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Initially using 143 genomes, we developed a method for calculating the pair-wise
distance between prokaryotic genomes using a Monte Carlo method to estimate the
conservation of gene order. The method was based on repeatedly selecting five or six
non-adjacent random orthologs from each of two genomes and determining if the chosen
orthologs were in the same order. The raw distances were then corrected for gene order
convergence using an adaptation of the Jukes-Cantor model, as well as using the common
distance correction D′ = −ln(1-D). First, we compared the distances found via the order of
six orthologs to distances found based on ortholog gene content and small subunit rRNA
sequences. The Jukes-Cantor gene order distances are reasonably well correlated with the
divergence of rRNA (R2 = 0.24), especially at rRNA Jukes-Cantor distances of less than
0.2 (R2 = 0.52). Gene content is only weakly correlated with rRNA divergence (R2 = 0.04)
over all distances, however, it is especially strongly correlated at rRNA Jukes-Cantor
distances of less than 0.1 (R2 = 0.67). This initial work suggests that gene order may be
useful in conjunction with other methods to help understand the relatedness of genomes.
Using the gene order distances in 143 genomes, the relations of prokaryotes were studied
using neighbor joining and agreement subtrees. We then repeated our study of the
relations of prokaryotes using gene order in 172 complete genomes better representing a
wider-diversity of prokaryotes. Consistently, our trees show the Actinobacteria as a sister
group to the bulk of the Firmicutes. In fact, the robustness of gene order support was
found to be considerably greater for uniting these two phyla than for uniting any of the
proteobacterial classes together. The results are supportive of the idea that Actinobacteria
and Firmicutes are closely related, which in turn implies a single origin for the gram-positive
cell.
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INTRODUCTION
For the past three decades, the comparisons of ribosomal RNA
(rRNA) between microorganisms have largely provided the tax-
onomic and phylogenetic basis for bacteriology (Woese, 1987).
During the past 15 years, however, considerable effort has been
placed on comparing the similarity of organisms with genome-
wide methods or, at least, with methods that use more than a
single gene. These methods include the estimation of genomic
distances based on the content of genomes, either orthologs,
homologs, folds, or protein domains (Gerstein, 1998; Fitz-Gibbon
and House, 1999; Snel et al., 1999; Tekaia et al., 1999; Wolf et al.,
2002; Deeds et al., 2005; Yang et al., 2005; House, 2009). Genomic
distance has also been estimated using direct genome-to-genome
sequence comparisons using a variety of approaches like average
nucleotide identity (ANI) and the genome-to-genome-distance
calculator (GGDC) that can approximate traditional DNA-DNA
hybridization results (Konstantinidis and Tiedje, 2005; Goris
et al., 2007; Deloger et al., 2009; Richter and Rosselló-Móra, 2009;
Auch et al., 2010; Tamura et al., 2012; Meier-Kolthoff et al., 2013).

Also, ever since Nadeau and Taylor (1984) first identified that gene
order information was conserved between humans and mice,
there has been growing interest in using gene order to estimate the
difference between genomes or to solve phylogenetic problems.

Several gene order methods depend on the presence of
orthologs adjacent to each other. Watterson et al. (1982) intro-
duced the breakpoint distance between genomes, which is the
number of orthologs found paired together in one genome but
separated in the other Blanchette et al. (1999). Early on, Sankoff
et al. (1992) estimated mitochondria gene rearrangements as a
means to derive a phylogenetic tree for Eukaryotes. Subsequently,
the presence and absence of paired genes has been used to con-
struct trees (Wolf et al., 2001; Korbel et al., 2002) as a gene
order method similar in practice to tree building by gene con-
tent. A limitation to this approach results from the fact that
small groups of laterally transferred genes will be paired after
their transfer. Also, a computational method for testing phyloge-
netic problems using gene order has been presented by Kunisawa
(2001). In this method, genomes are searched for cases in which
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the arrangement of three genes most parsimoniously suggests
that a single transposition has occurred. With the use of an out-
group, the method can be used to test phylogenetic hypotheses,
such as the branching order within the Proteobacteria (Kunisawa,
2001) or Gram-positive bacteria (Kunisawa, 2003). The strength
of this method is that it can be efficiently applied to a large
dataset of genomes and that it reveals (a small number of) inter-
esting cases of transposition. Another gene order approach often
implemented is calculating the inversion distance. The inver-
sion distance is the minimum possible number of inversions
needed to transform one genome into the other (Moret et al.,
2001). Recently, Belda et al. (2005) have studied a subset of 244
genes universal to the genomes of 30 γ-Preotobacteria using both
the breakpoint distance and the inversion distance. They found
the two distances highly correlated suggesting that inversion was
the main method of genome rearrangement for these taxa. More
recently, models for genome evolution that include rearrange-
ments, duplications, and losses have been developed and tested
(Swenson et al., 2008; Zhang et al., 2010; Hu et al., 2011; Lin and
Moret, 2011; Shao et al., 2013) have each developed algorithms for
using gene order for phylogenetic reconstruction. Furthermore,
Lin et al. (2013) and Shifman et al. (2014) have used genome-
wide gene order to produce phylogenetic trees. The later work
produced a tree of 89 diverse microbial genomes using an algo-
rithm for estimating average genome synteny (Shifman et al.,
2014).

In this study, we aimed to develop a simple computational
method that could estimate a genome-wide gene order distance
between two genomes (even when the genomes were highly
diverged). Unlike many previous efforts, our intent was to have
the gene order distance not rely on genes that are likely to be in the
same operon (such as gene pairs). Here, we present a novel simple
Monte Carlo method for estimating distributed gene order dis-
tances between genomes. In this method, we repeatedly randomly
select six non-adjacent orthologs from each of two genomes and
determine if the genes are in the same order. The distances are
then corrected using an adaptation of the Jukes-Cantor model to
account for random gene order convergence.

MATERIALS AND METHODS
Initially, 143 prokaryotic genomes were analyzed (Table 1). This
represented completed prokaryotic genomes available when the
study began in January 2005. All genes from each genome were
analyzed as queries using BLAST against each of the other
genomes. Ortholog-pairs were identified as cases where two genes
from different genomes were each other’s BLAST best hit (top hit
in both directions). This list of ortholog pairs served as the basis
for both calculation of distributed gene order distances and the
ortholog gene content distances. As defined by Snel et al. (1999),
ortholog gene content similarity (S) was calculated as the number
of ortholog pairs found for two genomes divided by the size of the
smaller genome. This similarity was then converted to distance as
equal to –ln(S), as suggested by Korbel et al. (2002). However,
using distance equal to 1-S gives similar correlation results.

