8 min. For Archaeal sequences the
Archaeal primers 4Fa (5′–TCC GGT TGA TCC TGC CRG- 3′)
and 1100Ra (5′– TGG GTC TCG CTC GTT G-3′; Hales et al.,
1996; Spear et al., 2005) were used with a 62◦C annealing tem-
perature. PCR products were purified with a ZR DNA Clean &
Concentrator-25 Kit (Zymo Research, Orange, CA, USA) and
cloned into a pTOPO-TA vector and transformed into competent
Escherichia coli according to manufacturer’s protocol (Invitrogen,
Carlsbad, CA, USA). Clones were picked and screened for unique
phylotypes as previously described (Barton et al., 2004). Sanger
sequencing of the clones was carried out by Agencourt Bioscience,
Beverly, MA, USA and assembled together using DNA Baser
software, obtaining minimally a 3X coverage for each examined
sequence (and in practice at least a 6X coverage for the major-
ity of clones). Assembled sequences were aligned and chimeras
removed using the Greengenes NAST algorithm1. All sequences

1http://greengenes.lbl.gov

were submitted to the NCBI Genbank database under acces-
sion numbers GU205277–GU205318 (bacterial sequences) and
KM214004–KM214181 (archaeal sequences).

CONSTRUCTION OF PHYLOGENIES
Phylogenetic trees were built using backbone sequences from
both the Ribosomal Database Project (RDP; Cole et al., 2005) and
SILVA (Quast et al., 2013) databases and amended with additional
sequences from the Genbank database2 as described (see Figure
Legends). All sequences were aligned using the ARB software
package version 5.1 (Ludwig et al., 2004) with fine scale align-
ment generated manually. Gaps were collapsed and the sequences
were trimmed in ClustalW (Larkin et al., 2007). The phylogenetic
relationship of 1276 (bacteria) and 774 (archaea) aligned bases
of sequence data were determined using the maximum likelihood
algorithm for 1000 bootstrap replicates using the RAxML Blackbox
software (Stamatakis et al., 2008) in the CIPRES gateway (Miller
et al., 2010). The model used and relevant outgroups are shown in
each figure. FigTree version 1.4.13 was used to prepare the phylo-
genetic trees, which were prepared for publication in with Adobe
Illustrator CS5.

PHYSICAL PARAMETERS AND GEOCHEMISTRY
As a rough estimate of available ammonia, nitrate and nitrite and
pH at each sample site, 10 cm3 of rock was added to 10 mL
deionized water (0 mg/L ammonia, 0 mg/L nitrite, 0 mg/L nitrite,
and pH 6.9) and shaken briefly. The particulates were allowed
to settle and the supernatant was tested for nitrogenous com-
pounds with a field-available assay (Mardel Laboratories, Inc)
with a detection limit of 0.50 mg/L for nitrate, 0.25 mg/L for
nitrite, and 0.25 mg/L for ammonia. Total dissolved silica was
determined using a Hach Portable Colorimeter II using the sili-
comolybdate method (Knudson et al., 1940; Hach, Loveland, CO,
USA), while pH was measured using an Accumet AP61 portable
pH meter (Fisher Scientific, Pittsburg, PA, USA). Relative humid-
ity (RH) and temperature were measured in the cave using a
RH300 Psychrometer (Extech instruments, Waltham, MA, USA).
For elemental analysis, samples were crushed and examined via
X-ray fluorescence in a Bruker GmbH S4 Pioneer-4kW wave-
length dispersive X-ray spectrometer (Billerica, MA, USA). The
Mossbauer spectrum was measured using a conventional con-
stant acceleration-driving unit from Halder, GmbH (Bad Waldsee,
Germany), connected to a 386 personal computer by a Canberra
Nuclear PHA/MCS interface card (Meriden, CT, USA). The spec-
trum was collected in mirror-image mode over 1024 channels and
folded about a 0-point of velocity defined by the spectrum of a
thin foil of metallic iron collected simultaneously with that of
the unknown sample. Analysis of the spectrum was carried out
using a least-squares fitting routine based on a lorentzian peak
shape for the absorption features.

