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Biofilm development in Pseudomonas aeruginosa is in part dependent on a filamentous
phage, Pf4, which contributes to biofilm maturation, cell death, dispersal and variant
formation, e.g., small colony variants (SCVs). These biofilm phenotypes correlate with
the conversion of the Pf4 phage into a superinfection (SI) variant that reinfects and kills
the prophage carrying host, in contrast to other filamentous phage that normally replicate
without killing their host. Here we have investigated the physiological cues and genes that
may be responsible for this conversion. Flow through biofilms typically developed SI phage
approximately days 4 or 5 of development and corresponded with dispersal. Starvation
for carbon or nitrogen did not lead to the development of SI phage. In contrast, exposure
of the biofilm to nitric oxide, H2O2 or the DNA damaging agent, mitomycin C, showed
a trend of increased numbers of SI phage, suggesting that reactive oxygen or nitrogen
species (RONS) played a role in the formation of SI phage. In support of this, mutation of
oxyR, the major oxidative stress regulator in P. aeruginosa, resulted in higher level of and
earlier superinfection compared to the wild-type (WT). Similarly, inactivation of mutS, a DNA
mismatch repair gene, resulted in the early appearance of the SI phage and this was four log
higher than theWT. In contrast, loss of recA, which is important for DNA repair and the SOS
response, also resulted in a delayed and decreased production of SI phage. Treatments or
mutations that increased superinfection also correlated with an increase in the production
of morphotypic variants.The results suggest that the accumulation of RONS by the biofilm
may result in DNA lesions in the Pf4 phage, leading to the formation of SI phage, which
subsequently selects for morphotypic variants, such as SCVs.
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INTRODUCTION
It is increasingly accepted that biofilms, or surface-attached com-
munities, account for the majority of bacteria in the environment
and that planktonic cells may be more relevant for the dissemi-
nation of cells between biofilm habitats (McDougald et al., 2012).
This shift in understanding has driven a substantial amount of
research focused on understanding how and why bacteria make
biofilms and while there are some commonalities, not surprisingly,
the regulation of biofilm development is quite complex. Indeed,
biofilm formation by Pseudomonas aeruginosa, one of the most
intensively studied biofilm-forming bacteria, has been suggested
to involve around 10% of its genomic potential (Whiteley et al.,
2001; Hentzer et al., 2005; Manos et al., 2008). Biofilm develop-
ment has been shown to be affected by nutrient conditions, and to
involve quorum sensing, adhesion proteins, and proteins involved
in the turnover of c-di-GMP. Additionally, it has been shown that
an endogenous prophage, Pf4, also plays an important role in
biofilm development, stress tolerance, dispersal, the formation of
morphotypic variants and virulence (Rice et al., 2009).

The Pf4 phage, which has a genome comprised of 12 Kbp, is a
member of the Inoviridae and is closely related to ssDNA phage

such as M13 and fd. Such phage are continuously secreted by
the bacterial host without cell lysis. The effect of the Pf4 phage
on biofilm development and variant formation is linked to the
establishment of a superinfection (SI) variant of the Pf4 phage.
The SI phage are able to form plaques on the wild-type (WT) host,
which is otherwise immune to reinfection by the non-SI phage
(Rice et al., 2009). Additionally, we have recently shown through
deep sequencing of the biofilm dispersal population that the phage
accumulates mutations at a significantly higher frequency than the
rest of the PAO1 genome, suggesting that superinfection is linked
to mutations in the Pf4 prophage (McElroy et al., 2014). Because
the formation of the SI phage is an integral part of the biofilm
development life-cycle, it is likely that the establishment of the
SI phenotype is the result of biofilm-specific physiology and gene
expression. However, the specific conditions that lead to SI are
currently not known.

