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In response to fungivore grazing fungi are assumed to have evolved secondary metabolite-
based defense mechanisms that harm and repel grazers, and hence provide a benefit to
the metabolite producer. However, since research into the ecological meaning of highly
diverse fungal secondary metabolites is still in its infancy, many central questions still
remain. Which components of the enormous metabolite diversity of fungi act as direct
chemical defense mechanisms against grazers? Is the proposed chemical defense of
fungi induced by grazer attack? Which role do volatile compounds play in communicating
noxiousness to grazers? What is the relative impact of grazers and that of interactions
with competing microbes on the evolution of fungal secondary metabolism? Here, I briefly
summarize and discuss the results of the very few studies that have tried to tackle some of
these questions by (i) using secondary metabolite mutant fungi in controlled experiments
with grazers, and by (ii) investigating fungal secondary metabolism as a flexible means to
adapt to grazer-rich niches.
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INTRODUCTION
Fungal metabolism is an important source of an appar-
ently endless diversity of organic compounds which are not
obviously required for the producer’s normal growth and
metabolism – one reason why they are called secondary metabo-
lites (SMs). This chemical diversity raises a pertinent yet
hardly addressed basic research question in fungal biology:
why are SMs produced in such variety, especially since the
SM biosynthesis is encoded in clusters of genes whose tran-
scriptional activation is embedded in a tightly regulated net-
work comprising the activity of signaling pathways, epigenetic
regulators, fungal hormones, and cellular secretion processes
(Tsitsigiannis and Keller, 2007; Roze et al., 2011; Brakhage,
2013)?

Because many fungal SMs are toxic to other organisms,
in particular animals, one line of arguments follows the idea
that fungi produce specific SMs as direct defense compounds
to achieve protection from grazers foraging for nutrient-rich
food sources (e.g., Janzen, 1977; Martin, 1979; Camazine
et al., 1983; Vining, 1990; Gloer, 1995; Spiteller, 2008). Puta-
tive direct defense compounds have emerged primarily due to
pharmacological evidence for their deleterious effects on graz-
ers. This evidence stems from studies that report relationships
between fungivore mortality, decreased fecundity, and feeding
on purified compounds mixed into artificial diets or on fungi
expressing the proposed chemical defense trait constitutively
(e.g., Wright et al., 1980; Paterson et al., 1987; Panigrahi, 1993;
Gloer, 1995; Rohlfs and Obmann, 2009). Such studies provide at
best weak correlative evidence as they do not evaluate whether
these compounds increase fungal fitness under grazing pressure,
which is the defining criterion of a chemical compounds-based
defense.

In a series of recent studies (see below), the use of genetically
modified fungi manipulated in the expression of candidate
defense gene products has corroborated the relationship between
SM regulatory mechanisms and resistance against grazers, yet
manipulation of pathway-specific defense products have revealed
conflicting results. Moreover, first studies have demonstrated com-
plex chemical changes in fungi after fungivore attack, which could
in part be related to changes in the capacity to resist grazing. The
present review intends to provide a critical discussion of these
recent findings and stimulate more research into the ecological
causes and consequences of fungal chemical diversity.

INVESTIGATING FUNGAL RESISTANCE WITH GENETICALLY
MANIPULATED FUNGI
Since more than a decade, functional genetic approaches have pro-
vided unparalleled insights into how fungi regulate their chemical
diversity. Despite the availability of an increasing number of well–
controlled mutant fungi, functional evaluations have largely been
restricted to biochemical and medical aspects of fungal biology.
Very few studies have used genetically modified fungi to conduct
functional analyses of SM genes in the context of interactions with
grazers.

GLOBAL SM REGULATION
Six of these studies focused on Aspergillus spp. laeA loss-of-
function mutants in interactions with different soil arthropods,
Collembola, (Rohlfs et al., 2007; Janssens et al., 2010; Staaden et al.,
2011; Stötefeld et al., 2012) or facultative fungivorous Drosophila
melanogaster larvae (Trienens et al., 2010; Caballero Ortiz et al.,
2013). The methyltransferase-domain protein LaeA is essen-
tial for both appropriate developmental processes coupled with
the biosynthesis of various SMs, including mycotoxins, such as
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sterigmatocystin (Bok and Keller, 2004; Sarikaya Bayram et al.,
2010). Chemical deficient �laeA Aspergillus sp. mutants generally
are less detrimental to grazer fitness than wild type fungi (reduced
mortality, enhanced reproductive output) and, when given the
choice, fungivores prefer grazing on the �laeA mutants. The latter
appears to be mediated by a combined effect of differences in both
the non-volatile SM and the volatile chemical profile (Staaden
et al., 2011; Stötefeld et al., 2012). The LaeA-dependent capacity
to harm insect grazers seems to be fungal species-specific though:
while �laeA Aspergillus nidulans almost entirely lost the poten-
tial to kill fruit fly D. melanogaster larvae, �laeA A. flavus and
�laeA A. fumigatus were still fatal to the insects, yet the onset of
larval mortality was significantly delayed (Trienens et al., 2010).
Importantly, compared to wild type, the lack of expression of
laeA in all fungi tested increased their susceptibility to grazer
damage (Rohlfs et al., 2007; Trienens et al., 2010; Stötefeld et al.,
2012).