Distributed gene order distances were determined using a
novel Monte Carlo approach (Figure 1). To determine the gene
order distance between two genomes, first, six ortholog-pairs

Table 1 | 143 taxa.

ID

Aeropyrum pernix K1 ap

Agrobacterium tumefaciens C58UW at

Agrobacterium tumefaciens C58C atc

Aquifex aeolicus VF5 aa

Archaeoglobus fulgidus DSM4304 af

Bacillus anthracis Ames baa

Bacillus cereus ATCC 14579 bc

Bacillus halodurans C-125 bh

Bacillus subtilis 168 bs

Bacteroides thetaiotaomicron bt

Bifidobacterium longum NCC2705 bl

Bordetella bronchiseptica bbr

Bordetella parapertussis bpp

Bordetella pertussis bp

Borrelia burgdorferi B31 bb

Bradyrhizobium japonicum USDA 110 bj

Brucella melitensis bm

Brucella suis brs

Buchnera aphidicola Bp ba

Buchnera aphidicola Sg bas

Buchnera sp. APS bu

Campylobacter jejuni NCTC 11168 cj

Candidatus Blochmannia floridanus cbf

Caulobacter crescentus CB15 cc

Chlamydia trachomatis serovar D ct

Chlamydia trachomatis MoPn/Nigg cm

Chlamydophila caviae GPIC cca

Chlamydophila pneumoniae AR39 cpa

Chlamydophila pneumoniae J138 cpj

Chlamydophila pneumoniae TW183 cpt

Chlamydophila pneumoniae CWL029 cp

Chlorobium tepidum TLS cte

Chromobacterium violaceum cv

Clostridium acetobutylicum ATCC 824 ca

Clostridium perfringens cpe

Clostridium tetani clt

Corynebacterium diphtheria cd

Corynebacterium efficiens YS-314 cef

Corynebacterium glutamicum cg

Coxiella burnetii cb

Deinococcus radiodurans R1 dr

Enterococcus faecalis V583 ef

Escherichia coli O157:H7 strain EDL933 ece

Escherichia coli K-12 Strain MG1655 ec

Escherichia coli CFT073 ecc

Escherichia coli O157:H7 ech

Fusobacterium nucleatum ATCC 25586 fn

Gloeobacter violaceus gv

Haemophilus ducreyi hd

Haemophilus influenzae Rd KW20 hi

Halobacterium sp. NRC-1 hsp

Helicobacter hepaticus ATCC 51449 hh

(Continued)
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Table 1 | Continued

ID

Helicobacter pylori 26695 hp

Helicobacter pylori J99 hpj

Lactobacillus plantarum WCFS1 lp

Lactococcus lactis IL1403 ll

Leptospira interrogans s.l. 56601 li

Listeria innocua clip11262 lin

Listeria monocytogenes EGD-e lm

Mesorhizobium loti MAFF303099 ml

Methanobacterium thermoautotroph. mt

Methanococcus jannaschii DSM 2661 mj

Methanopyrus kandleri AV19 mk

Methanosarcina acetivorans C2A ma

Methanosarcina mazei Goe1 mma

Mycobacterium bovis bovis mb

Mycobacterium leprae mle

Mycobacterium tuberculosis H37Rv mtb

Mycobacterium tuberculosis cdc1551 mtc

Mycoplasma gallisepticum mga

Mycoplasma genitalium G-37 mg

Mycoplasma penetrans mpe

Mycoplasma pneumoniae M129 mp

Mycoplasma pulmonis UAB CTIP mpu

Nanobacterium equitans Kin4-M neq

Neisseria meningitidis MC58 nmm

Neisseria meningitidis A Z2491 nmz

Nitrosomonas europaea ne

Nostoc sp. PCC7120 ns

Oceanobacillus iheyensis HTE831 oi

Pasteurella multocida Pm70 pm

Photorhabdus luminescens pl

Pirellula_sp pi

Porphyromonas gingivalis pg

Prochlorococcus marinus CCMP1375 pmc

Prochlorococcus marinus MED4 pmm

Prochlorococcus marinus MIT9313 pma

Pseudomonas aeruginosa PAO1 psa

Pseudomonas putida KT2440 psp

Pseudomonas syringae pv. tomato pss

Pyrobaculum aerophilum IM2 pa

Pyrococcus abyssi pab

Pyrococcus furiosus DSM3638 pf

Pyrococcus horikoshii OT3 ph

Ralstonia solanacearum rs

Rickettsia conorii Malish 7 rc

Rickettsia prowazekii Madrid E rp

Salmonella enterica Typhi se

Salmonella enterica Typhi_Ty2 set

Salmonella typhimurium LT2 sty

Shewanella oneidensis so

Shigella flexneri 2a sf

Sinorhizobium meliloti 1021 sm

Staphylococcus aureus N315 san

(Continued)

