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Listeria monocytogenes, a food-borne pathogen, has the capacity to maintain intracellular
pH (pH;j) homeostasis in acidic environments, but the underlying mechanisms remain
elusive. Here, we report a simple microplate-based fluorescent method to determine pH;
of listerial cells that were prelabeled with the fluorescent dye carboxyfluorescein diacetate
N-succinimidy! ester and subjected to acid stress. We found that L. monocytogenes
responds differently among strains toward organic and inorganic acids to maintain
pH; homeostasis. The capacity of L. monocytogenes to maintain pH; at extracellular
pH 4.5 (pHex) was compromised in the presence of acetic acid and lactic acid,
but not by hydrochloric acid and citric acid. Organic acids exhibited more inhibitory
effects than hydrochloric acid at certain pH conditions. Furthermore, the virulent stains
L. monocytogenes EGDe, 850658 and 10403S was more resistant to acidic stress than the
avirulent M7 which showed a defect in maintaining pH; homeostasis. Deletion of sigB, a
stress-responsive alternative sigma factor from 10403S, markedly altered intracellular pH;
homeostasis, and showed a significant growth and survival defect under acidic conditions.
Thus, this work provides new insights into bacterial survival mechanism to acidic stresses.
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INTRODUCTION

Listeria monocytogenes is a Gram-positive foodborne pathogen
that is responsible for severe and often life-threatening disease
with high mortality (Vazquez-Boland et al., 2001; Corr and
O’neill, 2009). L monocytogenes grows optimally in the pH rang-
ing from 6.0 to 7.0 (Tessema et al., 2012). However, acidic
environments are the common conditions encountered by listeria
outside (e.g., acidic foods and soil) or inside the host (e.g., stom-
ach and phagosomes of macrophages) (Cotter and Hill, 2003;
Gray et al.,, 2006). This may have enabled L. monocytogenes to
evolve a capability to grow over a wide range of pH from 4.3 to
9.4 (Te Giffel and Zwietering, 1999).

Organic acids are natural antimicrobials that have been widely
used in the food industry to inhibit growth of important micro-
bial pathogens such as Listeria monocytogenes and Escherichia coli
(Carpenter and Broadbent, 2009; Otto et al., 2011). Protonated
organic acids diffuse across cell membranes more freely than
inorganic molecules, thus decreasing pH; of the cell due to the
dissociated protons (Young and Foegeding, 1993; Tessema et al.,
2012). However, L. monocytogenes apparently adapts a resistance
to acidic stress through multiple mechanisms. For example, glu-
tamate decarboxylase (GAD), which consumes intracellular pro-
tons by converting glutamate to y-aminobutyrate (Cotter et al.,
2001a; Karatzas et al., 2012), has been suggested as an alternative

acid resistance system of L. monocytogenes for its survival in low
pH foods (Cotter et al., 2001b). Nevertheless, ammonia pro-
duced through arginine deiminase (ADI) and agmatine deimi-
nase (AgDI) systems was found to neutralize intracellular protons
by releasing NH; to elevate cytoplasmic pH, thereby protecting
L. monocytogenes from lethal acidic stresses aroused from extra-
cellular environments (Ryan et al., 2009; Chen et al., 201 1a; Cheng
et al., 2013a,b).

L. monocytogenes could maintain its intracellular pH (pH;)
within a narrow range of 7.6-8.0 when exposed to extracel-
lular pH (pHex) beyond the range (Siegumfeldt et al., 1999;
Budde and Jakobsen, 2000) by an unknown mechanism. Earlier
reports showed that pH; of individual bacterial cells could be
measured by fluorescent ratio imaging (FRIM) using a spe-
cial microscope backed up by a particular software such as
Metamorph (Budde and Jakobsen, 2000; Kastbjerg et al., 2009). In
FRIM, the bacterial cells were labeled with the fluorescent probe
5-(6)-carboxyfluorescein diacetate N-succinimidyl ester (cFDA-
SE). cFDA-SE is a non-fluorescence precursor that diffuses across
the cell membrane. Once inside the cell, it is hydrolyzed by the
intracellular esterases and converted into a fluorescent compound
which exhibits varying fluorescence intensity dependent on pH
only when excited at 490 nm, but not at 435 nm. Thus, the ratio
of the emitted fluorescence from two excitations at 490 nm and
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435 nm (Ry90,435) reflects the pH; that could be calculated (Budde
and Jakobsen, 2000; Fang et al., 2006; Kastbjerg et al., 2009; Smigic
etal., 2009). Pan et al. (2011) examined the pH; changes of cFDA-
SE labeled lactic acid bacteria cells to chitosan treatment on the
cuvette-based fluorometry where no curve-fitting was performed
to quantify the intracellular pH (Pan et al., 2011).