RESULTS
Despite the nutrient-limited nature of Roraima Tepui, through-
out RSC there was evidence of significant microbial activity on

2http://www.ncbi.nlm.nih.gov/
3http://tree.bio.ed.ac.uk/software/figtree/
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the rock surfaces, primarily through the presence of observable
microbial colonies (Figure 1B). Using a luminescence-based assay
for ATP to serve as a proxy for the presence of microorganisms
(Venkateswaran et al., 2003), we measured relative luminescent
units (RLU) values as high as 34,062 from surfaces within the cave.
These values suggest a high amount of microbial activity when
compared to other (carbonate) cave systems (such caves generally
range from 80 to 1,400 RLU; Johnston and Barton, unpublished
results). To explore this microbial activity, we examined three sites
within the cave: CP, RR, and LG, which were progressively further
from the entrance (CP ∼55 m, RR ∼90 m, and LG ∼300 m, respec-
tively; Figure 1C). Observable microbial colonies were generally
associated with turbulent water in the cave and became patchier
deeper into the cave system. We therefore decided to collect sam-
ples where specific microbial growth was not observed, which was
more representative of the majority of surface sediments within
the cave. Using the ATP assay, we obtained a range of 4,025–15,352
RLU from these surface sites (Table 1), which provides an approx-
imation of surficial cell numbers (assuming that cell ATP levels
average ∼1 × 10−18 M) ranging from 2.07 to 7.65 × 107 cells/cm2

(Table 1; La Duc et al., 2007).
To correlate the observed ATP values with total number

of microbial cells at each site, we attempted both direct cell
counting and fluorescent in situ hybridization (FISH). While
cell counting using the DNA stain SYBR Green I was possible,
the autofluorescence and DNA binding properties of the quartz
grains meant that FISH could not be effectively used to dis-
tinguish community composition. Nonetheless, cell counts at
LG (∼0.52 × 108 cells/cm3) and RR (∼1.92 × 108 cells/cm3)
correlated well with the surficial ATP values (the collected CP
sample was destroyed during transport and no cell numbers
were obtained) and confirmed our observation that the cave
contained a high microbial cell number (Venkateswaran et al.,
2003; Barton et al., 2005, 2007). While we did attempt cul-
tivation studies to determine the number of colony forming
units at each site, the cultured isolates shared no similarity with
the dominant phylotypes identified by non-cultivation (DNA)
techniques, suggesting that colony counting was in no way rep-
resentative of the number of species growing in situ (data not
shown).

MICROBIAL COMMUNITY STRUCTURE
Extraction of DNA from orthoquartzite is extremely difficult due
to the glass-like nature of the rock, which adsorbs DNA to its

surface (Mao et al., 1994). Nonetheless, by blocking the quartz
with a synthetic nucleotide polymer prior to extraction, we were
able to obtain sufficient DNA to generate 16S ribosomal RNA
gene sequence libraries for bacteria and archaea. The bacterial
clone libraries contained 184, 52, and 43 clones for CP, RR, and
LG; this diminishing number of clones at each site was due to the
increasing difficulty in extracting DNA as sample sites progressed
further into the cave. A total of 87 and 91 archaeal phylotypes were
obtained for the CP and RR sites, respectively, while the LG sample
was completely consumed in repeated attempts to obtain sufficient
DNA for PCR amplification. The inability to obtain archaeal clones
from the LG site is thus the result of DNA extraction problems,
rather than the absence of these organisms.

In order to obtain a general idea of community structure
at each site we carried out a BLAST analysis (Figure 2). This
analysis revealed that within the bacterial population there were
distinct community differences between the near-entrance (CP)
and deeper (RR and LG) sample sites. The CP bacterial population
was dominated by the Actinomycetales and Alphaproteobacteria,
along with a significant population of Firmicutes and Acidobacteria
(Figure 2). The actinobacterial population at the CP site was itself
dominated by members of the Pseudonocardia, while the Alphapro-
teobacteria were represented by a number of the nitrogen-fixing
Beijerinckiaceae and Methylocella (Dedysh et al., 2004). The com-
parative BLAST of the remaining sequences revealed that many
share identity with phylotypes also seen in mineral weathering
horizons or geologic environments (caves, lava deposits, mines,
and iron-manganese nodules). A single cyanobacterial clone was
detected in the CP clone library; however, no Cyanobacteria were
detected at any other site within the cave.