Table 1 | Continued

ID

Staphylococcus aureus MW2 saw

Staphylococcus aureus Mu50 sam

Staphylococcus epidermidis 12228 sep

Streptococcus agalactiae 2603 sa

Streptococcus agalactiae NEM316 sag

Streptococcus mutans smu

Streptococcus pneumoniae R6 spn

Streptococcus pneumoniae TIGR4 spt

Streptococcus pyogenes SSI-1 mle

Streptococcus pyogenes MGAS8232 spa

Streptococcus pyogenes MGAS315 spg

Streptococcus pyogenes M1_GAS spm

Streptomyces avermitilis MA-4680 sav

Streptomyces coelicolor A3(2) sco

Sulfolobus solfataricusP2 ss

Sulfolobus tokodaii 7 st

Synechococcus sp. WH8102 syo

Synechocystis sp. PCC 6803 sy

Thermoanaerobacter tengcongensis tt

Thermoplasma acidophilum ta

Thermoplasma volcanium GSS1 tv

Thermosynechococcus elongatus BP-1 te

Thermotoga maritima MSB8 tm

Treponema pallidum Nichols tp

Tropheryma whipplei Twist tw

Tropheryma whipplei TW08_27 twt

Ureaplasma urealyticum serovar 3 uu

Vibrio cholerae serotype O1 (N16961) vc

Vibrio parahaemolyticus RIMD 2210633 vp

Vibrio vulnificus CMCP6 vv

Vibrio vulnificus YJ016 vvy

Wigglesworthia brevipalpis wb

Wolinella_succinogenes ws

Xanthomonas axonopodis pv citri 306 xa

Xanthomonas campestris ATCC 33913 xc

Xylella fastidiosa 9a5c xf

Xylella fastidiosa Temecula1 xft

Yersinia pestis CO-92 Biovar Orientalis yp

Yersinia pestis KIM ypk

were randomly chosen. In order to limit orthologs being chosen
from the same operon, the orthologs were required to be at least
5 genes away from each other in either genome. It was then deter-
mined if the chosen six ortholog-pairs were in the same order
around both circular genomes (irrespective of each genes orienta-
tion). For organisms with multiple chromosomes, only the largest
chromosome was used in this initial effort. This procedure was
repeated for 100,000 iterations to establish one replicate sampling.
In the end, 100 replicate samplings were performed for all genome
pairs, and these data were either combined to construct one list of
distances based on 10 million iterations, or kept separate to make
100 lists of distances for use as bootstrap replicates (nexus files for
PAUP are available in Supplementary Material).
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FIGURE 1 | Diagram demonstrating the method used to calculate the

pair wise distributed gene order distance between genomes.

Repeatedly, six ortholog pairs are chosen randomly (requiring every gene in
the six be at least 5 genes away along the genome from each). The six
genes are then tested to see if they are in the same order (irrespective of
the orientation of the genes). In the case above, the test fails because
orthologs C and E are switched. Distributed gene order distance is equal to
the fraction of times such a test fails between two genomes. The diagram
also works for demonstrating the distributed gene order distance between
genomes using five genes (A–E) by ignoring gene F.

Recently diverged genomes begin with close to 100% of their
genes arranged in the same order, and with time, the synteny
between the genomes decreases. Because there are only 60 differ-
ent ways to arrange six items on a circle, there is a 1/60 probability
of two genomes sharing an arrangement of six orthologs by
chance. Therefore, the fraction of six ortholog picks found to be
in the same order will ultimately approach 1/60 as divergence
time goes to infinity. We, therefore, developed a model of gene
order evolution based on the Jukes-Cantor concept that diver-
gence is a logarithmic function with time (Jukes and Cantor,
1969).

The typical Jukes-Cantor correction (Kimura and Ohta, 1972)
for nucleotide distance is:

DJC = −(3/4) ln (1 − (4/3)D) (1)

where D = the observed fractional of nucleotides found to be
different between two compared genes.

This classical nucleotide Jukes-Cantor correction (Equation 1)
accounts for back substitution and is based on a model in which
the outcome of any nucleotide substitution can be one of three
possibilities. To adopt this logic to gene rearrangements, the
Jukes-Cantor equation becomes:

DJC = −(59/60) ln (1 − (60/59)D) (2)

where D = the fraction of iterations in which the six ortholog-
pairs chosen are not in the same order.

The classical Jukes-Cantor nucleotide correction (Equation 1)
can only be used for raw D up to 0.75. With raw nucleotide dis-
tances greater than 0.75, the argument of the logarithm will be
zero. To use data in which D is larger than 0.75, Tajima (1993)
presented a method using a Taylor series expansion to avoid the
logarithm. In our case, Equation (2) fails whenever the raw D is
greater than 59/60 (or 0.983). To allow corrections for all of our

genome pair distances, we have adopted the method of Tajima
(1993) as follows:

DJC =
k∑

i = 1

k(i)

i(59/60)i−1n(i)
(3)

where k(i) = k!/(k − i)!, n(i) = n!/(n − i)!, k = the number of
times the six orthologs are not in the same order, and n = the
number of iterations used.

Partial reanalysis of the work reported here demonstrated the
results are similar when applying D′ = −ln(1-D) as the distance
correction rather than the Tajima correction (data not shown),
and further future work evaluating this measure of gene order
distance is warranted as it is computationally much less intense.

For comparison, Jukes-Cantor corrected rRNA distances were
downloaded spring 2006 from the ribosomal database (Cole et al.,
2007). The correlations between distributed gene order, gene con-
tent, and rRNA distances were performed with SPSS 13 (SPSS,
Inc. Chicago, IL) for Mac OS X. Taxonomic assignments for taxa
were from the NCBI taxonomic server (Bischoff et al., 2007).

Our follow-up analysis used 172 complete genomes with the
aim of being a representative sample of prokaryotes. For this
follow-on analysis initiated early in 2014, we used ortholog pre-
dictions from the OMA website (Dessimoz et al., 2005). This
OMA database is continually updated and includes all chromo-
somes for each microorganism. The updated analysis here of
172 taxa was done with orthologs downloaded in early 2014. In
this case, we also tried searching for five orthologs in the same
order rather than six using the same equations, which naturally
produces slightly shorter distances overall. In fact, the five gene
distances used this last analysis are functionally the same as using
the easier to calculate D′ = −ln(1-D). Based on the promising
results here, we recommend this simpler distance calculation for
future work.

Neighbor Joining (NJ) trees (Saitou and Nei, 1987) were cre-
ated from data matrices using PAUP 4.0b (Mac and Unix versions;
Sinauer Associates, Sunderland, MA). Later, agreement subtrees,
which identifies the largest possible pruned tree that is consistent
within a set of trees, was used to limit the taxa list in order to min-
imize possible adverse effects of including genome pairs with very
little or no gene order conservation. The agreement subtrees were
identified using PAUP 4.0b (Mac) based on a comparison of all of
our NJ trees produced from the 100 replicate distances.

We also tried using a hierarchical and iterative approach to
produce a series of trees (Table 2). This novel method was based
on the fact that shorter distances are known with higher con-
fidence than greater distances. The goal of this method of tree
building is to provide a systematic and objective way to build a
tree that includes as many of the pair wise gene order distances
as possible without letting very distant (random) pairs adversely
influence the observed phylogenetic positions of the more closely
related taxa. We started with a list of genome pairs ranked from
shortest to largest gene order distance (available in Supplemental
Data). Starting at the top of the list, we moved down the list
adding each pair to our working group until enough pair wise dis-
tances were included to allow for one or more NJ trees to be built.
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Table 2 | Steps used in hierarchical tree building.