Here, we report a more effective and simple high-throughput
method to determine dynamic changes of pH; of different
L. monocytogenes strains under different acidic conditions. This
method was then used to examine the role of SigB in intracellular
pH homeostasis upon acidic stress.

MATERIALS AND METHODS

BACTERIAL STRAINS AND CULTURE CONDITIONS

Listeria monocytogenes lineage II (EGDe Glaser et al., 2001 and
10403S) and lineage III (M7 Chen et al., 2011b and 850658)
strains were retrieved from glycerol stocks maintained at —80°C,
and cultured in Brain Heart Infusion broth (BHI) (Oxoid,
Hampshire, England) at 37°C. BHI broth media were adjusted
with the stock solutions of hydrochloric acid (HA), acetic acid
(AA), citric acid (CA), lactic acid (LA) and sodium hydroxide
(NaOH) to the pH as indicated. All the pH-adjusted media were
freshly made, sterilized by filtration through 0.22 wm polyether-
sulfone membrane filters (Millipore, Boston, USA). All chem-
icals were obtained from Sangon Biotech (Shanghai, China),
Invitrogen (California, USA), or Sigma (St. Louis, USA) at the
highest purity available.

FLUORESCENT STAINING OF L. MONOCYTOGENES CELLS

Cell labeling was performed as described previously (Budde and
Jakobsen, 2000). Briefly, L. monocytogenes strains were grown
overnight at 37°C in BHI broth at pH 7.0 with shaking, and har-
vested by centrifugation at 5000 x g for 3 min and re-suspended
to a final ODgpp nm of 0.6 in sterile cold 10 mM potassium
phosphate buffer (pH 7.4). The cells were stained with 10 uM
5-(6)-carboxyfluorescein diacetate N-succinimidyl ester (cFDA-
SE, Invitrogen) and incubated at 37°C for 30 min. The cell sus-
pension was centrifuged for 5min at 10,000 g, resuspended in
50 mM potassium phosphate buffer (pH 6.0) containing 10 mM
glucose, and energized at 30°C for 30 min. Subsequently, the cell
suspension was centrifuged at 10,000 x g for 5min and resus-
pended in 50 mM potassium phosphate buffer (pH 6.0) contain-
ing 10 mM glucose. The labeled bacteria were used immediately
for the following pH; determination.

INTRACELLULAR pH CALIBRATION UNDER STRESSES BY ORGANIC
AND INORGANIC ACIDS

In order to equilibrate the intracellular pH (pH;) and external
pH (pHex) of listerial cells, ethanol (63%, v/v) was added to
the stained cells to permeabilize for 30 min at 30°C(Budde and
Jakobsen, 2000). Subsequently, the bacterial cells were harvested
by centrifugation at 10,000 x g for 5min and re-suspended in
BHI medium with pH ranging from 5.5 to 8.0 (in 0.5 increments),
adjusted by using HA, AA, CA, and LA, respectively. Fluorescence
was measured by using the microplate fluorometric reader
(Biotek Synergy H1, Winooski, USA). Fluorecent ratiogeg 435 was
obtained by dividing fluorescence at 490 nm by that at 435 nm.

The calibration curve was plotted by polynomial fitting between
Ratiog0/435 and pH; of the equilibrated cells corresponding to
the pH ranging from 5.5 to 8.0, respectively. All data are reported
as the mean of two independent experiments, each in triplicate
wells.