The bacterial populations at RR and LG sites look remarkably
similar, with the dominance of a phylotype showing a low level
of sequence identity to the Chloroflexi (86%; Figure 2). Despite
the dominance of the Chloroflexi, these sites did contain a minor-
ity population of both the Actinobacteria (4% at RR and 2% at
LG) and Alphaproteobacteria (2% at RR and 5% at LG). The RR
library also contained members of the Gemmatimonadetes and
Planctomycetes, while LG contained a number of Acidobacteria
(Figure 2); representatives of these phyla shared a higher degree of
identity to organisms examined in other environments than rep-
resentatives of the Chloroflexi (Figure 2). Given the uniqueness
of the Chloroflexi, we wanted to determine whether they shared
any homology with other Chloroflexi previously identified in caves
(Barton, 2014). The resultant phylogeny (Figure 3) demonstrates

Table 1 | Physiochemical parameters at the different sampling sites.

Site ATP (RLU) ATP calculated cell

number (/cm2)

Cell counts (/cm3) Temperature ◦C Humidity Stream pH Dissolved Si

(mg/L)

Surface 452 0.45 × 107 – – – 6.875 5.0

CP 4,025 2.01 × 107 Nd 11.8 98.2% 5.561 4.0

RR 15,352 7.65 × 107 1.92 × 108 (SD ± 10.4%) 11.6 99.6% 5.097 6.0

LG 8,933 4.45 × 107 0.52 × 108 (SD ± 12.1%) 12.5 99.9% 4.968 15.0

nd, not done; SD, standard deviation.
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FIGURE 2 | Sequence analysis of identified phylotypes at

each sample site within Roraima Sur Cave. The bacterial and
archaeal populations were analyzed separately and demonstrate
the overall distribution of phyla identified at each site (bar

charts). The distributions of phylotypes with BLAST analysis
identity scores (%) to sequences in the Genbank database
are shown, along with the major community composition or
environmental source.

that the RSC Chloroflexi group falls within the Class Ktedonobac-
terales, while the Chloroflexi that have been identified in past cave
studies associate with the Classes Dehalococcoidetes and Anaero-
lineae. It is interesting to note that there is a distinct lineage within
the Chloroflexi from RSC, with phylotypes from deeper in the cave
(RR and LG) forming a unique clade with clones from a fuma-
role cave on Mount Erebus, Antarctica (Figure 3), while (apart
from a single phylotype identified at the LG; RSC_LGG05) those
found near the entrance at CP share an evolutionary history with
soil-associated clades (Figure 3).

The BLAST analysis of the archaea at CP and RR indicated
that all the phylotypes belonged to the Crenarchaeota in two
distinct populations: the majority of phylotypes from the CP
site shared sequence identity with an oligotrophic peat clone
(CASN36; Akiyama et al., 2011), while the RR site was dominated
by two phylotypes, one with similarity to the same peat study
(CASN28) and the other from an acidic desert soil (Arc_DS16;
Ying et al., 2010; Akiyama et al., 2011; Figure 2). As with the Chlo-
roflexi, we carried out a phylogenetic analysis to relate the RSC
archaeal clones to other Crenarchaeota populations previously
identified in caves. Given the ambient conditions within the cave
(Table 1), it was unsurprising that all of the identified phylotypes
clustered with the mesophilic Crenarchaeota ammonia-oxidizing
Class Thaumarchaeota; however, the RSC phylotypes formed a
distinct cluster within the Thaumarchaeota Group I.1c (Figure 4).
When we searched the RDP, SILVA, and Genbank databases for
additional sequences with shared homology, the RSC archaeal
clones clustered within a subgroup designated NRP-J by DeSantis

and colleagues (McDonald et al., 2012), which has variously been
classified as the MBG-A affiliated, FSC, and FFSB Group (Jurgens
et al., 1997; Vetriani et al., 1999; Takai et al., 2001). Due to this
uncertainty in the phylogeny of the Thaumarchaeota, we used the
more robust framework of Durbin and Teske (2012) to deter-
mine the phylogenetic placement of our clones. The resultant
phylogeny (Figure 5) demonstrated that the RSC archaeal phy-
lotypes clustered within the FSC/NRP-J group in four distinct
clades, three of which correlated well with the peaks observed in
our initial BLAST analyses (Figure 2). All of the sequences used to
determine the phylogeny of the FSC/NRP-J Group have been iden-
tified in acidic environments, including acidic (Arc_DS16) and
humic soils (FRA27), oligotrophic peat (CASN28 and CASN36)
and mines (HSM050P-A-8; Jurgens et al., 1997; Oline et al., 2006;
Ying et al., 2010; Akiyama et al., 2011), suggesting that pH plays
a major role in the archaeal community structure within the
cave.

