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The common idea of typical cell wall architecture in archaea consists of a pseudo-crystalline
proteinaceous surface layer (S-layer), situated upon the cytoplasmic membrane.This is true
for the majority of described archaea, hitherto. Within the crenarchaea, the S-layer often
represents the only cell wall component, but there are various exceptions from this wall
architecture. Beside (glycosylated) S-layers in (hyper)thermophilic cren- and euryarchaea
as well as halophilic archaea, one can find a great variety of other cell wall structures like
proteoglycan-like S-layers (Halobacteria), glutaminylglycan (Natronococci), methanochon-
droitin (Methanosarcina) or double layered cell walls with pseudomurein (Methanothermus
and Methanopyrus). The presence of an outermost cellular membrane in the crenarchaeal
species Ignicoccus hospitalis already gave indications for an outer membrane similar to
Gram-negative bacteria. Although there is just limited data concerning their biochemistry
and ultrastructure, recent studies on the euryarchaeal methanogen Methanomassiliicoccus
luminyensis, cells of the ARMAN group, and the SM1 euryarchaeon delivered further
examples for this exceptional cell envelope type consisting of two membranes.
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INTRODUCTION
Microorganisms and especially archaea can be found in almost
any kind of extreme environment, although they are not limited
to them: high temperature, high acidity, high pressure, anoxic,
no organic substrates. In those habitats, various species of hyper-
thermophilic or more generally extremophilic archaea were found
and described. Therefore, the general cell plan of the major-
ity of these extremophilic archaea and especially their cell wall
architecture might represent the most basic and archaic version:
a pseudo-crystalline proteinaceous surface layer (S-layer), a so
called S-layer which is situated upon a single cytoplasmic mem-
brane which is enclosing the cytoplasm. This simple cell plan was
found to be present in the majority of described archaeal species.
Because of its simplicity and widespread distribution within the
major groups of archaea and bacteria, it was already stated by
Albers and Meyer (2011) that the S-layer might be the cell wall
variant that has evolved the earliest. Especially within the crenar-
chaea, the S-layer usually depicts the only cell wall component.
S-layer glycoproteins were first discovered and extensively studied
in halophilic archaea, namely Halobacterium salinarum as well as
in Haloferax volcanii (Houwink, 1956; Mescher and Strominger,
1976a,b; Lechner and Sumper, 1987; Sumper and Wieland, 1995;
Sumper et al., 1990) and Halococcus (Brown and Cho, 1970) or
methanogens like Methanosarcina (Kandler and Hippe, 1977),
Methanothermus fervidus (Kandler and König, 1993; Kärcher et al.,
1993) and Methanococcus species like Methanococcus vannielii
and Methanococcus thermolithotrophicus (Koval and Jarrell, 1987;
Nußer and König, 1987). Amongst others, several studies were
carried out focusing on the S-layer in various Sulfolobus species.
The members of the order Sulfolobales, e.g., Sulfolobus solfataricus
or Metallosphaera sedula, represent model organisms for the basic

structure of this kind of cell wall (Veith et al., 2009; Albers and
Meyer, 2011).

But as various examples in the past could show, the archaeal
cell wall architecture is not always that simple. Beside the (glycosy-
lated) S-layers in halophilic, thermophilic and hyperthermophilic
eury – as well as crenarchaea, one can find a great variety of totally
different cell wall structures that sometimes resemble biological
substances also found in eukaryotes and bacteria, e.g., glutaminyl-
glycan in Natronococci, methanochondroitin in Methanosarcina
or double layered cell walls containing pseudomurein in Methan-
othermus and Methanopyrus to name just a few (König et al., 2007;
Albers and Meyer, 2011; Klingl et al., 2013).

In addition, the finding of an energized outermost cellular
membrane in the well described Ignicoccus hospitalis and related
species already indicated the possibility of an outer membrane
(OM), as it is present in Gram-negative bacteria. Furthermore,
recent results on the SM1 euryarchaeon, ultra-small ARMAN cells
and Methanomassiliicoccus luminyensis strengthened the idea of a
real archaeal OM and, besides others, will also be discussed here
(Comolli et al., 2009; Dridi et al., 2012; Perras et al., 2014). And in
this concern, the possible functions of an OM in regard to the bac-
terial version as well as challenges concerning energetic problems
become apparent.