REAL-TIME MEASUREMENT OF BACTERIAL INTRACELLULAR pH
UNDER STRESSES BY ORGANIC AND INORGANIC ACIDS

To evaluate pH; dynamics of L. monocytogenes strains under
stresses by different acids, the labeled cells were re-suspended in
BHI broth, adjusted to pH 3.5, 4.5, and 5.5 with HA, AA, CA and
LA, respectively, and incubated for 60 min at 37°C. The fluores-
cence intensity at 490 nm and 435 nm were respectively collected
every 5 min, and the corresponding pH; values were determined
according to the Ratiogog 435 vs. pH; calibration curves of each
strain under acidic environments as described above. The data
are reported as the mean of two independent experiments, each
in triplicate wells.

GROWTH OF L. MONOCYTOGENES UNDER ORGANIC AND INORGANIC
ACIDIC CONDITIONS

L. monocytogenes strains were grown overnight at 37°C in BHI
broth at pH 7.0 with shaking. The cultures were collected by
centrifugation at 5000 x g at 4°C, washed in PBS (10 mM, pH
7.4) and adjusted to 0.6 at ODggg nm. The bacteria were then
diluted 1:50 in fresh BHI broth (pre-adjusted to pH 4.5 or 5.5
with HA, AA, CA, and LA, respectively), pipetted into microplate
wells (each strain-treatment in triplicate wells) and incubated in
a microplate reader at 37°C for 14 h for automatic measurement
of kinetic growth at ODgpo nm and 1-h interval.

BACTERIAL SURVIVAL IN LETHAL ACID CONDITIONS
Overnight-grown L. monocytogenes strains 10403S, EGDe, 850658
and M7 were harvested by centrifugation at 5000 x g for 10 min
at 4°C, and then washed once in PBS (10 mM, pH 7.4). The bac-
terial pellets were re-suspended in BHI broth (pre-adjusted to pH
3.5 by using HA, AA, CA and LA, respectively) and incubated for
60 min at 37°C. Similar experiments were employed for 30 min
survival in the synthetic human gastric fluid [8.3 g proteose pep-
tone (Oxoid), 3.5 g D-glucose, 2.05 g NaCl, 0.6 g KH,POy, 0.11g
CaCly, 0.37 g KCl, 0.05 g bile salts (Sigma), 0.1 g lysozyme and
13.3 mg pepsin (Sigma), all L™!; adjusted to pH 2.5 with HCI]
as described previously (Cotter et al., 2001a; Cheng et al., 2013b).
The survival bacterial cells were plated onto BHI agar after appro-
priate dilutions. The plates were incubated at 37°C for 24 h and
survival rates are reported as the mean of three independent
experiments, each performed in duplicate.

CONSTRUCTION OF sigB DELETION MUTANT

A homologous recombination strategy with SOE-PCR procedure
was used for in-frame deletion of the full-length sigB (780 bp)
from L. monocytogenes 10403S according to the protocol as
described previously (Monk et al., 2008; Cheng et al., 2013b).
The DNA fragments containing homologous arms upstream and
downstream of sigB were obtained by PCR amplification using
the SOE primers listed in Table 1. Transformants were screened
as described previously (Monk et al., 2008; Cheng et al., 2013b).
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Table 1| PCR Primers used in this study.

Primer Primer sequence (5'-3’) Product
name size (bp)
sigB-a ATCTGCAGGAAATCACAGGATTGTCAG 529
sigB-b AACTGCCTTGTTCATTCTCCTCCACCT

sigB-c ATGAACAAGGCAGTTGAATCAAATAATTT 561
sigB-d GCGAATTCTATCTAATATATTACGCTCGAT

Nucleotides introduced to create restriction sites are underlined. The comple-
mentary regions of primers are italicized.

The resulting knockout mutant was verified by sequencing and
designated as AsigB (Figure S1).

STATISTICAL ANALYSIS
All data were analyzed using the two-tailed Student’s ¢-test with
P < 0.05 as statistically significant or P < 0.01 as of marked
statistical significance.