1 Construct a ranked list of gene order distances starting with the
shortest distances

2 Move down ranked list, forming NJ trees of increasing taxa number
estimating reaching a NJ tree of all taxa

3 In turn, evaluate each tree formed starting with the smallest and
moving to the largest

4 Keep trees consistent with all previously retained trees, while
rejecting any new tree that is incongruent with a previously retained
tree

5 Starting with those represented by the smallest gene order pairs,
single taxa were added to the largest retained tree if their addition
did not disrupt the existing NJ topology (second round of taxa
addition)

This process was continued until we had an exhaustive ranked list
of possible unrooted NJ trees starting with the top few very closely
related taxa and ending ultimately with a NJ tree of all 143 taxa.
Moving down the ranked tree list, we evaluated each tree. A tree
(unrooted) was rejected if it was found to be incongruent with an
earlier unrooted tree. Congruent trees were pared down in num-
ber by removing trees that were fully encompassed by another tree
and by combining pairs of compatible trees. Trees were combined
by building a new NJ tree with the union set of taxa from the
two original trees. The trees were only considered compatible for
combining if the process did not cause a disruption of either of
the original backbone topologies. For each kept tree, we recorded
both the rank of the taxa pair that resulted in its initial forma-
tion, and the rank of the last taxa pair added. The largest resulting
tree (with 37 taxa) was selected for further study. Additional taxa
were added using a process of single taxon addition. In this second
round of analysis, moving down the ranked list of genome pairs,
we attempted to sequentially add additional taxa to the tree. If the
addition of the single taxon disrupted the existing NJ topology,
then the taxon was not added.

RESULTS AND DISCUSSION
INITIAL TEST OF GENE ORDER AS AN EVOLUTIONARY DISTANCE
The distribution of raw gene order distances for each of the 10,153
genome pairs for our 143 genomes are plotted in Figure 2A (and
available in Supplementary Material). As expected, with raw gene
order distance of 0 (or near 0), the two genomes for Chlamydia
trachomatis, and separately the four genomes for Chlamydophila
pneumoniae define the far left of the distribution. The bulk of
the genome pairs, however, show raw gene order distances of
greater than 0.9 with a peak near, but below, the value expected
randomly (0.983). 82% of the genome pairs have gene order
distances below 0.983. Figure 2B shows the same data after an
adapted Jukes-Cantor model correction (Equation 2). Using this
logarithm–based correction, the gene order distances show a rel-
atively normal distribution with a mean of 7.49 (SD = 1.68).
This correction, however, is not possible for raw gene order
distance larger than 0.983, and so, such divergent data are miss-
ing from Figure 2B. Figure 2C shows a fuller dataset of gene
order distances corrected using the method adopted from Tajima
(Equation 3). In this case, a very long tail of very large gene order

FIGURE 2 | Histograms showing the frequency of gene order distances

calculated for 143 prokaryotes. (A) Distribution of raw gene order
distances. The predicted distance for randomly ordered genomes is 0.983,
82% of the genome pairs have raw distances less the 0.983.
(B) Distribution of distances after a Jukes-Cantor type correction. The
predicted “Jukes-Cantor” gene order distance for randomly ordered
genomes is >16. Some highly distant genome pairs are not shown in
(B) because this logarithmic correction cannot be applied to distances
greater than that expected randomly. (C) Distribution of Tajima-corrected
gene order distances. Highly distant genome pairs are extreme outliners
due to large corrections applied. Without these genome-pairs, the
distribution is similar to that shown in (B).

distances is apparent. This tail is caused by large corrections being
applied to some dissimilar genome-pairs.

After calculating corrected gene order distances for each
genome pair, we compared these values with other measures of
genome distance, Jukes-Cantor corrected rRNA distances and
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logarithmic gene content distances (data used are available in
Supplementary Material). Figure 3A shows a strong correlation
between the “Jukes-Cantor” corrected gene order distances and
the Jukes-Cantor rRNA distances (R2 = 0.24), especially at rRNA
distances shorter than 0.2 (R2 = 0.52). Gene content distances
show much less significant correlations with rRNA distance
(Figure 3B; R2 = 0.04), and are actually much more strongly
correlated with gene order (Figure 3C; R2 = 0.22). However, a
very strong correlation between gene content and Jukes-Cantor
rRNA distance is apparent at rRNA distances shorter than 0.1

FIGURE 3 | Comparison of “Jukes-Cantor” distributed gene order

distances with ortholog gene content and Jukes-Cantor rRNA

distances. Select gene pairs have been labeled. (A) Gene order distance
plotted as a function of rRNA distance. Solid line is linear regression of all
data (R2 = 0.24). Dashed line is a linear regression for genome pairs with
rRNA distances <0.2 (R2 = 0.52). (B) Gene content distance plotted as a
function of rRNA distance. Solid line is linear regression of all data
(R2 = 0.04). Dashed line is linear regression for genome pairs with rRNA
distances <0.1 (R2 = 0.67). (C) Gene content distance plotted as a function
of gene order distance. Solid line is linear regression of all data (R2 = 0.22).

(R2 = 0.67). Apparent in Figure 2B, there is a cluster of genome
pairs with similar gene content (low gene content distance) but
divergent rRNA sequences (rRNA distances between 0.1 and 0.3
and Gene Content distances of 0.0 and 0.2). This population of
genome pairs consists of very small genomes in which extreme
genome reduction has occurred. In cases of such extensive
genome reduction, the proportion of orthologs shared between
two genomes is high even when rRNA sequences indicate that the
genomes are relatively distant. With an updated list of genomes,
we found our Jukes-Cantor gene order distances were correlated
with the divergence of conserved protein genes (R2 = 0.13 overall
and R2 = 0.23 for cases with less than one amino acid substitu-
tion calculated per site). For this comparison, we identified 87
taxa present in both our data (Table 3) and (Lang et al., 2013)
and we extracted the aligned amino acid sequences from their
published alignment of 841 sequences. Using MEGA5 we com-
puted pairwise distances under the Dayhoff matrix based model
(Schwartz and Dayhoff, 1978).