Loss of the capacity to kill fruit fly larvae was also evident for A.
nidulans impaired in the expression of VeA (Trienens and Rohlfs,
2012), which indicates that an intact velvet (VelB-VeA-LaeA) com-
plex (Bayram et al., 2008) is required for building resistance against
grazers. Therefore, global regulatory mechanisms controlling both
SM diversity and development have a distinct function in mediat-
ing protection from fungivore attack, and I would predict a similar
role of these mechanisms in fungi beyond Aspergillus.

PATHWAY-SPECIFIC SM REGULATION
A review of the literature indicates that there are only five pub-
lished studies that have used pathway-specific mutant strains to
test for the influence of single SMs on the outcome of inter-
actions with fungivores (Scheu and Simmerling, 2004; Staaden
et al., 2010; Trienens and Rohlfs, 2012; Yin et al., 2012; Cary
et al., 2014). As demonstrated by the use of knock-out mutants
in feeding assays with Collembola, Folsomia candida and Pro-
taphorura armata, and the nitidulid beetle Carpophilus freemani,
polyketide synthase-driven formation of pigments dihydroxy-
naphthalene melanin in A. fumigatus conidia and asparasone
A in sclerotia of A. flavus proved to impair or deter graz-
ers, respectively, (Scheu and Simmerling, 2004; Cary et al.,
2014). The latter is of particular interest because it is the first
demonstration of a grazer-deterring compound whose biosyn-
thesis is confined to fungal tissue that has a special function
in ensuring survival under unfavorable conditions. However,
how such pigments contribute to directly repelling grazers is
unknown.

The polyketide sterigmatocystin is a characteristic mycotoxin
of A. nidulans, which has insecticidal properties (Chinnici et al.,
1983; Rohlfs and Obmann, 2009). In accordance with the pro-
posed role of sterigmatocystin in mediating resistance against
grazers, Collembola avoided feeding on a mutant A. nidulans
strain over-expressing the bZIP transcription factor gene, rsmA,
which results in a great increase of sterigmatocystin (Yin et al.,
2012). RsmA activates the C6 transcription factor AflR, the ST
pathway-specific regulatory factor required for transcriptional
activation of ST biosynthetic genes. One would expect a benefit
to grazers when exposed to A. nidulans deficient in the forma-
tion of sterigmatocystin. Interestingly, this hypothesis was not

supported by Trienens and Rohlfs (2012). Compared with mor-
tality in the presence of sterigmatocystin-producing wild type
A. nidulans, Drosophila larvae did not demonstrate increased
survival when confronted with 1-day old A. nidulans mutants
(�aflR, �stcJ, �stcE, �stcU) incapable of producing sterigma-
tocystin. To our surprise, when the insects were exposed to
initially 2-days old colonies, larvae suffered even higher mortality
on substrate infested with the sterigmatocystin deficient mutant
strains (Trienens and Rohlfs, 2012). A similar grazer response was
observed when F. candida was offered a sterigmatocystin defi-
cient �aflR A. nidulans mutant: relative to the wild type strains
(Rohlfs et al., 2007), the Collembola suffered unusually high mor-
tality and did not reproduce whatsoever (Albert, 2007). Thus,
even though an artificial increase in sterigmatocystin biosynthe-
sis enhances the capacity of A. nidulans to resist grazing, the
loss of this compound does not reduce resistance as one would
expect.

In conclusion, sterigmatocystin does not seem to be the major
anti-grazer compound in wild type A. nidulans. In contrast,
sterigmatocystin biosynthesis appears to hamper the ability of
A. nidulans to develop even better protection against grazers. In
search for an explanation of this phenomenon, one could argue
that there are only a few key intermediates of the basic metabolic
pathways that provide the starting points for the SM pathways.
For example, acetyl-CoA is the precursor molecule for compound
biosynthesis from the polyketide and the isoprenoid pathway. Pos-
sibly, artificial inactivation of the sterigmatocystin pathway leads
to higher amounts of acetyl-CoA available for shunting into other
pathways which produce more efficient anti-grazer compounds. If
this turns out to be an adequate explanation for sterigmatocystin
deficient A. nidulans being more detrimental to grazers than the
wild type, fungi may suffer ecological costs of (high) SM diversity.
And perhaps global, e.g., LaeA-dependent, regulatory mechanisms
might prove to constrain fungi in activating the optimal combi-
nation of pathways for conquering grazers with a less diverse but
more effective blend of SMs.