Biofilms consist of a stratified population, where cells in
different parts of the biofilm exhibit varied physiologies due
to differences in nutrient gradients, oxygen gradients, signal-
ing molecules and the accumulation of metabolic products.
For example, oxygen gradients can be formed by the failure of
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oxygen to penetrate through the biofilm as oxygen is respired
by the upper layer of cells (Stewart and Franklin, 2008). Sim-
ilarly, it has been demonstrated that a gradient of nutrients is
established, where the high concentration present in the bulk
phase is rapidly depleted in the deeper or thicker parts of the
biofilm (Zhang et al., 1995; Stewart, 2003). This can result in
the reduction of nutrient availability and causes stress to the
biofilm cells leading to nutrient starvation in the biofilm’s inte-
rior. Conversely, there is a higher concentration of metabolic
by-products in the interior of the biofilm compared to the
cells in the upper layer of the biofilm, where such waste prod-
ucts may freely diffuse away from the biofilm into the bulk
solution.

The accumulation of waste products such as reactive oxygen
and nitrogen species (RONS) in biofilms leads to oxidative and
nitroxidative stress (Webb et al., 2003; Barraud et al., 2006). For
example, aerobic bacteria generate high concentrations of elec-
trons during redox reactions, especially during respiration. These
reactions also are partly responsible for the release of different
species of oxygen (Cabiscol et al., 2000). This results in the build
up of ROS and can lead to DNA damage, protein carbonylation,
cofactor degradation, and lipid peroxidation. Therefore, bacteria
are dependent on oxidative stress defense systems to mitigate the
accumulation of oxygen and oxygen derivatives, e.g., hydrogen
peroxide (H2O2), superoxide anions (O2−) and hydroxyl rad-
icals (OH−). Bacteria counteract oxidative stress by expressing
enzymes to detoxify ROS and repair damage (Storz and Imlay,
1999; Vinckx et al., 2010). This again supports the observation
that bacteria in the biofilm interior differ from those on the exte-
rior surface not only in general physiology, but also in terms of
gene expression. Therefore, it is anticipated that stress responses
play important roles in host defense to constantly changing envi-
ronments similar to that observed in biofilms. In P. aeruginosa,
the OxyR transcriptional regulator is the key global regulator
of the oxidative stress response, regulating 56 genes (Wei et al.,
2012), including katA, katB, ahpB, ahpCF, sodA, and sodB. In addi-
tion, it was recently shown that OxyR binds to the Pf4 phage
genome (Wei et al., 2012) and, therefore, may play an impor-
tant role in phage production during conditions of oxidative
stress.

DNA damage can be repaired through a number of pathways,
including the methyl directed mismatch repair (MMR) and the
RecA recombination repair systems. The MMR corrects errors
that occur during DNA replication and is a key factor in mini-
mizing mutations during replication (Modrich, 1991). RecA acts
as a recombinase and facilitates translesion synthesis during DNA
repair as well as facilitating the cleavage of the LexA repressor
during the SOS response (Cox, 2007). Interestingly, RecA has
been linked to the conversion of lambda phage from lysogeny
into lytic replication. Given their role in DNA repair and the
observation that the phage accumulates a significant number of
mutations at the time of dispersal (McElroy et al., 2014), DNA
repair systems may play important roles in the formation of the SI
phage.

Here, the physiological triggers that lead to mutations and
hence SI and variant formation were determined, and the
role of DNA repair systems in formation of the SI Pf4 phage

investigated. Multiple inducers were tested, including starvation
for different key nutrients, oxidative stress, exposure to H2O2

and mitomycin C. The induced DNA damage from H2O2 and
mitomycin C resulted in increased occurrence of SI. Similarly,
mutational inactivation of the oxidative stress response regu-
lator, OxyR as well as the inactivation of the MMR response
via mutation of mutS gene, resulted in earlier phage pro-
duction and a higher titer of the SI Pf4 phage. Interestingly,
loss of RecA resulted in a decrease in the formation of SI
phage suggesting that recombination may be important in this
process.

MATERIALS AND METHODS
BACTERIAL STRAINS AND CULTURE CONDITIONS
All P. aeruginosa strains (Table 1) were cultured in Bertani (1951)
medium supplemented with 1% (w/v) NaCl (LB10) or in M9 min-
imal medium containing: 48 mM NaHPO4, 22 mM KH2PO4,
9 mM NaCl, 19 mM NH4Cl, 2 ml MgSO4, 100 μM CaCl2, sup-
plemented with 15 mM glucose (M9 complete medium). Strains
were maintained on LB10 agar (1.5% w/v agar) plates and incu-
bated overnight at 37◦C. Liquid cultures were incubated overnight
at 37◦C with shaking (200 rpm).