In general, these various analyses have shown that the
distributed gene order distances are better correlated with
sequenced-based distances (both rRNA and conserved proteins)
than are gene content distances. Assuming rRNA and protein dis-
tances are useful approximations of evolutionary divergence, our
results suggest that gene order distance may be useful for taxon-
omy or phylogenetics in a similar way that genome-to-genome
sequence comparison has proven useful as a genomic measure
to replace laboratory DNA-DNA hybridization. Both gene con-
tent and gene order have their specific issues and so we would
not recommend that either genomic method is ever considered
the best, but rather that each be used to help inform more tra-
ditional molecular sequence analyses when these methods show
signal and can be reasonably interpreted. It is also important to
note that horizontal gene transfers likely bring in orthologs in the
same order, and so gene order does not necessarily avoid compli-
cations of integration arising from such transfers, if they are on a
large scale.

GENE ORDER TREE BUILDING STARTING FROM 143 TAXA USING
NEIGHBOR JOINING
Encouraged by the strong correlation between our distributed
gene order distances and those of rRNA, we proceeded to build
gene order-based neighbor joining (NJ) trees. Figure 4 shows
a phylogram based on all 143 taxa, although unresolved single
taxon are not shown for clarity. Similarly, Figure 5 shows the
bootstrap NJ tree when all taxa are included. The results show that
major bacterial taxonomic groups are mostly correctly clustered.
With the largest number of resolved taxa, the γ-Proteobacteria
shows the best resolution, and has a branching order reason-
ably consistent with published reports (House et al., 2003; Brown
and Volker, 2004; Belda et al., 2005). In contrast, Archaea are
almost completely unresolved, with only generic-level similarity
yielding clustering (e.g., Pyrococcus, Methanosarcina, Sulfolobus,
and Thermoplasma). Interestingly, the Actinobacteria are resolved
with high confidence as a sister group to the bulk of the
Firmicutes (including Bacillus, Clostridium, Lactobacillus, Listeria,
Oceanobacillus, Staphylococcus, and Thermoanaerobacter). In
contrast, our bootstrap tree (Figure 5) does not cluster any of
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Table 3 | 172 taxa.

ID

Acidaminococcus fermentans ACIFV

Acidilobus saccharovorans ACIS3

Acidimicrobium ferrooxidans ACIFD

Acidithiobacillus ferrooxidans ACIF5

Acinetobacter baumannii ACIBS

Acinetobacter sp. ACIAD

Aeromonas hydrophila hydrophila AERHH

Aeromonas salmonicida AERS4

Alcanivorax borkumensis ALCBS

Alicyclobacillus acidocaldarius ALIAD

Alteromonas macleodii ALTMD

Amycolatopsis mediterranei AMYMU

Anabaena variabilis ANAVT

Anoxybacillus flavithermus ANOFW

Arcanobacterium haemolyticum ARCHD

Archaeoglobus fulgidus ARCFU

Archaeoglobus profundus ARCPA

Archaeoglobus veneficus ARCVS

Azoarcus sp. AZOSB

Azotobacter vinelandii AZOVD

Bacillus amyloliquefaciens BACA2

Bacillus pumilus BACP2

Bacillus selenitireducens BACIE

Beutenbergia cavernae BEUC1

Bifidobacterium adolescentis BIFAA

Bifidobacterium animalis animalis BIFAR

Bifidobacterium animalis lactis BIFA0

Burkholderia mallei BURMA

Burkholderia thailandensis BURTA

Campylobacter jejuni HS:41 CAMJC

Campylobacter lari CAMLR

Catenulispora acidiphila CATAD

Caulobacter crescentus CAUCR

Caulobacter segnis CAUST

Cellvibrio gilvus CELGA

Cellvibrio japonicus CELJU

Cenarchaeum symbiosum CENSY

Clostridium novyi CLONN

Clostridium perfringens CLOPS

Clostridium tetani CLOTE

Coriobacterium glomerans CORGP

Corynebacterium jeikeium CORJK

Corynebacterium kroppenstedtii CORK4

Corynebacterium urealyticum CORU7

Dechloromonas aromatic DECAR

Desulfovibrio vulgaris DESVV

Desulfurococcus kamchatkensis DESK1

Desulfurococcus mucosus DESM0

Dichelobacter nodosus DICNV

Enterobacter cloacae ENTCS

Enterobacter sp. ENT38

Enterococcus faecalis ENTFA

(Continued)

Table 3 | Continued

ID

Frankia alni FRAAA

Frankia sp. FRASC

Gardnerella vaginalis GARV4

Geobacillus kaustophilus GEOKA

Geobacillus sp. GEOSW

Geobacillus thermodenitrificans GEOTN

Gloeobacter violaceus GLOVI

Hahella chejuensis HAHCH

Halobacterium salinarum HALSA

Halothermothrix orenii HALOH

Helicobacter mustelae HELM1

Helicobacter pylori HELP5

Hydrogenobacter thermophiles HYDTT

Kineococcus radiotolerans KINRD

Korarchaeum cryptofilum KORCO

Lactobacillus fermentum LACFC

Lactobacillus helveticus LACH4

Lactobacillus salivarius LACSC

Lactococcus lactis cremoris LACLS

Lactococcus lactis subsp. Lactis LACLA

Legionella pneumophila LEGPL

Legionella pneumophila pneumophila LEGPH

Leuconostoc citreum LEUCK

Leuconostoc gasicomitatum LEUGT

Leuconostoc sp. LEUS2

Listeria monocytogenes serotype 4b LISMC

Listeria monocytogenes serovar 1/2a LISMO

Listeria welshimeri serovar 6b LISW6

Lysinibacillus sphaericus LYSSC

Magnetococcus sp. MAGSM

Methanobacterium sp. METSW

Methanocaldococcus fervens METFA

Methanocaldococcus infernus METIM

Methanocaldococcus vulcanius ETVM

Methanocella conradii METCZ

Methanococcus aeolicus META3

Methanococcus vannielii METVS

Methanococcus voltae METV3

Methanopyrus kandleri METKA

Methanosaeta concilii METCG

Methanosaeta harundinacea METH6

Methanosaeta thermophile METTP

Methanosarcina acetivorans METAC

Methanosarcina barkeri METBF

Methanosarcina mazei METMA

Methylobacillus flagellates METFK

Methylococcus capsulatus METCA

Microcystis aeruginosa MICAN

Micromonospora aurantiaca MICAI

Micromonospora sp. MICSL

Moraxella catarrhalis MORCR

Nanoarchaeum equitans NANEQ

(Continued)
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Table 3 | Continued