ARCHAEAL CELL WALLS
Similar to bacteria, the cytoplasm in archaea is enclosed by a
cytoplasmic membrane built up mainly of glycerol phosphate
phospholipids, although with slight differences in membrane lipid
composition (Kates, 1992; Albers and Meyer, 2011; Klingl et al.,
2013). But instead of fatty acids linked to the (sn)-1,2 positions
of glycerol via ester bonds, the lipid core of archaea consists of
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C5 isoprenoid units coupled to glycerol via ether bonds in an
archaea specific (sn)-2,3 position (Kates, 1978; Kates, 1992; Albers
and Meyer, 2011). But this will not be discussed in here, as the
main focus of this overview will be on the archaeal cell wall, espe-
cially on components, which are situated outside the cytoplasmic
membrane. Most commonly, this cell wall is represented by a pro-
teinaceous S-layer. But as the following overview will show, there
are a lot of other cell wall variants (Figure 1). According to some
recent findings, there will be a special focus on archaea that could
be shown to be surrounded by double membranes.

S-LAYER
Most commonly, the archaeal cell envelope consists of a pro-
tein or glycoprotein S-layer, a so called S-layer, forming a
2-D pseudo-crystalline array on the cell surface with a distinct
symmetry (Kandler and König, 1985; Beveridge and Graham,
1991; Baumeister and Lembcke, 1992; Messner and Sleytr, 1992;
Kandler and König, 1993; Sumper and Wieland, 1995; Veith et al.,
2009; Albers and Meyer, 2011; Klingl et al., 2013). They are usually
composed of one type of (glyco-)protein forming a central crystal
unit consisting of two, three, four, or six subunits which equates
p2-, p3-, p4- or p6-symmetry, respectively (Figure 2; Sleytr et al.,
1988; Sleytr et al., 1999; Eichler, 2003).

This protein array is usually anchored in the cytoplasmic mem-
brane via stalk like structures forming a quasi-periplasmic space.
The lattice constants for those S-layer crystals were shown to
vary between 11 and 30 nm with protein masses between 40 and

FIGURE 2 | Arrangement of S-layer subunits in the respective

symmetry types. The unit cell of the 2D-protein crystals are indicated in
dark grey. Reproduced from Sleytr et al. (1999) with the permission of
WILEY-VCH Verlag GmbH, Weinheim, Germany

325 kDa (Messner and Sleytr, 1992; König et al., 2007). With some
limitations, the S-layer symmetry as well as the center-to-center
spacing can be used as a taxonomic trait (König et al., 2007; Klingl
et al., 2011). For example, all S-layer proteins of Sulfolobus species

FIGURE 1 | Cell wall organization of Archaea. The schematic illustration
summarizes the most common archaeal cell wall types including the
most relevant genera. C, cytoplasm; CM, cytoplasmic membrane; GC,
glycocalyx; GG, glutaminylglycan; HP, heteropolysaccharide; LP,

lipoglycans; MC, methanochondroitin; OCM, outermost cellular
membrane or outer membrane; PM, pseudomurein; PS, protein sheath;
SL, S-layer. Based on König et al. (2007) ASM Press, Washington,
DC, USA.
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described so far revealed a very rare p3-symmetry and a spac-
ing around 21 nm (König et al., 2007; Veith et al., 2009). This
symmetry was thought to be unique for the Sulfolobales until
recent findings concerning the S-layer of Nitrososphaera viennen-
sis could show that this member of the phylum Thaumarchaeota
also has a surface protein with p3-symmetry (Stieglmeier et al.,
2014).

The S-layer protein of Halobacterium salinarum was not only
the first glycoprotein discovered in prokaryotes but also exempli-
fies the fact that S-layers are often highly glycosylated (Mescher
and Strominger, 1976a,b; Kandler and König, 1998; König et al.,
2007; Veith et al., 2009; Albers and Meyer, 2011). The glycosylation
of halophilic S-layer proteins increases protein stability and also
prevents degradation (Yurist-Doutsch et al., 2008). Besides the sit-
uation in halophilic archaea, the glycosylation may also contribute
to a thermal stabilization of S-layer proteins as mentioned in Jarrell
et al. (2014).