BIOFILM EXPERIMENTS
Planktonic cultures
Planktonic cultures were cultivated in 15 ml centrifuge tubes (Fal-
con) in M9 complete medium and incubated overnight at 37◦C
with shaking at 200 rpm for 24 h. For stress conditions, 1 mL
was collected, centrifuged at 10,000 × g for 3 min and the super-
natant was discarded. Starvation was induced by replacing M9
complete medium with a solution of M9 salts without glucose
(carbon starvation) or without ammonium chloride (nitrogen
starvation) as medium for 3 days. Cultures were exposed to nitric
oxide (NO) by supplementing the M9 complete medium with
the NO donor sodium nitroprusside (SNP; Sigma Aldrich) at
10 μM, 100 μM, and 1 mM for 3 days. Oxidative stress was
induced by supplementing M9 complete medium with 100 μM,
1 mM and 10 mM H2O2 (Biorad) for 3 days. Mitomycin C
(Sigma Aldrich) was added to M9 complete medium at 3, 30
and 150 μM to induce DNA damage and cultures were treated
for 3 days. All treatments were performed as biological tripli-
cates and were compared to cultures maintained in M9 complete
medium. The samples were collected daily to determine the phage
titre.

Table 1 | List of Pseudomonas aeruginosa strains used in this study.

Strain Reference

PAO1 WT Laboratory stock

PAO1 �Pf4 Rice et al. (2009)

PAO1 SCV2 This study

PAO1 �mutS Jacobs et al. (2003)

PAO1 �recA Jacobs et al. (2003)

PAO1 �oxyR Wei et al. (2012)
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Batch biofilms
Batch biofilms were cultivated in tissue culture treated 24 well
microtiter plates (Falcon). Briefly, overnight cultures grown in
M9 complete medium were diluted 1:100 and 1 ml of the diluted
culture was inoculated into each well. Biofilms were formed for 1
d before being treated. Carbon and nitrogen starvation treatments
were performed as above and the biofilms were incubated for a
further 3 days. Biofilms were exposed to NO, H2O2 and Mitomycin
C as described above and incubated for a further 3 d at 37◦C
with shaking at 80 rpm. Medium and treatments were replaced
daily and at the same time, 1 mL of the biofilm supernatant was
harvested to determine plaque forming units (PFUs, see below).
All treatments were performed as biological triplicates and were
compared to biofilms maintained in M9 complete medium.

Continuous-culture biofilm
Biofilms were established in silicone tubing (inner diameter
2.64 ± 0.28 mm and outer diameter 4.88 ± 0.28 mm; Silastic®
laboratory tubing). Overnight cultures grown in M9 medium
were diluted 1:100 and 2 ml of the diluted culture was inocu-
lated into the tubing using a syringe with a 15G needle, and the
bacteria were allowed to attach to the tubing under conditions
of no flow for 1 h at room temperature. After the attachment
phase, M9 complete medium was pumped through the tubing
at a flow rate of 6 ml/h at room temperature. Biofilms were
allowed to form for 2 days before treatment. Carbon and nitro-
gen starvation was induced as above and starvation medium
was supplied to the biofilm for 5 days. Similarly, biofilms were
exposed to NO by supplementing the M9 complete medium
with 1 mM SNP for 5 days. H2O2 (10 mM) and mitomycin C
were added to the M9 complete medium and fed to the biofilm
for 5 days. All treatments were performed as biological tripli-
cates and were compared to biofilms maintained in M9 complete
medium. The samples were collected daily for CFU and PFU
counts.

CFU counts and morphological variants from the biofilm effluent
CFUs and the numbers of variants were obtained by collecting
5 ml of the biofilm effluent on days 2–7. Serial dilutions were
spread plated onto LB10 agar. The plates were incubated overnight
for at least 12 h at 37◦C. The plates were incubated for additional
12 h at room temperature to facilitate observation of morphotypic
variants.