ID

Natranaerobius thermophiles NATTJ

Nautilia profundicola NAUPA

Neisseria meningitides NEIML

Neisseria meningitidis serogroup B NEIMG

Nitrosomonas europaea NITEU

Nitrosomonas eutropha NITEC

Nitrosopumilus maritimus NITMS

Nitrososphaera gargensis NITGG

Nocardia cyriacigeorgica NOCCG

Nocardia farcinica NOCFA

Nocardioides sp. NOCSJ

Nostoc azollae NOSA0

Nostoc punctiforme NOSP7

Nostoc sp. NOSS1

Oceanobacillus iheyensis OCEIH

Parvularcula bermudensis PARBH

Pasteurella multocida PASMU

Prochlorococcus marinus PROM4

Prochlorococcus marinus pastoris PROMP

Propionibacterium acnes PROAC

Propionibacterium propionicum PROPF

Pseudomonas fulva PSEF1

Pseudomonas stutzeri PSEU5

Psychrobacter arcticus PSYA2

Psychrobacter sp. PSYWF

Rhizobium etli RHIEC

Rhizobium meliloti RHIME

Rhodobacter capsulatus RHOCB

Rhodobacter sphaeroides RHOS1

Rhodospirillum centenum RHOCS

Rhodospirillum rubrum RHORT

Rickettsia prowazekii RICPR

Rickettsia typhi RICTY

Rubrobacter xylanophilus RUBXD

Saccharomonospora viridis SACVD

Saccharopolyspora erythraea SACEN

Sphingomonas wittichii SPHWW

Staphylococcus carnosus STACT

Staphylococcus epidermidis STAES

Staphylococcus lugdunensis STALH

Streptococcus pyogenes M49 STRPZ

Streptococcus pyogenes M5 STRPG

Streptococcus thermophiles STRTD

Streptomyces avermitilis STRAW

Streptomyces coelicolor STRCO

Streptomyces griseus STRGG

Streptosporangium roseum STRRD

Sulfolobus acidocaldarius SULAC

Sulfolobus islandicus SULIM

Sulfolobus solfataricus SULS9

Thermoanaerobacter italicus THEIA

Thermoanaerobacter mathranii THEM3

(Continued)

Table 3 | Continued

ID

Thermoanaerobacter pseudethanolicus THEP3

Thermobispora bispora THEBD

Thermococcus onnurineus THEON

Thermococcus sibiricus THESM

Thermococcus sp. THES4

Thermoplasma acidophilum THEAC

Thermoplasma volcanium THEVO

Thermoproteus neutrophilus THENV

Thermoproteus tenax THETK

Thermoproteus uzoniensis THEU7

Thiomicrospira crunogena THICR

Veillonella parvula VEIPT

Vibrio cholerae serotype O1 VIBCM

Vibrio fischeri VIBF1

Xanthomonas campestris XANCP

Xanthomonas oryzae pv. Oryzae XANOM

the proteobacterial classes together. Finding the Actinobacteria
and Firmicutes united is interesting because they are the two
phyla that comprise the “gram-positive bacteria.” While it has
long been considered likely that the gram-positive bacteria are
a monophyletic group, it has been to date remarkably hard to
find supportive molecular sequence data, genetic or genomic (De
Rijk et al., 1995; Olsen, 2001; Fu and Fu-Liu, 2002; Deeds et al.,
2005).

Next, we tested if the small phylogenetic signal we found with
gene order distance was due to the occasional sampling of ribo-
somal operons, despite the 5 gene exclusion zone. A detailed
look at 100,000 randomly sampled gene sets revealed that sets
with more than one ribosomal gene do not occur any more
frequently for conserved order sets (20%) than non-conserved
order sets (21%). Furthermore, there was very little difference
in the percentage of each of the following cog-based (Tatusov
et al., 2003) protein function categories between the two groups
of sets (conserved vs. non-conserved): informational (24 vs.
26%), cellular (17 vs. 17%), metabolism (36 vs. 37%), poorly
categorized (15 vs. 14%), no cog match (8 vs. 6%). This sug-
gests that the signal is distributed across many different types
of genes and is probably not due to unreliable “jackpot” effects
of single operons. We also pruned our data set to remove all
ribosomal genes. When this pruned data set was used for build-
ing a NJ tree, however, the resolution is reduced resulting in a
topology where some well-established microbial phyla are inter-
twined. This new NJ result does unite the Actinobacteria and
Firmicutes, but with very low confidence. Because the dataset
with ribosomal genes removed does not fully reproduce the
results shown in Figure 5, it remains a possibility that a notable
proportion of the gene order signal is preserved in ribosomal
genes, but that in addition the signal overall appears to be dis-
tributed across a variety of other gene functional categories.
The most likely way to reconcile these apparently divergent con-
clusions is that the phylogenetic signal in gene order distance
is small, and so, the removal of any class of genes (including
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FIGURE 4 | NJ phylogram of all taxa built using Tajima-corrected gene

order distances calculated using 10 million iterations of six predicted

orthologs (unresolved single taxon are not shown for clarity). Major

taxonomic groups are labeled. Actinobacteria are shown in green, and the
two clusters of Firmicutes are shown in blue. The Actinobacteria are grouped
with the bulk of the Firmicutes.

ribosomal operons) appreciably reduces the robustness of the
results.

ADDITIONAL GENE ORDER TREE BUILDING STARTING FROM 143 TAXA
To complement our NJ tree building exercise using all 143 taxa,
we aimed to address the fundamental problem that only a por-
tion of our 10,153 pair wise gene order distances were significant
and should be useful for tree building. The inclusion of genome
pairs that are too diverged with respect to their gene order has
the potential to alter the observed position of other taxa on a tree.
This concern is not unique to gene order data. It has long been
known that with sequence data, the uncertainty on an estimated
distance goes up greatly with the magnitude of the divergence
(Kimura and Ohta, 1972). Gene order data though provide a dra-
matic example of how it can be difficult to accurately estimate
divergence when organisms are highly diverged. To minimize this
problem, we proceeded with two additional tree studies.