RESULTS

cFDA-SE IS A STABLE FLUORESCENT INDICATOR TO MEASURE
LISTERIAL INTRACELLULAR pH

We sought to determine whether sigB was required for intracellu-
lar pH homeostasis of L. monocytogenes. To this end, it is critical
to develop an accurate method to probe the intracellular pH
of the bacterium. Therefore, calibration curves (Ratiosg9/435 Vs.
pH;) were plotted using ethanol-treated cells of L. monocytogenes
under different acids (HA, AA, CA, and LA) in BHI broth for each
strain (EGDe, 10403S, 850658, and M7) as indicated (Figure 1).
Experimental data for each curve were found to be best fitted
by a third degree polynomial equation with correlation indexes
over 0.95. This indicates that the method developed in this study
by using cFDA-SE as a fluorescent indicator to measure listerial
pH; is stable and applicable to a wide range of strains. Thus, this
method was further used in the following studies to determine
pH; kinetics at various conditions to reveal acidic resistance of
L. monocytogenes.

THE CAPABILITY OF L. MONOCYTOGENES TO MAINTAIN
INTRACELLULAR pH HOMEOSTASIS VARIES WITH STRAINS, PROTON
DONORS AND EXTRACELLULAR pH

L. monocytogenes strains (virulent EGDe, 10403S, 850658, and
avirulent M7) exhibited drastic variations in pH; kinetics in
response to different acids. Under pH 5.5 conditions, the pH;
of EGDe, 10403S, and 850658 strains increased rapidly after a
sharp decline in the first 5min, and maintained a steady state
afterwards. However, the avirulent M7 failed to maintain its
original intracellular pH when exposed to the four acids tested
(Figure 2). The pH; at specific time point of M7 were signifi-
cantly lower than the other three strains under the same acidic
conditions (Figures 2, 3). This indicates that the capability of
L. monocytogenes to maintain intracellular pH homeostasis varied
among strains at certain pH conditions. Interestingly, all liste-
rial strains failed to maintain pH; homeostasis at pHey 4.5 to the
proton donor AA and LA, which was in contrast to HA and CA
(Figure 3), indicating a lethal stress at this pH state induced by

AA and LA. These suggest that organic and weak acids allevi-
ate intracellular pH more effectively than inorganic and strong
acids. In the case of pH 3.5, an unfavorable condition to all
strains, the pH; kinetics of M7 descended more slowly than other
strains (Figures 4A,C,D), indicating that the M7 strain might
be more resistance to HA and CA than other virulent strains at
pH 3.5, although this is unlikely to happen in natural or host
environments.

GROWTH AND SURVIVAL OF L. MONOCYTOGENES AT ACIDIC
CONDITIONS VARIED AMONG STRAINS
In the BHI broth pre-adjusted to pH 5.5 by organic or inorganic
acids, the growth ability of the virulent strain 10403S was nearly
equal to 850658, slightly higher than EGDe (the growth order:
10403S=850658>EGDe>>M7) (Figure 5). The avirulent strain
M?7 of L. monocytogenes showed much slower growth. In the case
of pH 4.5 HA, the growth order is 10403S>EGDe=850658>>M?7
(Figure 6A). Under the pH 4.5 CA, M7 almost stopped grow-
ing, but the other three strains still showed a slow yet detectable
growth (Figure 6C). All strains stopped growing when exposed
to AA and LA at pH 4.5 (Figures 6B,D). These results indi-
cate that organic acids exhibited much more inhibitory effects
to listerial cells than hydrochloric acid at certain pH conditions.
Furthermore, M7 was more sensitive to any kind of acids com-
pared to other four strains, which was consistent to previous pH;
kinetics (Figure 2).

To further determine the acid tolerance of four different
L. monocytogenes strains in the lethal acid conditions, the strain
10403S, EGDe, 850658, and M7 were exposed to HA, AA, CA,
and LA at pH 3.5 and to synthetic gastric fluid at pH 2.5, respec-
tively. The survival rate of the virulent strain 850658 at lethal
acidic conditions was the highest for HA, CA, LA, and gastric fluid
as compared to strains 10403S and EGDe, whereas M7 exhibited
poorest survival (Figures 7A,B).