GEOCHEMICAL ANALYSIS
Given the dramatic difference in diversity between CP and the
deeper sites within the cave and the potential role of pH (RR and
LG), we examined whether the geochemistry in RSC played a role
in driving community structure. The physiochemical conditions
in the cave were relative stable, with a temperature of 11.8◦C at
CP increasing to 12.5◦C at LG, as the RH reached near-saturation
at 99.9% (Table 1). Given the insolubility of the orthoquartzite,
the stream provided the only entry of allochthonous nutrients
into the cave, while presumably being responsible for the observed
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FIGURE 3 | Phylogenetic analysis of 16S rRNA gene sequences for the

major Classes (Sub-phyla) within the Chloroflexi, along with

representative phylotypes identified in other cave environments (blue)

and this study (brown). Cultured Chloroflexi isolates are shown in bold. The
tree topology is based on a maximum likelihood analysis using RAxML and

the evolutionary model CTR + G. The lowest scoring tree is shown, with
branch support (percentage) of 1,000 bootstrap replicates shown. The scale
bar represents the estimated number of replacements at each site. The
bacterial 16S sequences for Aquifex pyrophilus (M83548) and
Hydrogenobacter thermophilus (Z30214) were used as an outgroup.
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FIGURE 4 | Phylogenetic analysis of the Thaumarchaeota Group I

(as defined by DeLong, 1992) 16S rRNA gene sequences, including

representative phylotypes identified from other (carbonate) cave

environments (blue) and this study (red). Cultured Thaumarchaeota
isolates are shown in bold. The clade indicated with the (*)
represents the relative location of the Crenarchaeota identified from
Lechuguilla Cave (Northup et al., 2003). The tree topology is based on

a maximum likelihood analysis using RAxML and the evolutionary
model CTR + G. The lowest scoring tree is shown, with branch
support (percentage) of 1,000 bootstrap replicates shown. The scale
bar represents the estimated number of replacements at each site.
The archaeal 16S sequences for Methanobacterium aarhusense H2-LR
(AY386124) and Ferroplasma acidiphilum MT1 (AF513710) were used
as an outgroup.

humidity. The measured pH of the stream did vary, dropping from
5.561 at CP to 4.968 at LG (Table 1). Gross examination of geologic
hand-samples demonstrated that the orthoquartzite at each loca-
tion had lost its rock-like structure and was turning into a sandy
sediment, presumably through the dissolution of the silica cement

(Martini, 2003). SEM analysis of the sediments confirmed this
analysis, and revealed the presence of triangular etch pits within the
quartz grains suggesting that chemical weathering of the mineral
surface was occurring (Figure 6A; Turkington and Paradise, 2005).
The degradation of the host rock into sandy sediment correlated
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FIGURE 5 | Phylogenetic analysis of theThaumarchaeota Group I.1c

FSC/NRP-J Group (as defined by Durbin andTeske, 2012; inset) 16S rRNA

gene sequences. The sequences from this study are shown (orange) as well
as BLAST identified sequences (blue), the FSSB11 sequence of the
FSC/NRP-J group (red), and sequences in the FSC/NRP-J group as identified
from the RDP, SILVA and Genbank databases. The tree topology is based on a
maximum likelihood analysis using RAxML and the evolutionary model

CTR + G. The lowest scoring tree is shown, with branch support (percentage)
of 1,000 bootstrap represented by circles (as shown). The scale bar
represents the estimated number of replacements at each site, while
background coloring was used to highlight each of the putative clades. The
Thaumarchaeota Group I.1a 16S sequences for Nitrosopumilus maritimus
SCM1 (DQ085097) and the uncultured clone SAGMA-8 (AB050238) were
used as an outgroup.

with an increase in dissolved silica in the stream (Table 1), which
could be caused by the production of a weak silicic acid (H4SiO4).