We tried developing a novel hierarchical and iterative tree
building strategy (see Materials and Methods) based on the prin-
ciple that our shorter distances are known with a higher degree
of confidence than our larger distances. The goal of this approach

is to provide a systematic and objective way to build a tree that
includes as many of the pair wise gene order distances as possible
without letting very distant (random) pairs adversely influence
the observed phylogenetic positions of the more closely related
taxa. Detailed results of this work are listed in the Supplemental
Material. Figure 6 shows the largest tree formed starting this pro-
cess with all 143 taxa. The tree in Figure 7 has 37 taxa added in
the initial clustering process and another 8 taxa added during a
second phase (single taxon addition). The result shows reason-
able clusters representing the α-Proteobacteria, γ-Proteobacteria,
Actinobacteria, and Frimicutes, plus a few other taxa from dif-
ferent poorly represented groups. The midpoint-rooted result
again shows the Actinobacteria clustering with the bulk of the
Firmicutes in a similar fashion to that shown in Figures 4, 5. The
other well-supported trees from this analysis either also show such
a clustering or do not contain taxa that can address the relation-
ship between the Actinobacteria and Firmicutes. Also, observed
in Figure 6 is the splitting of the Firmicutes into two groups with
the Streptococcaceae (Streptococcus and Lactococcus) falling away
from the bulk of the Firmicutes. A similar result was observed
in the Figure 4, albeit with a different ultimate affinity for the
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FIGURE 5 | “Bootstrap” NJ cladogram of the gene order

distance tree shown in Figure 4. Each node shows the
number of times that node appears in 100 replicate trees each

using gene order distances based on 100,000 iterations. Select
taxonomic groups are labeled with the same color scheme as
used in later figures.

Streptococcaceae. The inconsistent placing of this group on the
trees found in Figures 4, 7, plus the unresolved placing of this
group in Figure 5 and the exclusion of this group from Figure 6,
collectively suggests that gene order is unable to confidently place
this group on the tree—leaving it inconclusive to the question of

whether they belong with the rest of the Firmicutes or even clus-
tered with the gram-positive bacteria, but diverged prior to the
Actinobacteria. However, the fact that Lactobacillus (labeled lp) is
consistently clustered with the bulk of Firmicutes suggests that the
Lactobacillales (which includes the Streptococcaceae) do belong

Frontiers in Microbiology | Evolutionary and Genomic Microbiology January 2015 | Volume 5 | Article 785 | 10

http://www.frontiersin.org/Evolutionary_and_Genomic_Microbiology
http://www.frontiersin.org/Evolutionary_and_Genomic_Microbiology
http://www.frontiersin.org/Evolutionary_and_Genomic_Microbiology/archive


House et al. Distributed gene order distances

FIGURE 6 | Midpoint-rooted NJ phylogram based on our hierarchical

tree building starting with 143 genomes (see Materials and

Methods) using the same gene order data distances as the tree

shown in Figure 4. This resultant tree includes the most taxa during
the initial round of clustering with solid lines and bold font. Taxa
connected with dashed lines are those found to be compatible during a
second round of single taxon addition. “Bootstrap values” shown are the

number of times a node is found when NJ trees are formed using
these taxa and the 100 replicate gene order distances. The values listed
for individual taxa are the number of times that taxon is found in the
biggest tree formed by the initial round of clustering when the 100
replicate gene order distances are used. Taxa not shown that were
found 60 or more times in the largest tree after the initial clustering
were: vc (70), cbf (67), vv (65), sty (63), set (61), and vp (60).

with the rest of the Firmicutes, and therefore, in this case, the
Streptococcaceae appear to be misplaced due to an artifact related
to “long branch attraction.”

Secondly, using our original NJ trees, we identified the agree-
ment subtrees for the 100 replicate NJ trees that had previously
been constructed (and used for bootstrap analysis). Starting with
the 100 trees, 18 agreement subtrees (each containing 18 taxa)
were found. Together, the agreement subtrees contained a total
of 23 different taxa. These 23 taxa were then used to build a

new NJ tree (Figure 7) using the dataset constructed from all 10
million iterations. The result shows with high confidence three
microbial groups—the Actinobacteria, the Firmicutes, and the
γ-Proteobacteria. This pruned tree is the consistent core of the
100 replicate trees, and indicates that there is significant (but
small) gene order conservation between these three taxonomic
groups. When this tree is midpoint-rooted, the Actinobacteria
and Firmicutes are united as sister groups with high confidence,
which further suggests that the gram-positive bacteria might be
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FIGURE 7 | NJ phylogram, starting with the 143 original taxa, limited

to only the 23 taxa found in the agreement subtrees for the 100

replicate trees formed using iterations of six predicted orthologs. Bold
lines show the part of the tree that is found in all 18 agreement subtrees.
“Bootstrap values” shown are the number of times a node is found when
NJ trees are formed using these taxa and the 100 replicate gene order
distances. Actinobacteria are shown in green and Firmicutes are shown in
blue, while the γ-Proteobacteria shown in gray.

monophyletic (as long as the assumptions inherent to midpoint-
rooting are met). Based both of the conservative nature of this
agreement substrees approach and the sensible results that it pro-
duces, we think that this is our best option for constructing a large
gene order-based tree of prokaryotes.

GENE ORDER TREE BUILDING STARTING FROM A MORE
REPRESENTATIVE 172 TAXA
Finally, we repeated our agreement subtrees approach for our
updated study of the relations of prokaryotes using 172 com-
plete genomes (Table 3) better representing a wider-diversity of
prokaryotes. With this fuller dataset, starting with 100 replicate
NJ trees, the agreement subtree only contained 13 taxa. These
13 taxa were then used to build a NJ tree as before (Figure 7).
As before, the resultant tree shows with high confidence that
Actinobacteria and Firmicutes are sister groups (Figure 8). We
also repeated this final analysis selecting five orthologs in the same
order rather than six. This resulted in a summary agreement sub-
tree with 56 taxa suggesting there is significantly more genomic

gene order signal with five genes than with six. The 56 taxa
tree (Figure 9), which now includes Archaea and Bacteria, again
shows with high confidence that Actinobacteria and Firmicutes
are sister groups forming a gram-positive clade (Figure 9). The
midpoint rooting of this final tree (Figure 9) places Archaea as
a sister group to the γ-Proteobacteria. At face value, this sug-
gests there is a little more gene order conservation between the
Archaea and the γ-Proteobacteria than with any other bacte-
rial group. Gene order conservation between Archaea and the
γ-Proteobacteria would argue against the “neomuran origin” for
the archaea cell (Cavalier-Smith, 2002). A pairing of Archaea with
the γ-Proteobacteria, though, should be taken with significant
caution because the result is completely dependent on the mid-
point rooting, which may incorrectly represent the history of
these evolving groups. Using the Archaea as an outgroup, nat-
urally would place the Proteobacteria with the other bacterial
phylum represented. In either case, though, the tree supports
the notion that the gram positive bacteria (Actinobacteria and
Firmicutes) evolved once from a gram-negative relative. It is also
notable that the genome-wide synteny tree of 89 microbes pub-
lished by Shifman et al. (2014) also shows the Actinobacteria and
Firmicutes united as sister groups, even though hat particular
work used different genomes and a different approach to estimate
gene order similarity across genomes.