SigB CONTRIBUTES TO pH; HOMEOSTASIS OF L. MONCYTOGENES AT
ACIDIC CONDITIONS

SigB was previously shown to contribute to acid tolerance
response in L. monocytogenes (Wiedmann et al., 1998). We
hypothesized that SigB is involved in maintaining L. moncyto-
genes intracellular pH. Thus, the pH; dynamic of L. moncytogenes
sigB deletion mutant was characterized by using the established
method as described above. The pH; of 10403S increased and
then maintained stable following initial decrease in 5 min when
exposed to pHey of 4.5, while sigB deletion mutant also showed
immediate initial decline but maintained at significant lower pH;
than its parent strain from minutes 15 (P < 0.05, Figure 8A).
At pHex 3.5, both the mutant and parent strains exhibited ini-
tial decline, and then maintained a lower level between 5 and
5.5 with the pH; of the parent strain staying higher with statis-
tical difference at P < 0.05 (Figure 8A). In addition, the growth
of L. monocytogenes was compromised in the absence of sigB in the
sub-lethal pH of 4.8 with a marked difference starting from hour
4 to hour 12 (P < 0.05), but not in the neutral pH (Figure 8B).
However, deletion of sigB exhibited a markedly decrease in sur-
vival compared to that of its parent strain in pH 2.5BHI or in
synthetic gastric fluid (Figure 8C).
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pH;

FIGURE 1 | L. monocytogenes intracellular pH (pH;) determination.

L. monocytogenes (10403S, EGDe, 850658, and M7) strains were exposed to
organic and inorganic acids HA (A), AA (B), CA (C), and LA (D). The cells
were equilibrated to pHex by incubating cell preparations with ethanol and
resuspending in BHI medium at certain pHs as indicated. The cells were then
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stained with the fluorescence dye cFDA-SE and measured in a microplate
reader at 490 nm and 435 nm respectively. The pH; was plotted against
Ratiosgo/435. HA, Hydrochloric acid; AA, acetic acid; CA, citric acid; LA, lactic
acid. Values are expressed as mean + SD of two independent experiments,

each in triplicate wells.

FIGURE 2 | Kinetics of intracellular pH (pH;) of L. monocytogenes strains
(10403S, EGDe, 850658, and M7) exposed to organic and inorganic acids
at pH 5.5. L. monocytogenes strains were labeled and incubated for 60 min

at 37°C in BHI broth with pH of 5.5 pre-adjusted by using HA (A), AA (B), CA
(C), and LA (D), respectively. The fluorescence intensities at 490 and 435 nm
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were collected every 5min, and the corresponding pH; values were
determined according to the Ratiosgo,435 Vs. pH; calibration curves (Figure 1).
HA, hydrochloric acid; AA, acetic acid; CA, citric acid; LA, lactic acid. Values
are expressed as mean + SD of two independent experiments, each in

triplicate wells.
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FIGURE 3 | Kinetics of intracellular pH (pH;) of L. monocytogenes
strains (10403S, EGDe, 850658, and M7) exposed to organic and
inorganic acids at pH 4.5. L. monocytogenes strains were labeled and
incubated for 60 min at 37°C in BHI broth with pH of 4.5 pre-adjusted by
using HA (A), AA (B), CA (C), and LA (D), respectively. The fluorescence
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intensities at 490 and 435nm were respectively collected every 5min, and
the corresponding pH; values were determined according to the
Ratiosg0/435 vs. pH; calibration curves (Figure 1). HA, hydrochloric acid;
AA, acetic acid; CA, citric acid; LA, lactic acid. Values are expressed as
mean + SD of three replicates.
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FIGURE 4 | Kinetics of intracellular pH (pH;) of L. monocytogenes
strains (10403S, EGDe, 850658, and M7) exposed to the organic and
inorganic acids at pH 3.5. L. monocytogenes strains were labeled and
incubated for 60 min at 37°C in BHI broth with pH of 3.5 pre-adjusted by
using HA (A), AA (B), CA (C), and LA (D), respectively. The fluorescence
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intensities at 490 and 435nm were respectively collected every 5min, and
the corresponding pH; values were determined according to the
Ratioggo/435 vs. pH; calibration curves (Figure 1). HA, hydrochloric acid;
AA, acetic acid; CA, citric acid; LA, lactic acid. Values are expressed as
mean + SD of three replicates.
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FIGURE 5 | Growth of L. monocytogenes strains (10403S, EGDe, 850658,
and M7) exposed to organic and inorganic acids at pH 5.5. L.

monocytogenes strains were grown overnight at 37°C in BHI broth at pH 7.0.
The cultures were collected, washed and the initial ODgpg nm adjusted to 0.6.
The bacteria were then incubated at 37°C for 14 h in fresh BHI broth with pH
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of 5.5 pre-adjusted by using HA (A), AA (B), CA (C), and LA (D), respectively.
The kinetic growth ODggo nm Was then measured with 1 h interval. All
experiments were performed in triplicate. HA, hydrochloric acid; AA, acetic
acid; CA, citric acid; LA, lactic acid. Values are expressed as mean + SD of
three replicates.