Concerning the potential function of S-layer proteins, several
possibilities have been discussed (Engelhardt, 2007a,b): protec-
tion against high temperature, salinity (osmoprotection), low pH
and maintenance of cell shape (exoskeleton). Especially within
the crenarchaea, they comprise high temperature stability as they
have to withstand temperatures around 80◦C and pH below 2
in case of Sulfolobales (e.g., Veith et al., 2009). Herein, a high
portion of charged amino acids as well as ionic interactions may
play an important role (Haney et al., 1999). Another example
for the high stability of S-layer proteins was shown for Thermo-
proteus tenax and Thermofilum pendens, where the rigid S-layer
sacculus even withstands treatment with 2% SDS at 100◦C for
30 min (König and Stetter, 1986; Wildhaber and Baumeister, 1987;
König et al., 2007). In most euryarchaeota, the situation is totally
different with highly labile S-layer proteins (e.g., Archaeoglobus
fulgidus, König et al., 2007), which also makes it difficult to
isolate the proteins. An exception from these findings is the
S-layer of Picrophilus, which may be a side effect of its high acid
stability.

For additional information on general properties of S-layer
proteins, their genetic background and characteristic features,
the reader’s attention should be pointed to some general reviews
on this topic (e.g., Claus et al., 2001, 2005; König et al., 2007;
Albers and Meyer, 2011). Furthermore, there are also several more
focused studies on S-layer proteins of mesophilic and extremely
thermophilic archaea (Claus et al., 2002) as well as mesophilic,
thermophilic and extremely thermophilic methanococci (Akça
et al., 2002).

PSEUDOMUREIN, METHANOCHONDROITIN, AND PROTEIN SHEATHS
Furthermore, pseudomurein, a polymer which maintains the
cell shape and perhaps also protects the cells, can be found
as an additional second cell wall compound in all species of
Methanothermus and Methanopyrus (König et al., 2007). It shows
similarity to bacterial peptidoglycan but usually consists of
L-N-acetyltalosaminuronic acid with a β-1,3 linkage to D-N-
acetylglucosamine instead of N-acetylmuramic acid linked β-1,4
to D-N-acetylglucosamine as it is the case in bacterial murein
(peptidoglycan). In addition, the crosslinking amino acids in
pseudomurein are represented by L-amino acids (glutamic acid,

alanine, lysine) instead of D-amino acids in murein (Kandler and
König, 1993; König et al., 1994; Albers and Meyer, 2011).

In contrast to single cells, aggregates of Methanosarcina spp.
produce a substance called methanochondroitin covering the
S-layer with the latter one also being present in single cells (Kreisl
and Kandler, 1986; Albers and Meyer, 2011). Methanochon-
droitin, which is similar to chondroitin in the connecting tissue
of vertebrates (Kjellen and Lindahl, 1991), consists of a repeating
trimer of two N-acetylgalactosamines and one glucuronic acid
but differing from vertebral chondroitin in the molar ratio of the
monomers and the fact that it is not sulfated (Albers and Meyer,
2011).

The methanogenic archaeal species Methanospirillum hungatei
and Methanosaeta concilii form long chains that are surrounded
by a proteinaceous sheath (Zeikus and Bowen, 1975). Beside its
high stability against proteases and detergents, it also revealed a
paracrystalline structure and functioning as a micro sieve (Kandler
and König, 1978; Sprott and McKellar, 1980; König et al., 2007).
The specialty of this sheath is that it is surrounding the whole chain
and not just the single cells. Each cell is surrounded separately by an
inner cell wall consisting of an S-layer (Methanospirillum hungatei)
or an amorphous granular layer (Methanosaeta concilii; Zeikus and
Bowen, 1975; Sprott et al., 1979; Zehnder et al., 1980; Beveridge
et al., 1985, 1986; Shaw et al., 1985; Beveridge and Graham, 1991;
Firtel et al., 1993; Albers and Meyer, 2011).