IMPLICATIONS OF GENE ORDER CONSERVATION FOUND
At this point, we can conclude that starting from a large num-
ber of genomes, we find, perhaps surprising, that there is some
gene order conservation between a few major groups, namely
Firmicutes, Actinobacteria, and Proteobacteria (Figures 4–9)
and less robustly the Archaea and Proteobacteria (Figure 9).
Comparison of genomes from closely related species reveals that
inversions are quite common. Large inversions involving up to
half of the genome are found frequently between closely related
species (e.g., within the Pyrococcus genus, Zivanovic et al. (2002),
within the Yersinia genus, Darling et al., 2008). Given this poten-
tially very rapid rate of divergence in gene order, it is surprising to
find residual phylogenetic signal still uniting such distant groups
as the Actinobacteria and the Firmicutes. However, while large
inversions are common, they are not random in their distribu-
tion. For example inversions that disrupt the symmetry of the
replicons are frequently not tolerated (Eisen et al., 2000; Zivanovic
et al., 2002; Darling et al., 2008). Thus, the rapid changes may be
restricted in their range leaving large portions of the genome with
potentially conserved gene order over large time scales.

Taken together, our results suggest that the Actinobacteria is
a sister group to the Firmicutes, which in turn implies a single
origin for the gram-positive cell. Since the first few whole genome
sequences were published, some genomic trees have failed to unite
these groups (Brown et al., 2001; Fu and Fu-Liu, 2002; Korbel
et al., 2002), while others have found weak support for the pair-
ing (House et al., 2003) or have found the pairing under a subset
of conditions tried (Deeds et al., 2005). There are three possi-
ble disparate causes for these results. First, it is possible that the
gram-positive cell has evolved more than once in Earth history.
In particular, it has been suggested that Mycobacterium may have
a close relationship to gram-negative bacteria (Fu and Fu-Liu,

Frontiers in Microbiology | Evolutionary and Genomic Microbiology January 2015 | Volume 5 | Article 785 | 12

http://www.frontiersin.org/Evolutionary_and_Genomic_Microbiology
http://www.frontiersin.org/Evolutionary_and_Genomic_Microbiology
http://www.frontiersin.org/Evolutionary_and_Genomic_Microbiology/archive


House et al. Distributed gene order distances

FIGURE 8 | NJ phylogram, starting with 172 representative taxa,

limited to only the 23 taxa found in the agreement subtrees for the

100 replicate trees formed using iterations of six predicted orthologs.

“Bootstrap values” shown are the number of times a node is found when
NJ trees are formed using these taxa and the 100 replicate gene order
distances.

2002). Second, it has been hypothesized that gram-positive bacte-
ria are more primitive than gram-negative bacteria (Gupta, 1998;
Errington, 2013). Third, some researchers are of the opinion that
the failure of genomic methods to unite the gram-positive bacte-
ria together indicates that genomic methods are still inadequate
to address this relationship (Olsen, 2001), and that ultimately,
we will find that the gram-positive bacteria could be united as
a monophyletic group. In particular, the strong similarity in the
structure of the cell walls of Firmicutes and Actinobacteria argues
for a single origin. The gram-positive cell type, found in both
Firmicutes and Actinbacteria, consists of thick layers of peptio-
glycan with teichoic acids and a single membrane. Gram-negative
bacteria have a thin peptidoglycan layer, lack teichoic acid, and
have a second outer membrane with lipopolysaccharides.

Considering that our gene order analyses have consistently
produced trees with the Actinobacteria united with the bulk of
the Firmicutes to the exclusion of other bacterial groups (mostly
the Proteobacteria), our results support the uniting of these

groups and argue against multiple origins for the gram-positive
cell type. The strongest evidence against a strict monophyletic
pairing of the Firmicutes with the Actinobacteria comes from
the (unrooted) phylogenetic analysis of 31 concatenated bac-
terial genes (Wu et al., 2009) and 24 concatenated bacterial
genes (Lang et al., 2013), which appear to support a mostly
gram-positive clade of Firmicutes, Actinobacteria, Chloroflexi,
and Cyanobacteria. Incidentally, Lang et al. (2013) also show the
Tenericutes as part of the Firmicutes. At present, we cannot rule
out such a larger (primarily) gram-positive clade because it is
possible that other phyla (like the Tenericutes) will be included
within our Firmicutes/Actinobacteria cluster when taxa sampling
increases for gene order studies. Generally, one can argue that
because several of our trees (those restricted to agreement sub-
trees) do not include any taxa from bacterial groups other than
the Proteobacteria, we cannot rule out the possibility that one of
the other phyla, such as the Cyanobacteria, would break up our
Firmicutes/Actinobacteria clade. However, such reasoning does
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FIGURE 9 | Midpoint-rooted NJ phylogram, starting with 172

representative taxa, limited to only the 56 taxa found in the agreement

subtrees for the 100 replicate trees formed using iterations of five

predicted orthologs with the same distance equation as before, which

ends up functionally equivalent to using D′ = −ln(1-D). “Bootstrap
values” shown are the number of times a node is found when NJ trees are
formed using these taxa and the 100 replicate gene order distances with ∗
representing a bootstrap value of 100.

requires the taxa within such a phyla to have all scrambled their
gene order to the point to which they show no affinity to either
the Firmicutes or Actinobacteria in spite of their supposed closer
affinity. Our results though still show a uniquely strong conser-
vation of gene order between the Firmicutes and Actinobacteria.

We, therefore, feel that our results are indicative of a tree of life
in which most other bacteria phyla diverged prior to the base
of a gram-positive cluster (either Firmicutes/Actinobacteria or a
larger similar clade). This interpretation in turn implies a single
origin for the gram-positive cell. Our results also indicate that
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gene order of certain genomes are phylogenetically informative
at both low and high taxonomic levels, but that for many other
genomes gene order is not conserved for a long time.
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