Total elemental and X-ray powder diffraction (XRD) analyses
of the sediments confirms that SiO2 represents the predominant
chemistry of the orthoquartzite in its mineral polymorph α-quartz
(Table 1; Figure 6B). Other predominant elements within the
rock include aluminum (1.96–3.00%), which is enriched in the
cave when compared to the Tepui surface, and iron (0.08–
0.12%), which is likely responsible for the pink color of the
rock (Figure 1; Table 2). We identified trace phosphorous
(0.02–0.05%), which has the potential to serve as a nutrient;
potassium, strontium, calcium, barium, sodium and magne-
sium were below the 0.01% sensitivity of the instrument. In
order to examine whether the observed iron could contribute to
microbial metabolism, either through autotrophic or mixotrophic

growth, we used Mossbauer spectroscopy. The obtained spec-
trum demonstrates a very low absorption effect and poor sig-
nal/noise ratio (Figure 6B) and confirms both the low level
of available iron and its presence as hematite [Fe(III)]. Given
the dominance of ammonia-oxidizing species within RSC, we
also tested for the presence of nitrogenous compounds using a
field-available assay. While we found no reactive nitrogenous com-
pounds (NH+

4 , NO−
2 , NO−

3 ) from rocks on the surface of the
Tepui, outside of the cave (Table 2), both nitrate and ammo-
nia were detected at trace levels at all sample sites within the
cave. Together these data suggest that while there are some dif-
ferences between the geochemistry of the surface and the cave
sites, there are no significant geochemistry differences to account
for the observed changes in microbial community structure within
the cave.
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FIGURE 6 | Geochemical analyses of Roraima Sur Cave samples.

(A) SEM analysis of the quartz grains reveals the evidence of microbial
activity and the etch-pits (indicated by arrows) characteristic of chemical
dissolution. (B) XRD diffraction pattern of host rock material from outside of

the cave (surface) and the sample sites, Cricket Pool (CP), Red River (RR),
and Largo Grande (LG). Q indicates the presence of a recognized α-quartz
peak; (inset ) Mössbauer spectra of the LG site, with reference peaks for
hematite.

DISCUSSION
The Tepui Mountains of Venezuela are a remarkable environment
that contains some of the longest and deepest quartzite caves in
the world (Martini, 2003; Auler, 2004; Galan et al., 2004; Aubrecht
et al., 2008, 2011). They are also among the most remote and
inaccessible environments for research. Nonetheless, given the his-
tory of unusual fauna and flora found on these mountains (Im
Thurn, 1887; Maguire, 1970; Steyermark, 1979), it was unsur-
prising that a unique microbial community was found within its
caves; this uniqueness was evident when we first processed the
data from this cave in 2008 (Figure 7). At the time the Thaumar-
chaeota had yet to be described, the cultivation of Nitrosopumilus
maritimus still appeared to be novel, our knowledge of the con-
tribution by ammonia-oxidizing archaea (AOA) in the global
nitrogen cycle was still in its infancy, and the Ktedonobacterales had
only recently been described from the type strain Ktedonobacter
racemifer (Venter et al., 2004; Könneke et al., 2005; Cavaletti et al.,
2006; Brochier-Armanet et al., 2008). Next-generation sequenc-
ing technologies remained limited and expensive, and unable to
amplify low-biomass samples (<50 ng) without significant (and

Table 2 | Geochemistry of sample sites.

Sample site Chemical Parameter

Si Al P Fe Ti NH+
4

NO−
2 NO−

3

% mg/L

Surface rock 99.40 0.45 0.02 0.07 0.07 bdl bdl bdl

CP 97.29 2.76 0.05 0.08 0.04 <0.25 bdl <0.5

RR 95.99 3.00 0.04 0.12 0.07 <0.25 bdl <0.5

LG 98.94 1.96 0.02 0.10 0.02 <0.25 bdl <0.5

bdl, below detection limit.

FIGURE 7 | Initial (2008) and subsequent re-analysis (2014) of Roraima

Sur Cave phylotypes for this volume. The distributions of phylotypes
with BLAST analysis identity scores (%) to sequences in the Genbank
database are shown, along with the major community composition or
environmental source.

biased) amplification. We were therefore confronted with a 16S
rRNA clone library that comprised of sequences with very lit-
tle identity to characterized species within the Genbank database
(Figure 7). Even the bacterial phylotypes within the CP site, which
demonstrated the best identity to known sequences, left us with
what appeared to be a soil-like community (Figure 7). Thus the
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original analysis of the RSC microbial populations provided very
little functional information.