Phage assays
The supernatant was tested for SI phage using a modified version
of the top-layer agar method previously described (Eisenstark,
1967). Briefly, bacterial lawns of either the WT PA01 (SI phage)
or the Pf4 mutant (total phage) were prepared by mixing 500 μl
of an overnight culture, grown in M9 complete medium, with
5 ml of 0.8% (w/v) molten LB10 agar at 55◦C. The mixture was
poured onto a LB10 agar. The biofilm effluent was centrifuged at
13,000 × g for 5 min and filtered through a 0.22 μm filter (Milli-
pore Millex GP) to obtain cell-free supernatant. The supernatant
was serially diluted and 10 μl drops were spotted onto the bacterial
lawns, air-dried and incubated overnight at 37◦C to observe and
quantify plaque formation.

RESULTS
In P. aeruginosa PAO1 biofilms, the lysogenic Pf4 prophage
converts into its SI form during the dispersal phase and can be
detected by the ability of the SI phage to form plaques on lawns of
the WT P. aeruginosa. This indicates that the SI phage can infect
and kill P. aeruginosa, which is otherwise resistant to reinfection by
the WT Pf4 phage. This is accompanied by the appearance of small
colony variants (SCVs) in the dispersal population. To determine
the physiological or genetic factors involved in the formation of
SI, strains and chemical treatments associated with DNA damage
or spontaneous mutation, including mutS, recA, oxyR mutants,
H2O2, mitomycin C, and the NO donor SNP were tested. To
facilitate testing a wide range of treatments and conditions, experi-
ments were performed on planktonic and batch biofilms for higher
throughput. While the planktonic cultures produced SI phage,
their appearance was inconsistent (data not shown) and indeed,
the control cultures displayed a random pattern of SI induction.
When the same treatments were tested on batch grown biofilms,
no SI was observed, even after 3 days of cultivation (data not
shown). The control biofilms also showed no SI, suggesting that
batch biofilms in microtiter plates, over the 3 days tested, do not
replicate flow cell conditions sufficiently to allow for the formation
of the SI phage.

Since neither planktonic nor batch biofilms resulted in repro-
ducible patterns of SI induction, subsequent experiments were
conducted in flow through biofilms. The control biofilm produced
SI phage on days 4 at 9.7 × 104 PFU/ml (Figure 1). The number
of SI phage increased exponentially to days 6, reaching a maxi-
mum of 7 × 109 PFU/ml before a slight decline on days 7. The
nutrient starved (carbon or nitrogen) biofilms were observed to
disperse within 24 h of treatment. This was accompanied by a
dramatic decrease in the overall phage titre as observed on the
Pf4 lawn, most likely due to the loss of biomass through dis-
persal (data not shown). These results are in agreement with
previous work showing that starvation induces biofilm disper-
sal (Huynh et al., 2012). Therefore, these experiments were not
repeated.

When the continuous culture biofilms were exposed to 10 mM
of H2O2 starting from days 2, the SI phage appeared on days
4 at 4.68 × 107 PFU/ml and increased throughout the duration
of the experiment reaching a maximum of 3.65 × 1010 PFU/ml
on days 7. PAO1 biofilms treated with the NO donor SNP,
had 9.12 × 107 PFU/ml in the biofilm effluent on days 4.
The number of PFU/ml increased on days 5 and 6, reaching
a maximum of 8.10 × 109 PFU/ml on days 6 and decreased
on days 7 to 2.14 × 109 PFU/ml. This pattern of change
in PFU numbers observed from the SNP treated biofilms was
also observed when the biofilm was exposed to DNA damag-
ing agent, mitomycin C (Figure 1). There was an exponential
increase in PFUs starting on days 4 of 3.4 × 107 PFU/ml that
reached a plateau on days 6 at 1.9 × 1010 PFU/ml and sub-
sequently declined on days 7 to 5.6 × 109 PFU/ml. While the
results were not statistically significant (two-way ANOVA), the
trends, seen in multiple experiments, suggest that DNA dam-
aging agents or NO exposure may play a role in the formation
of SI phage. Further, there was a two-log difference on days
4 for all of the treatments relative to the control, suggesting
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FIGURE 1 |The appearance of SI Pf4 phage during biofilm

development of PAO1 wild-type (WT; open triangle with dotted line),

PAO1 treated with mitomycin C (hexagon), PAO1 treated with H2O2

(diamond) and PAO1 treated with SNP (inverted triangle). The SI Pf4
phage was detected via the plaque assay with the PAO1 WT as the target
lawn. Data represent the means of three independent experiments and
error bars show SE of the mean.

that these treatments have an effect on the titre of the SI phage
even though they did not induce the earlier production of SI
phage.