RESPONSES OF FUNGI TO GRAZERS
It has been well appreciated that fungal chemical phenotypes can
vary with abiotic conditions such as light, water, temperature or
the availability of nutrients (Schmidt-Heydt et al., 2008; Atoui
et al., 2010; Schmidt-Heydt et al., 2010; Nielsen et al., 2011). Also,
interactions with bacteria have been established as critical determi-
nants of fungal SM composition (Brakhage and Schroeckh, 2011).
Some recent analyses of the chemical responses to animal grazers
provide first evidence of an inducible chemical compound-based
defense response in fungi, which comprises the biosynthesis of
so-called cryptic metabolites.

EVIDENCE FROM Aspergillus nidulans
Grazing by Collembola, F. candida, was found to induce an
increase in the formation of sterigmatocystin, some meroter-
penoids (mixed polyketide/terpenoid orign) and emericellamides
(mixed polyketide/peptide origin) in A. nidulans (Döll et al., 2013).
In choice experiments, Collembola preferred un-grazed colonies
to grazed, probably due to changes in the volatiles released by
damaged colonies (Staaden et al., 2011), and when forced to feed
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FIGURE 1 | Images depicting the localized formation of guttation

droplets on the sexual fruiting bodies (cleistothecia) of A. nidulans,

which are possibly involved in mediating protection from grazing by

Collembola (see Döll et al., 2013). (A) To the left of the initial stage
(primodium) of a cleistothecium (asterisk ) a strikingly large droplet (arrow )
is formed in addition to some smaller ones. The whitish appearance of the
primordium is due to layers of so-called Hülle cells which are assumed to
nurse and protect the developing ascospores within the cleistothecium. It
is not obvious whether the guttation droplets are produced by the Hülle
cells or aerial hyphae surrounding the fruiting bodies. (B) A cluster of larger
cleistothecia (asterisk ), surrounded by a dark mat of conidia-producing
tissue. The cluster is covered by voluminous droplets of light-brown color
(arrow ). Numerous smaller and apparently colorless droplets attached to
single aerial hyphae are also visible.

on un-grazed or grazed mold the animals grew slower on previ-
ously attacked colonies. Moreover, grazer-challenged A. nidulans
colonies intensified significantly the formation of sexual fruiting
bodies (cleistothecia), which appeared to be the only fungal tissue

that was not consumed after prolonged grazing (Döll et al., 2013).
Possibly, the positive correlation of the appearance of cleistothe-
cia and the intensive formation of guttation droplets on the
sexual fruiting bodies (Figure 1) is a means of protecting this
valuable tissue from grazers. For example, guttation droplets
produced by Penicillium and Stachybotrys are known to contain
high amounts of toxic SMs (Gareis and Gareis, 2007; Gareis
and Gottschalk, 2014), yet, no report exists on the SM content
in A. nidulans guttation droplets exists (and whether it changes
under grazer pressure). Nonetheless, at least for A. nidulans,
combined investment in SM formation and sexual development
seems to be a strategy to maintain high fitness in grazer-rich
niches (Figure 2).

These findings are supported by an experiment that exam-
ined the effect of larval Drosophila grazing on the expression
of A. nidulans genes. In the presence of the insect larvae, A.
nidulans exhibited shifts in the transcriptional activity of many
genes, including those involved in signal transduction, hormonal
signaling, and SM biosynthesis (Caballero Ortiz et al., 2013); inter-
estingly, laeA ranked highest among those genes that were found
up-regulated in response to the insects. Comparable with the
results of the Collembola-A. nidulans experiment described above,
grazed wild type colonies were found to kill Drosophila fly larvae
more rapidly than unchallenged ones. An intriguing finding here
was that, in a subsequent experiment, D. melanogaster larvae were
able to use a �laeA mutant of otherwise fatal A. nidulans as the only
available food source that promoted development into adult flies
(Caballero Ortiz et al., 2013). That is LaeA-mediated activation of

FIGURE 2 | Scheme summarizing the results of some recent studies

demonstrating a grazer-induced defense response in the model

fungus Aspergillus nidulans [see text and publications by Döll et al.