DISCUSSION

L. monocytogenes survives or even grows in a wide range of envi-
ronmental conditions (Begley et al., 2010). Tolerance to low pH is
important for listeria to survive because listeria encounters acidic
conditions in natural and food processing environments, and in
host stomach and cellular phagosome as well (O’driscoll et al.,
1996). L. monocytogenes resists acidic stresses by up-regulating
expression of specific proteins that alter cell membrane struc-
ture, increasing the bacterial ability to maintain intracellular pH
(Phan-Thanh, 1998; Otto et al., 2011). SigB, a sigma factor found
in Gram-positive bacteria, plays a key role in acid tolerance
(Wiedmann et al., 1998; Raengpradub et al., 2008; Oliver et al.,
2010; Smith et al., 2013). However, different L. monocytogenes
strains exhibit varying abilities of acid tolerance under acidic
environments, which might contribute to varying pathogenic-
ity among strains (Conte et al., 2000; Chen et al., 2011a). This
could be seen from the strain M7, an avirulent strain (Chen et al.,
2011b) that was found to be more sensitive to acidic stresses
than the other virulent strains in terms of growth, survival or
maintenance of intracellular homeostasis.

Here, we developed a simple and high-throughput approach to
measure dynamic pH; changes of L. monocytogenes under acidic
conditions by using the fluorescent dye cFDA-SE. As discussed
previously, the pH range applicable to cFDA-SE dye was from 5.0
to 8.0 based on the fluorescence ratio-imaging method (FRIM)
(Breeuwer et al., 1996; Budde and Jakobsen, 2000; Shabala et al.,
2002; Giulitti et al., 2011). Particularly, cFDA-SE fluorescence is
sensitive to pH ranging from 6.0 to 9.0. It is not sensitive enough

for the FRIM to distinguish the Ratioggg/435 between different
pH gradients below 5.5 (Shabala et al., 2002). Nevertheless, the
FRIM-based technique could still be extended to measure pH; of
5.0 under the lethal acidic stress with pHey of 3.5 (Shabala et al.,
2002; Kastbjerg et al., 2009). Therefore, we believe that cFDA-SE
is applicable at pH 5.0 and can be used to measure pH; even under
the lethal acidic stress with pHex of 3.5, as used in this study.
However, the microplate reader based method is easier and more
applicable for high-throughput measurement than FRIM.

It was shown previously that protonated organic acids cross
cell membrane more freely than inorganic acid molecules (Young
and Foegeding, 1993; Ferreira et al., 2003). Once the disassoci-
ated protons enter inside cells, pH; of the cell decreases (Bearson
et al,, 1997). Phan-Thanh and Montagne previously showed that
when acetic acid was used to create an extracellular pH of 3.5,
intracellular pH was lower than that of HCI (internal pH of 3.34
with acetic acid compared to pH of 4.22 with HCI) (Phan-Thanh,
1998). This indicates that the dissociated organic anions inside
kill cells if they are not expelled or consumed. Accumulation of
anions could induce cell burst if increasing osmolality and pres-
sure persist (Carpenter and Broadbent, 2009; Otto et al., 2011).
The pH; of L. monocytogenes exposed to organic acids (acetic
acid and lactic acid) is lower than that of cells exposed to HCI
at the same external pH (Figures 2—4). The capacity to maintain
pH; homeostasis was correlated to bacterial growth and sur-
vival at acidic conditions. Therefore, we conclude that the weak
acid could be used as an alternative food preservative to pre-
vent the growth of L. monocytogenes and extend food shelf-life
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FIGURE 6 | Growth of L. monocytogenes strains (10403S, EGDe,
850658, and M7) exposed to organic and inorganic acids at pH 4.5. L.
monocytogenes strains were grown overnight at 37°C in BHI broth at pH
70. The cultures were collected, washed and the initial ODggp nm adjusted
to 0.6. The bacteria were then incubated at 37°C for 14 h in fresh BHI
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broth with pH of 4.5 pre-adjusted by using HA (A), AA (B), CA (C) and LA
(D), respectively. The ODgop nm Was then measured at 1h interval. All
experiments were performed in triplicate. HA, hydrochloric acid; AA, acetic
acid; CA, citric acid; LA, lactic acid. Values are expressed as mean + SD
of three replicates.