It has previously been shown that SI Pf4 phage can induce
the formation of SCVs (Rice et al., 2009). Therefore, the efflu-
ents from the biofilms treated with mitomycin C, H2O2 and
SNP were plated to quantify the number of SCVs relative to the
untreated control biofilms (Figure 2). The effluent of biofilms
exposed to mitomycin C consisted of 1.1% SCVs on days 3 and
increased to 6.1% SCVs on days 5. In comparison, the untreated
PAO1 biofilm effluent consisted of less than 1% of SCVs on
days 3 and 2.5 and 2.4% of SCVs on days 5 and 7, respec-
tively. The DNA damaging agent mitomycin C induced the highest
frequency of SCVs over the first 5 days, peaking at 7.5%. In
contrast, exposure to H2O2 and SNP had a lesser effect. For
example, there were < 1% SCVs on days 3 from the biofilm
exposed to H2O2, which increased on days 5 and 7, reaching
5.1% SCVs on days 7. Similarly, the biofilm exposed to SNP
had less than 1% of SCVs from days 3, reaching its maximum
of 9.1% of SCVs on days 7. In comparison to the untreated
PAO1 biofilm, there was a two and fourfold increase in SCVs
from the biofilm effluent on days 7 for the H2O2 and SNP treated
biofilms, respectively. While the results were not statistically sig-
nificant when averaged across the three independent experiments
(p > 0.05, two-way ANOVA), the trend of more SCVs in the treated
biofilms relative to the controls was consistent across multiple
experiments.

FIGURE 2 |The percentage of small colony variants (SCVs) from the

PAO1 biofilm untreated (black bars), treated with 150 μM of

mitomycin C (gray bars), treated with 10 mM of H2O2 (white bars) and

treated with 1 mM of SNP (striped bars). Data represent the means and
SE of the mean of three experiments.

The data presented above (Figures 1 and 2) suggests that
oxidative stress (exposure to H2O2 and SNP) and DNA damage
(exposure to mitomycin C) may lead to the development of the SI
phage, resulting in the appearance of SCVs. Oxidative stress in P.
aeruginosa is primarily controlled by the transcriptional regulator,
OxyR (Storz and Imlay, 1999). This protein changes in confor-
mation upon exposure to oxidative stress, allowing it to bind to
specific promoters to control their expression. Therefore, to inves-
tigate the role of the global transcriptional regulator, OxyR, in
the conversion of the Pf4 phage into its SI form during biofilm
development, the oxyR mutant biofilm was compared with the
PAO1 WT biofilm. The oxyR mutant biofilm showed early conver-
sion of the SI Pf4 phage on days 4 as compared to the PAO1 WT
biofilm, which produced SI phage on days 5 in these experiments
(Figure 3). On days 4 for the oxyR mutant biofilm, there were
1.2 × 103 PFU/ml detected in the biofilm effluent, and the num-
ber increased to 8.1 × 109 PFU/ml on days 5. The oxyR mutant
biofilm was also observed to have a higher percentage of SCVs dur-
ing the late stages of biofilm development (Figure 4). The PAO1
WT biofilm generated 1.3% SCVs on days 6 and 1.9% on days 7
in comparison to 16.7% and 7.6% of SCVs from the oxyR mutant
biofilm on days 6 and 7, respectively. The difference between the
two biofilms was statistically significant on days 6, with more than
10-fold difference in SCVs. The same trend was observed in the
three independent experiments; therefore it is highly likely that
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FIGURE 3 |The role of OxyR in the development of superinfection (SI).

Biofilm effluents from the PAO1 WT (triangle) and oxyR mutant (diamond)
were screened for the appearance of the SI Pf4 phage, using the soft agar
overlay method with the PAO1 WT as the target lawn. Data are the means
and SEM of three independent experiments. Note that error bars are
present for all data points, but may be too small to visualize on the graph.