Since that time, more than 6.1 × 107 sequences (represent-
ing a total of 3.3 × 109 bases) have been added to the Genbank
database (Genbank release notes4), including 16S rRNA sequences
from newly explored geochemical environments (Connell and
Staudigel, 2013). Collectively this knowledge increase produced a
noticeable shift in the identity of our sequences to those within
the Genbank database (Figure 7) and has improved our abil-
ity to determine an environmental physiology of the microbial
community in RSC. For example, at the CP site, in addition
to soil-associated species, our clones now demonstrate sequence
identity to phylotypes from caves, mineral weathering surfaces,
and endolithic environments (Figure 7), including heterotrophic,
nitrogen-fixing species identified on the surfaces of carbonate
caves impacted by the introduction of organic carbon (Stomeo
et al., 2008). The presence of Cyanobacteria at CP may be indica-
tive of the close proximity of this sample site to the entrance and
colonization by surface species (Büdel, 1999); indeed the site is
close enough to the cave entrance that, by peering around a cor-
ner, daylight can be seen (Figure 1). Alternatively, the presence
of so many heterotrophic, nitrogen-fixing species at CP suggests
that the microorganisms depend on surface-derived carbon for
growth, while the ability to fix nitrogen may play a critical role
in microbial subsistence. Taken together, these new data sug-
gest that the CP community exists within a transitional zone,
where the microbial community is still influenced by surface col-
onization or allochthonous carbon input, but demonstrates some
endolithic-like adaptation to life on the silicate mineral surface.

As the sample sites extended further into the cave, there was a
dramatic shift in bacterial community structure (Figure 2). The
impermeable, orthoquartzite rock prevents allochthonous infil-
tration, and thus these sample sites (RR and LG) would have
to depend on organic input directly from the cave stream or
autotrophic activities. In support of the stream hypothesis, the
absence of surface soils on the Tepuis means that rainwater rapidly
accumulates dissolved organic matter (DOM) from plant detritus
and humic material before flowing into the cave; the amount of
humic material in the water flowing into the cave and off of the
Tepuis can be so high that it gives the rivers in this region their
famous tannic “black” color (Piccini and Mecchia, 2009). While
equipment failure meant we were unable to measure DOM at the
time of sampling, the water on Tepui mountains has an average
dissolved DOM content of ∼19 mg/L (Gorbushina et al., 2001),
which is much higher than the average measured DOM levels in
carbonate caves (<0.5 mg/L; Barton, 2014). This comparatively
high DOM flowing into the cave could certainly serve as the source
of energy that drives the high levels of microbial activity observed
and indeed, the most visible microbial activity seen was associated
with turbulent water flow (Figure 1); however, if this were the
case, it is unclear why the community deeper into the cave con-
tains such a dominant population Ktedonobacterales, rather than
the phyla seen at the near-entrance CP site that are more com-
monly associated with the breakdown of plant detritus (Figures 2
and 3; Hug et al., 2013).

4ftp.ncbi.nih.gov/genbank.gbrel.txt

The Chloroflexi represent a remarkably diverse group, with a
phylogenetic range as broad as that of the Proteobacteria (Ley
et al., 2006); yet out of the 20,702 16S rRNA sequences in the
RDP database, there are only 187 cultured representatives (this
compares with 96,507 cultured isolates for the Proteobacteria).
This makes it very difficult to estimate the metabolic function
for uncultured species within the environment, particularly in
this study, when the closest cultured representative (Thermogem-
matispora onikobensis) only has 84% sequence identity at the
16S rRNA gene level (Cole et al., 2005). Nonetheless, the Chlo-
roflexi, and in particular the Ktedonobacterales, have a recognized
role as heterotrophic oligotrophs in soils, including the abil-
ity to survive on more recalcitrant plant polymers (Yabe et al.,
2010, 2011; Hug et al., 2013; King and King, 2014). Their pres-
ence in oligotrophic environments, including caves, confirms
this adaptation to growth under nutrient limitation (Engel et al.,
2010; Hug et al., 2013; Barton, 2014). The difference in Kte-
donobacterales phylotypes between the near-entrance CP and
deeper cave sites, along with their dominance at RR and LG,
suggest that there are specific selective pressures deeper within
the cave for these organisms. The unique clade formed by the
RSC phylotypes and those from a mesophilic fumarole cave on
Mount Erebus, Antarctica (Figure 3) has the potential to tell
us more about such potential selective pressures (Yabe et al.,
2011).