FIGURE 7 | Survival of L. monocytogenes strains (10403S, EGDe, 850658,
and M7) in organic and inorganic acids at pH 3.5 (A) and in synthetic
human gastric fluid at pH 2.5 (B). Overnight-grown L. monocytogenes
strains were harvested, washed and then incubated in BHI broth
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(pre-adjusted to pH 3.5 by using HA, AA, CA, and LA, respectively) for 60 min
and in synthetic human gastric fluid (pH 2.5) for 30 min at 37°C. Values are
expressed as mean + SD of three independent experiments, each performed
in duplicate.

as shown previously (Le Marc et al., 2002; Lues and Theron,
2012).

Under pH 5.5, the virulent strains 10403S, EGDe and 850658
exhibited higher capacity to maintain pH; homeostasis than the
avirulent M7. Similar pH; kinetic changes were also found at
pH 4.5. Christensen and Hutkins (1992) reported that listeria
cells remained viable as long as the ApH could be balanced. Our

results showed that pHe 3.5 is close to the limit of pH; homeosta-
sis for listeria, which is consistent with the determined minimum
pHex for listerial growth (Phan-Thanh et al., 2000; Le Marc et al.,
2002; Shabala et al., 2006). Nevertheless, L. monocytogenes tends
to have a buffering capacity in the cytosol around pH 5.5, which
delays further pH; decrease (Shabala et al., 2006). However, this
buffering capacity is a short-term protection and listeria requires
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FIGURE 8 | Profiles of intracellular pH (pH;) (A), growth (B) and
survival (C) of L. monocytogenes sigB deletion mutant. HA,
hydrochloric acid; AA, acetic acid; CA, citric acid; LA, lactic acid.
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All data are expressed as mean =+ SD of three replicates.
*P <0.056 and **P < 0.01 for comparisons between the wild-type
and mutant strains.

proton pumps to keep long-term acid tolerance (Shabala et al.,
2006). Shabala et al. measured a pH;j of < 5 after 2 h for L. mono-
cytogenes incubated at pHex 3.0, and cells remained viable as these
organisms recovered immediately and remained constant at pH;
7.3 when returning to pHex 6.0 (Shabala et al., 2002). The abil-
ity of listeria to maintain pH; homeostasis is critical for many
cellular processes, such as DNA transcription, protein synthesis
and enzyme activities in acidified environments (Kastbjerg et al.,
2009).

SigB functions as a central regulator toward stress responses
mainly through regulating expression of effector proteins (Smith
et al., 2013; Ribeiro et al., 2014). When exposed to stresses, the
cells respond through a regulatory cascade with the activation of
o® followed by transcription of oB-regulated genes involved in
resistance to temperature, osmotic, chemical and pH stresses (Van
Schaik and Abee, 2005; Palmer et al., 2011). However, whether
SigB is involved in intracellular pH regulations is still unknown.
We demonstrated that deletion of sigB markedly compromised
intracellular pH homeostasis, and led to a significantly impaired
growth and survival when the mutant strain was exposed to acidic
conditions (Figure 8). Further work is still required to illustrate
the mechanisms underlying the o® mediated pH; homeostasis.

In summary, this study demonstrates that the microplate-
based fluorometry is simple and high-throughput to measure
dynamic changes of listerial pH; in response to acid stresses. The
method should be applicable to other bacterial species or even
mutant strains involved in regulation of acid stress. We have
found that L. monocytogenes responds differently toward organic

and inorganic acids to maintain pH; homeostasis. We further
show that SigB plays an important role in maintaining intra-
cellular pH homeostasis, thus providing an insight to reveal the
underlying mechanisms of this central regulator in acid stress
regulations in L. monocytogenes.
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