FIGURE 4 |The percentage of SCVs from the dispersal population of

the PAO1 WT biofilm (black bars) and the PAO1 oxyR mutant biofilm

(white bars). Colony forming units were determined from biofilm effluents
for phenotypic variants from the biofilms. Data represent the means of
three experiments and error bars show SE of the mean. (*) indicates a
statistically significant difference when compared to PAO1 WT at 95%
confidence interval with two-way ANOVA with a Sidak’s post test.

OxyR plays an important role in the conversion to the SI and the
appearance of SCVs.

The early appearance and increased number of SI phage
observed for the oxyR mutant further supports the possibility that
oxidative stress and DNA damage are associated with this con-
version. Bacteria have evolved a number of mechanisms to repair
damaged DNA and two of the most important mechanisms are

the MMR system and the RecA recombination system. To mimic
the loss of a functional repair system, a mutS mutant biofilm was
compared to the PAO1 WT biofilm. The mutS mutant biofilm
produced 6.5 × 104 PFU/ml of SI phage on days 3 compared
to the PAO1 WT biofilm where conversion did not occur until
days 5 (Figure 5). Additionally, on days 5 the mutS mutant pro-
duced significantly (P < 0.01) more phage (4.3 × 1012 PFU/ml)
than the WT (9.8 × 107 PFU/ml). The number of PFU from
the mutS mutant biofilm decreased to 4.6 × 109 PFU/ml on
days 9 and 11. In contrast, the recA mutant showed a substan-
tial reduction in the number of SI phage (4.7 × 106 PFU/ml)
compared to the PAO1 WT biofilm, with Pf4 phage conversion
occurring on days 5 of biofilm development (Figure 5). Indeed,
the number of SI phage observed in the biofilm effluent for the
recA mutant was approximately one log lower than the WT at
all time points tested. This suggests that loss of repair increases
the appearance of SI and that the formation of SI phage may
also be partially dependent on RecA-mediated recombination
activity.

When comparing the dispersal variants from the biofilms, SCVs
were observed from the mutS mutant biofilm from days 1 onward
and peaked on days 5 at 6.1% SCVs, which was statistically signif-
icantly different (P < 0.05) to the WT biofilm with 2.5% of SCVs
on days 5 (Figure 6). While the number of SCV’s was higher for
the mutS mutant on days 1–5, the percentage of SCVs produced
by the mutS mutant was similar to the WT from days 7 onward.
In contrast, the percentage of SCVs observed in the effluent of the
recA mutant biofilm was not statistically different from the WT for
days 1–3. However, from days 7 onward, the recA mutant generated

FIGURE 5 |The appearance of the SI Pf4 phage during biofilm

development for PAO1 (closed triangle), the mutS mutant (inverted

triangle) and the recA mutant (hexagon). Data are the means of three
independent experiments and the error bars show SE of the mean. (**)
indicates a statistically significant difference compared to PAO1 WT at the
99% confidence interval as determined using a one-way ANOVA.
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FIGURE 6 |The percentage of SCVs in the biofilm dispersal population

for PAO1 WT (black bars), the mutS mutant (dark gray) and the recA

mutant (light gray). Data are means of three experiments and the error
bars indicate SE of the mean. (*) and (**) indicate a statistically significant
difference when compared to PAO1 WT at 95 and 99% confidence
intervals respectively, as determined by using a one-way ANOVA.

significantly more SCVs than the WT and the mutS mutant. For
example, on days 11 the recA mutant produced 9% SCVs, repre-
senting a statistically significant difference (P < 0.01) compared
to the WT at 3.2% SCVs. These data suggest that the appearance
of the SI phage correlates with the onset of detection of the SCV’s
in biofilm effluent but does not correlate with the titre of the SI
phage. For example, the recA mutant produced less SI phage, but
significantly more SCVs than either the WT or the mutS mutant
(Figure 6), which produced >four log more phage than the recA
mutant from days 7 to 11 (Figure 5).