GLUTAMINYLGLYCAN AND HALOMUCIN
In similarity to poly-γ-D-glutamyl polymers in Bacillus,
Sporosarcina and Planococcus, such polymers were also found
within the genus Natronococcus (Niemetz et al., 1997). In Natrono-
coccus occultus, polyglutamin is forming the cell wall but in
contrast to similar polymers found in bacteria, the wall polymer
in this archaeum is glycosylated. It is consisting of approximately
60 monomers, which are linked via the γ–carboxylic group (König
et al., 2007).

In the square shaped extremely halophilic euryarchaeon Halo-
quadratum walsbyi, cells are surrounded by an S-layer upon
the cytoplasmic membrane. Depending on the strain C23T or
HBSQ001, the cells of H. walsbyi are surrounded by one or, even
more complex, two S-layers, respectively (Burns et al., 2007). In
addition, another protein called halomucin is present which is
highly similar to mammalian mucin and probably helps the cells to
thrive under conditions of up to 2 M MgCl2 (Bolhuis et al., 2006).
Because of the presence of respective genes, M. walsbyi is most
likely also surrounded by a poly-γ-glutamate capsule (Bolhuis
et al., 2006; Albers and Meyer, 2011).

TWO LAYERED CELL WALLS
For both Methanothermus fervidus and Methanopyrus kandleri, a
cell envelope consisting of two distinct layers has been described
(Stetter et al., 1981; Kurr et al., 1991; König et al., 2007). In
the former case, it is formed by a pseudomurein layer (thick-
ness 15–20 nm) covered by an external S-layer glycoprotein with
p6-symmetry. In the latter case, the situation is similar except
that no regular arrangement of the outermost layer could be
shown for Methanopyrus (König et al., 2007). At this point it
has to be mentioned that two layered cell walls are not just
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limited to Methanothermus fervidus and Methanopyrus kand-
leri because other archaea can also possess two cell walls, e.g.,
Methanosarcina species are covered with an S-layer and an optional
layer of methanochondroitin. Another example is the previously
mentioned H. walsbyi strain HBSQ001 that is covered by two
S-layers.

DOUBLE MEMBRANES
There are just a few examples of archaeal species described so
far, which do not possess one of the previously mentioned
cell wall polymers and structures. Members of the Thermo-
plasmatales like Ferroplasma acidophilum completely lack a cell
wall, despite growing under harsh conditions like elevated tem-
peratures and low pH. It is therefore thought that a glycocalyx,
lipoglycans, or membrane-associated glycoproteins substitute
the function of a cell wall for these organisms (Albers and
Meyer, 2011). The hyperthermophilic sulfur-oxidizing crenar-
chaeal species Ignicoccus hospitalis was the first archaeon, for
which a double membrane system was described (Huber et al.,
2002, 2012; Rachel et al., 2002; Näther and Rachel, 2004; Jun-
glas et al., 2008; Küper et al., 2010). This is also true for all
other species within the genus Ignicoccus investigated up to date.
It is a highly complex and dynamic system leading to a com-
partmentalized cell with a huge periplasm enclosed by both
membranes. The width of this periplasm can vary from 20
up to 1000 nm (König et al., 2007; Huber et al., 2012). There
are some clear differences between both membranes. The inner
membrane (IM) consists of archaeol as well as caldarchaeol
with the latter one forming tetraether lipids and therefore can-
not be separated in freeze fracturing experiments (Rachel et al.,
2002, 2010; Burghardt et al., 2007; Huber et al., 2012; Klingl
et al., 2013) while the outermost cellular membrane contains
archaeol. In addition, most of the polar head groups are gly-
cosylated (Jahn et al., 2004). Interestingly, the ATP synthase as
well as the S0-H oxidoreductase were shown to be located in
this outermost membrane and not in the cytoplasmic membrane,
as it could have been expected; Ignicoccus hospitalis therefore
exhibits an energized outer cellular membrane (Küper et al.,
2010).