The RR and LG sites are dominated by representatives of
the Ktedonobacterales growing on a silica-rich substrate in the
form of quartz (Figure 6). The fumarole caves, which form
at the contact between the ice sheet and a floor of phonolitic
lava, similarly contain Ktedonobacterales growing in a lithosoil
comprised of silica-rich montmorillonite and kaolinite, with a
pH of 4.1–5.8 (Ugolini, 1965; Hudson and Daniel, 1988; Con-
nell and Staudigel, 2013). In contrast, the Dehalococcoidetes and
Anaerolineae dominate the Chloroflexi in well-buffered (pH 8.0–
8.3) limestone caves, as well as and Hawaiian lava tube caves
(Figure 4), where the basaltic lava (<20% quartz) is much less
susceptible to chemical weathering (Porder et al., 2007). Together,
these data suggest that the selection pressure for the Ktedonobac-
terales may be related to either the high levels of silica, and a
consequence of the selective pressure of the Si4+ ion, or the
result of the poor buffering and the surface acidity of quartz and
phyllosilicates (Porder et al., 2007). Given the observation of the
Thaumarchaeota Group I.1c in RSC, it is likely that pH may be the
predominant driver of community structure within the microbial
ecosystem.

DeLong (1992) first identified a group of mesophilic, marine
Crenarchaeota that metagenomic analyses suggested contained
an ammonia monooxygenase (amoA) gene and ammonia-
oxidizing activity (Venter et al., 2004). Upon the discovery of
related sequences in the soil, these Crenarchaeota were sub-
sequently reclassified into Groups I.1a, I.1b, and I.1c: Group
I.1a being associated with marine and freshwater environ-
ments, Group I.1b with soil and subsurface environments, and
Group I.1c with forest soils (Jurgens et al., 1997; Ochsenreiter
et al., 2003). The significance of these Crenarchaeotal popu-
lations within the environment was demonstrated by cultiva-
tion of the ammonia-oxidizing Nitrosopumilus maritimus, which
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confirmed their ammonia-oxidizing potential (Könneke et al.,
2005). Since that time, these mesophilic AOA have been clas-
sified into a new phylum, the Thaumarchaeota, which are now
recognized to be important, if not the dominant, players in
global nitrification (Brochier-Armanet et al., 2008; Monteiro et al.,
2014).

As more members of the Thaumarchaeota were identified
within the environment, there seemed to be an association of
Group I.1c with acidic environments, even though the ammo-
nia ion is protonated to its unfavorable ammonium form at low
pH. Nonetheless, both pH and nutrient conditions appear to
be important drivers of niche-differentiation within the Thau-
marchaeota (Lehtovirta et al., 2009; Martens-Habbena et al., 2009;
Gubry-Rangin et al., 2011; Auguet and Casamayor, 2013). The lack
of sufficient ammonia for ammonia-oxidation under low pH was
solved with the cultivation of the acidic AOA Nitrososphaera vien-
nensis, which uses urea for growth (Tourna et al., 2011). This urea,
which appears to play a critical role in ammonia-oxidation under
acidic conditions, is degraded by intracellular ureases to release the
necessary ammonia for growth (Lu et al., 2012; Lu and Jia, 2013).
Thus, the low pH within RSC may therefore explain both the pres-
ence of the Thaumarchaeota Group I.1c and the Ktedonobacterales,
which encode ureases and can use nitrite and nitrate (Costello
and Schmidt, 2006; Hanada and Pierson, 2006; Wu et al., 2009;
Sorokin et al., 2012). If ammonia and/or urea are driving commu-
nity structure within RSC, the question remains as to its source.
The answer may require us to re-examine the stream entering the
cave.

Cave microbiology is a relatively young field, although there
has been a dramatic increase in recent years in both the num-
ber of research groups and resultant publications (Lee et al.,
2012). Yet much of this work has centered on traditional lime-
stone (karst) caves. Very little microbial exploration has taken
place in pseudokarst – caves found in rock other than lime-
stone (Halliday, 2007). Such environments include lava caves,
ice, glacier and fumarole caves, talus caves, iron caves, lit-
toral sea caves, and sandstone caves (Hudson and Daniel, 1988;
Soo et al., 2009; Northup et al., 2011; Connell and Staudigel,
2013; Hathaway et al., 2014). Yet such caves contribute signif-
icantly to our understanding of the geochemical environments
and subsurface ecosystems that can be studied on Earth (Her-
bold et al., 2014). The difficulty in accessibility, unforgiving
sampling environment, and difficulty in obtaining DNA from
these samples means that this initial work has only allowed us
a snapshot of the microbial diversity found within the tepui
sandstone caves. With advanced technologies in low-biomass
next-generation sequencing, metagenomic approaches, and the
potential to culture the Thaumarchaeota, we hope that further
study will allow us to better understand both the active physiolo-
gies and the drivers of microbial selection within these unusual
microbial ecosystems.
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