(2013) and Caballero Ortiz et al. (2013) for details]. This scheme may
serve as a modifiable blueprint for future studies providing evidence for or
against an inducible chemical defense in fungi, add more specific
information from other fungal systems, or contribute to general,

system-independent properties of fungal chemical responses to grazers,
e.g., hormone and pheromone signaling. Although not indicated in detail,
it should also be specified how both putative defense compounds affect
fungivore behavior and physiology, to be better able to determine the
ecological consequences of fungal secondary metabolites (SM)
biosynthesis and hence the selective forces that may have, at least in
part, shaped fungal SM diversity.
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SM formation in response to grazing to a large extent prevents the
fungus from being consumed and used as a suitable diet by these
facultative fungivores.

Finally, terpenoid compounds that function as hormones in
arthropods, the so-called juvenile hormones (JH), have recently
been found to be synthesized by A. nidulans, in particular under
larval fruit fly grazing pressure (Nielsen et al., 2013). And when
confronted with a JH over-expression mutant, fly larvae were sig-
nificantly smaller. Possibly, the anti-grazer defense mechanisms of
A. nidulans comprise the activity of insect hormone analogs that
derange grazer endocrine processes.

Taken together, these findings illustrate the extent to which
fungal morphological and chemical properties are affected by
dynamic interactions with grazers and thereby reveal a number
of new candidate defense pathways that may mediate direct resis-
tance. Considering this chemical diversity of compounds we still
lack convincing evidence for the identity of SMs used by fungi
to repel and/or harm grazers. Even in this single A. nidulans
system, it seems possible that more than one master defense com-
pound exists, which are likely to interact with grazers via an array
of perhaps equally diverse (patho-) physiological and behavioral
mechanisms in the animals.

EVIDENCE FROM OTHER FUNGI
Using model fungal systems has many obvious advantages, yet
there is a strong need to investigate the idea of inducible chemical
compound-based resistance in other fungi. Outside the A. nidu-
lans system, to the best of my knowledge, there is no good evidence
of inducible chemical compound-based resistance in fungi. The
study by Bleuler-Martínez et al. (2011) shows the induction of
fruiting body lectins (carbohydrate-binding proteins) by nema-
tode worms piercing hyphae and sucking in the cytoplasmatic
content of Coprinopsis cinerea. In spite of this clear demonstration
of an induced fungal response, it remains to be tested whether
lectins provide an effective protection against the nematode or
other grazers, since lectin toxicity has only been tested against non-
fungivores (Bleuler-Martínez et al., 2011; Schubert et al., 2012;
Žurga et al., 2014). Relevant to this discussion is the finding by
Balogh et al. (2003), who did not find a positive influence of a
lectin-deficient Arthrobotrys oligospora mutant on grazing by F.
candida.

These very first studies illustrate the significance of graz-
ing in determining the chemical profile of fungi but also the
complexities and ambiguities involved in establishing a concep-
tually sound and direct connection between SM formation and
fungal fitness. Therefore, separating functionally relevant from
irrelevant chemical responses of fungi to grazing will be of
utmost importance for the correct annotation of putative fungal
defense traits that mediate protection from grazers. For exam-
ple, genome-wide gene expression analyses should follow to reveal
fungal responses to grazing the abovementioned studies may have
overlooked.

CONCLUSION
We are only beginning to appreciate fungal chemical dynamics
under varying ecological conditions, and we should investi-
gate deeper the full repertoire, kinetics, and sites of secondary

metabolite biosynthesis in response to grazers to be able to update
and rearrange the lists of putative defense compounds (in A.
nidulans and other fungi) on the basis of inducible reactions. Care-
fully conducted experiments with model grazers (e.g., Collembola,
Drosophila larvae, nematodes, etc.) exposed to purified com-
pounds will shed light on the mode of action in fungivores,
e.g., whether fungal chemicals decrease or suppress the feed-
ing response, act as acute toxins that interfere with intermediary
metabolism or cellular functions, or cause chronic tissue and organ
malfunctions which ultimately lead to impaired development and
reduced fecundity. Finally, a large fraction of fungal SMs likely
have evolved to allow effective control of and/or communica-
tion with other microbes in their environment, and we should
thus think about the possibility that it is not the grazer itself
that is directly affected by specific metabolites, but the endoge-
nous microorganisms fungivores require for the control of their
immune system, food breakdown, and detoxification. Thus, in
order to fully appreciate the complete anti-grazer potential of SM
biosynthesis in fungi, we need to combine their inducible dynam-
ics with the influence of these compounds on grazer behavior,
physiology, and multi-species interactions in their environment.
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