Beside the two membranes of Ignicoccus hospitalis and other
closely related species of the genus Ignicoccus, recent studies on
other archaea could also confirm a double membrane system on
these organisms. Three-dimensional cryo electron tomography
on cells of some ultra-small archaea belonging to the philo-
genetically deeply branching and uncultivated ARMAN lineage
revealed an inner and an OM enclosing a periplasm (Comolli
et al., 2009). In this special case, they also found indications for
cytochromes in the IM. During a study attempting to isolate
human-associated archaea, a new genus named Methanomassili-
icoccus luminyensis was described (Dridi et al., 2012). Although
the quality of data concerning the ultrastructure of this organ-
ism was poor, it was still possible to recognize an electron dense
layer outside the cytoplasmic membrane, most likely represented
by an OM. The thick transparent layer mentioned in this study
might depict the periplasm of Methanomassiliicoccus luminyensis.
In a recent study concerning the ultrastructure of the cold-loving
archaeal isolate SM1, an outer cellular membrane in addition to

the cytoplasmic membrane could be documented as well (Perras
et al., 2014).

With a second, outermost membrane, you get at least two sepa-
rated compartments like in Gram-negative bacteria: the cytoplasm
and the (pseudo)periplasm (Rigel and Silhavy, 2012). In Gram-
negative bacteria, the periplasm can make up about 10% of the
cell volume and constitutes an oxidizing environment, containing
soluble proteins, the thin peptidoglycan layer and usually no ATP
(Ruiz et al., 2006). In the special case of Ignicoccus, the volume
of the intermembrane compartment as an analog to the bacterial
periplasm can even be higher than that of the cytoplasm (Küper
et al., 2010). Like in bacteria, the presence of membrane proteins
and pores makes the OM a permeable and selective barrier (Rigel
and Silhavy, 2012). Although there are differences in lipid and
protein composition of the inner and outermost cellular mem-
brane in Ignicoccus hospitalis (Burghardt et al., 2007; Küper et al.,
2010) it still has to be elucidated if there is also an asymmetric
OM containing LPS (lipopolysaccharide) present in archaea. In
Gram-negative bacteria, one can find a phospholipid bilayer (IM)
and usually an asymmetric bilayer in case of the OM, including
proteins like transporters or channels (Ruiz et al., 2006; Rigel and
Silhavy, 2012). In the OM, the inner leaflet is composed of phos-
pholipids; the outer leaflet is mainly composed of LPS, which is
essential for the barrier function of the OM (Ruiz et al., 2006):
lipid A, a core oligosaccharide and an O-antigen polysaccharide
with variations in length. In similarity to Gram-negative bacteria,
archaea with two membranes are featuring several problems: They
need lipoproteins and integral OM proteins (OMPs) in the OM.
The latter ones are essential for intake of nutrients and export
of waste products as they serve as channels (Ruiz et al., 2006).
Furthermore, it also shows the importance of a specific system
for the biogenesis of OMs and the secretion system in archaea
as it was described for Escherichia coli, for example (Tokuda,
2009).

SUMMARY AND OUTLOOK
Although a cytoplasmic membrane superimposed by an S-layer
depicts the most common cell wall architecture in archaea, there
are various other cell wall versions present in cren- as well as in eur-
yarchaeota. As they were isolated from totally different biotopes,
it cannot be generalized that one certain environmental condi-
tion leads to a certain kind of cell wall (König et al., 2007), this
is true for halophilic archaea in particular and all other archaea
in general. With the increasing number of archaea, which were
described to be surrounded by two membranes like ultra-small
ARMAN cells, Methanomassiliicoccus luminyensis or the SM1 eur-
yarchaeon, particular attention should be paid to this topic. For
example the SM1 euryarchaeon was already known for more than
10 years, without having data about its cell wall structure (Rudolph
et al., 2001).

Interestingly, a common feature of all archaea that posses a
double membrane cell wall architecture is that they are closely
interacting with other organisms (archaea, bacteria, eukaryotes),
as already mentioned by Perras et al. (2014), and that they are
difficult to cultivate or even not cultivatable at all. At this point,
it can still be discussed if the S-layer (Albers and Meyer, 2011)
or an OM is the more archaic cell wall compound. With recently
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developed and refined isolation and preparation methods, ongo-
ing investigations should be able to shed light on further structural
and biochemical features of archaeal outermost cellular mem-
branes. Especially the localization of protein complexes like the
ATPase in the cytoplasmic membrane like in Gram-negative
bacteria or in the outermost cellular membrane like in Ignic-
occus hospitalis (Küper et al., 2010) seems to be crucial in this
concern.
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