DISCUSSION
It was previously shown that growth in a biofilm leads to the
formation of a SI variant of the Pf4 phage (Rice et al., 2009).
While biofilm dispersal has previously been linked to nutri-
ent starvation and the accumulation of NO (Sauer et al., 2004;
Barraud et al., 2006; Huynh et al., 2012), the specific metabolic or
stress conditions that lead to the establishment of the SI phage
has not been determined. The results presented here strongly
suggest that SI conversion is linked to a dysfunctional oxidative
stress response and the MMR system. This is supported by the
results showing that chemical treatments that are linked with
either DNA damage (mitomycin C) or oxidative stress (H2O2

and SNP) also result in increased or early development of SI.
Oxidative stress is a consequence of the build up of RONS as a
result of endogenous by-products that accumulate during aero-
bic metabolism and/or upon external exposure to ROS, such as
the oxidative burst of immune cells. Aerobic bacteria naturally
generate high concentrations of electrons and multiple oxygen

species through oxidative phosphorylation and respiration. This
results in the build up of ROS such as H2O2, O2− and hydroxyl
radical (OH−; Henle and Linn, 1997; Storz and Imlay, 1999). It
has been shown that ROS and RONS accumulate within micro-
colonies of the biofilm leading to cell death (Barraud et al., 2006)
and that microcolonies within the biofilms are hot spots for the
accumulation of mutants (Conibear et al., 2009). While bacte-
rial cells are constantly exposed to intracellularly generated ROS,
they are also exposed to exogeneous ROS generated by other
microorganisms which can either be used to eliminate com-
petitors or can be released by immune cells to kill invading
pathogens (Klotz and Hutcheson, 1992; Brunder et al., 1996). For
example, the release of superoxides by the phagocyte NADPH oxi-
dase is a host defense mechanism used by macrophages against
pathogens (Miller and Britigan, 1997; Babior, 1999; Janssen et al.,
2003).

Hydrogen peroxide can freely diffuse across cellular mem-
branes, making it a lethal antimicrobial as it causes DNA damage
through strand breakage (Ananthaswamy and Eisenstark, 1977),
deoxynucleotide base damage (Rhaese and Freese,1968), deoxynu-
cleotide base release (Ward and Kuo, 1976) and DNA cross-linking
(Massie et al., 1972). It has previously been shown that the rate of
damage caused by OH−, the product of H2O2 degradation via
the Fenton reaction, is greater than damage caused by H2O2, as
OH− have a greater ability to bind to DNA (Ananthaswamy and
Eisenstark, 1977; Ward et al., 1987). The fact that OH− are more
damaging, could explain the observation that H2O2 had a rel-
atively minor effect on the biofilm compared to the loss of the
OxyR regulator (oxyR mutant biofilm), which acts in response to
combinations of RONS. Exposure to H2O2 gives rise to oxida-
tive stress, however, bacterial cells harbor repair mechanisms that
repair DNA damage and produce enzymes to scavenge and remove
H2O2 (Ma and Eaton, 1992). Therefore, H2O2 may induce the
expression of SI phage by a few hours because it has limited
capacity to damage the cell in comparison to the loss of OxyR.
In the case of the OxyR mutant, the SI phage was induced a
day earlier than in the PAO1 WT biofilm which may reflect the
broader role of OxyR in controlling the global oxidative stress
response.

It was determined that OxyR of P. aeruginosa binds to multiple
sites in the genome (Wei et al., 2012). Interestingly, one of those
sites is the intergenic region between PA0716 and PA0717 genes
of the Pf4 genome. The binding region lies within the ORF of
the repressor c gene of the prophage genome. This suggests that
interactions of the OxyR protein with the Pf4 phage genome are
important in SI conversion and overall control of phage produc-
tion. One possible mechanism is that the OxyR normally binds
to the repressor C promoter and represses gene expression. When
the repressor C acquires mutations, these may prevent binding
of the OxyR to the phage genome leading to overproduction of
the phage particles. Binding assays of the OxyR to the repressor
c gene and/or competition binding between OxyR and repressor
C may elucidate the role of OxyR in SI phage conversion and
the interactions between the OxyR regulator and the prophage.
Deep sequencing data of the P. aeruginosa dispersal population
and associated phage indicates that there is a high frequency of
mutations in the repC gene and the upstream promoter region,
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while there are no other mutations in the phage genome (McElroy
et al., 2014).

Inactivation of the MMR system is associated with the highly
mutable state, called hypermutation. For example, P. aeruginosa
CF isolates have been shown to lack the mutS and mutY genes
of the MMR system leading to the hypermutatable phenotype
(Oliver et al., 2000). The mutS protein plays an important role
in recognizing mismatches and initiates the repair by association
with other Mut proteins, the loss of this protein will completely
arrest the MMR system. Our results suggest that loss of a func-
tional MMR system leads to early conversion of the SI phage and
higher SCV numbers. This supports the possibility that muta-
tions in the genome lead to the conversion of the SI phage and
that this process is linked to DNA damage via oxidative stress
and requires active MMR functions to reduce conversion to the SI
phage.

The mutations could arise in either the prophage genome, the
replicative form (RF) or in the ssDNA phage genome as it is repli-
cated for packing into phage particles. In the latter two cases, the
mutated RF or phage genome (after conversion into dsDNA) could
be introduced into the prophage locus via recombination. The loss
of RecA leads to a decrease in the SI Pf4 phage in the biofilm, sug-
gesting that RecA is required for the conversion to the SI phage.
RecA plays roles in both the induction of the SOS response and
in recombination based DNA repair (Schlacher and Goodman,
2007) and it is not clear from the data presented here, which func-
tion of RecA is associated with the formation of the SI phage. It is
possible that the mutations resulting in SI Pf4 occur during phage
replication and that the mutated phage genome is recombined
with the genomic prophage, resulting in fixation of the mutation
in the bacterial host, although this is yet to be experimentally
determined.

Pseudomonas aeruginosa biofilms have been shown to gener-
ate genetic diversity by producing phenotypic variants with a
variety of functions such as the production of pyomelanin for
protection against oxidative stress (Boles et al., 2004), loss of flag-
ellar and twitching motility for enhanced adherence to surfaces
(Deziel et al., 2001), and increased tolerance against antibiotic
treatment (Drenkard and Ausubel, 2002). These adaptive phe-
notypes are important for the survival and the fitness of bacteria.
However, deep sequencing data (McElroy et al., 2014) suggest that
there are a limited number of mutations in the host genome
outside of the phage region. This could suggest that instead of
frequent random mutations, the conversion of the Pf4 phage to
its SI form may drive the formation of the phenotypic variants
observed from the biofilm through an as yet unknown mecha-
nism. Genetic variation is important for the increased stress and
antimicrobial tolerance of P. aeruginosa biofilms (Boles et al.,2004)
and the formation of SI phage has been shown to increase vari-
ant formation. Therefore, the process of SI formation could have
negative treatment implications, where SI leads to the increased
number of resistant variants during chronic, biofilm related
infections.

CONCLUSION
The conversion into the SI Pf4 phage coincided with the appear-
ance of SCVs from the dispersal population of the PAO1 biofilm.

In the work presented here, formation of the SI phage appears to be
correlated with a functional MMR system and the oxidative stress
response mediated by OxyR. Further, the results presented here
suggest that high levels of either DNA damaging agents or ROS
can induce the SI phenotypes. Therefore, it is likely that during
biofilm maturation, high concentrations of RONS accumulate due
to endogenous metabolism, overwhelming the ability of the host
to detoxify DNA damaging molecules, leading to the accumulation
of mutations. The nucleotide composition of the repressor c gene
may predispose it to acquire single nucleotide polymorphisms at
frequencies higher than the host genome and such mutations dis-
rupt or change the immunity function of the repressor C protein,
allowing the mutant phage to subsequently reinfect hosts with WT
immunity functions. This would lead to strong selection pressure
in the biofilm for variants that are resistant to the SI (and addi-
tionally carry the SI Pf4 phage) that subsequently persist. The
SI phage, through an unknown mechanism, also drives changes
in the morphology of the SI host. Therefore, it is of interest to
understand how SI results in morphotypic variation, the involve-
ment of the repressor c gene and the mechanism by which OxyR
controls SI.
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