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The function of membrane proteases range from general house-keeping to regulation
of cellular processes. Although the biological role of these enzymes in archaea is poorly
understood, some of them are implicated in the biogenesis of the archaeal cell envelope
and surface structures. The membrane-bound ATP-dependent Lon protease is essential
for cell viability and affects membrane carotenoid content in Haloferax volcanii. At least
two different proteases are needed in this archaeon to accomplish the posttranslational
modifications of the S-layer glycoprotein. The rhomboid protease Rholl is involved in the
N-glycosylation of the S-layer protein with a sulfoquinovose-containing oligosaccharide
while archaeosortase ArtA mediates the proteolytic processing coupled-lipid modification
of this glycoprotein facilitating its attachment to the archaeal cell surface. Interestingly, two
different signal peptidase | homologs exist in H. volcanii, Sec11a and Sec11b, which likely
play distinct physiological roles. Type IV prepilin peptidase PibD processes flagellin/pilin
precursors, being essential for the biogenesis and function of the archaellum and other cell
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INTRODUCTION
Membrane-associated proteases participate in a variety of pro-
cesses essential for cell physiology including membrane pro-
tein quality control, processing of exported and/or membrane-
anchored polypeptides, regulatory circuits, cell-signaling, the
stress response and assembly of cell surface structures (Akiyama,
2009; Dalbey et al., 2011; Schneewind and Missiakas, 2012; Kono-
valova etal., 2014). Their targets are mainly membrane-bound
or secreted proteins which account for 20-30% of total proteins
encoded in most genomes (Wallin and von Heijne, 1998) and
include membrane receptors, structural proteins, transporters and
enzymes such as transferases, oxidoreductases, and hydrolases.

Integral membrane proteases comprise two distinct groups.
The first group is represented by peptidases anchored to the
cytoplasmic membrane that exert their catalytic activity in an
aqueous compartment (cytoplasm, periplasm, or extracellular
milieu) either at the aqueous-membrane boundary or after the
substrate has been released or extracted from the membrane.
Within this category are signal peptidases (SP), site 1 proteases
(S1P) or sheddases, signal peptide hydrolases SPPA, HtpX, sor-
tases and the energy-dependent proteases FtsH and LonB. The
second group is represented by the so-called intramembrane cleav-
ing proteases (ICliPs) which have their active sites immersed in
the hydrophobic environment of the membrane (Wolfe, 2009;
Dalbey etal., 2012). This group includes GxGD-aspartyl proteases
(eukaryal signal peptide peptidase SPP and presenilin families),
rhomboids and site 2 proteases (S2P).

Archaea, one of the three domains of life, are widespread in
nature but predominate in environments with extreme values of
pH, temperature, salt concentration and pressure (Robertson et al.,

surface structures in H. volcanii.
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2005). Studies on archaeal biology are encouraged as they provide
the opportunity to better understand cell physiology as well as
extend the resources for biotechnology.

The genome sequences of archaea show that these unusual
organisms encode a variety of proteolytic enzymes some of
which have been characterized (Ward et al., 2002; Maupin-Furlow
etal., 2005; De Castro etal., 2006; Ng etal., 2007). Most of the
membrane protease families found in bacteria and/or eukary-
otic cells also occur in archaea, however, the role of these
enzymes in the context of the archaeal cell is poorly under-
stood. In the last decade a number of studies have started to
advance the knowledge on this field (see references in Table 1).
This mini review describes what is known about proteases asso-
ciated with the cell surface of archaeal cells on the basis of
complete genome sequences and biochemical and/or genetic
studies. Emphasis will be placed on the proteolytic enzymes
affecting the cell envelope and surface structures of the eur-
yarchaeon Haloferax volcanii and other haloarchaea. H. volcanii
grows in a wide range of salinity (1.5-3.5 M NaCl) and is a
model organism to study archaeal biology due to a number of
advantages including the simplicity of its culture conditions, avail-
ability of complete genome sequences and feasibility of its genetic
manipulation.

MEMBRANE-ASSOCIATED PROTEASES OF ARCHAEA

An overview of the repertoire of membrane proteases that occur
in archaeal cells is shown in Table S1 based on in silico examination
of the complete genome sequences of some representative archaea
members. Some protease families are widely represented among
archaeal genomes such as HtpX homologs, LonB, SP, and Site 2
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proteases (S2Ps) whereas others are restricted to a limited num-
ber of organisms (for instance the protease families A5, M10,
and PrsW protease). Table 1 describes the membrane proteases
that have been experimentally characterized from the Archaea
domain. Some of them have been studied in more detail (SPI
and TFPP-like SP) and at least a few of their endogenous sub-
strates have been identified (e.g., preflagellins, prepilins, and
sugar-binding proteins for TFPP-like peptidases). However, most
families have been examined to a limited extent or remain
uncharacterized, and their biological relevance and/or targets
are unknown (e.g., rhomboids, LonB, CAAX prenyl protease
homologs, S2Ps).

The crystal structures of a number of archaeal mem-
brane proteases have been solved (Methanococcus maripaludis
FlaK; Thermococcus onnurineus and Archaeoglobus fulgidus
LonB proteolytic domains; S2P transmembrane segments
(TMSs) core from Methanococcus jannaschii; MCMJRI1 pepti-
dase from Methanoculleus marisnigri) providing valuable struc-
ture/function insights on these protease families (see Table 1 for
references).

MEMBRANE PROTEASES IMPLICATED IN THE ASSEMBLY OF
THE ARCHAEAL CELL ENVELOPE AND SURFACE STRUCTURES
Probably one of the most distinctive features of archaea is their
ability to survive in environments with extremely adverse con-
ditions that are lethal for most life forms. To this end, they
have adapted their physiology and cellular structures. One such
instance is the cell envelope. The archaeal cell envelope is com-
posed of an atypical cellular membrane constituted by isoprenyl
ether glycerol phospholipids surrounded by surface S-layer pro-
teins as the major (or sole) component of the cell wall (Albers
and Meyer, 2011). These structures maintain the cellular integrity
and functionality as well as serve as a shell to cope with the
harsh conditions predominating in their surroundings (Claus
etal., 2005).

In addition to the S-layer, archaea show very diverse and com-
plex cell surface structures (reviewed in Lassak etal., 2012). The
biogenesis of the appendages composed of bacterial type IV pilin
subunits, the pili and the archaeal flagellum or archaellum, has
been characterized to some extent. These structures play impor-
tant roles in cell motility as well as in surface attachment, DNA
exchange and cell-cell interaction.

Haloarchaea, a very diverse and probably the best characterized
group of archaea, flourish in habitats with high salinity (> 2M
NaCl) and intense solar irradiation. In the haloarchaeon H. vol-
canii the structure and maturation of the S-layer glycoprotein as
well as the biogenesis of pili and flagella have been examined
(Jarrell etal., 2010; Kaminski etal., 2013; Kandiba etal., 2013;
Tripepi etal., 2013; Esquivel and Pohlschroder, 2014). The ade-
quate localization and functionality of these structures requires
the participation of different families of proteases which are
immersed in the context of the cytoplasmic membrane. Below
we describe the recent advances on the membrane-associated
proteases involved in the processes leading to the assembly of
the cell envelope and surface structures in the euryarchaeon
H. volcanii. The currently available information is summarized in
Figure 1.

PROTEASES INVOLVED IN THE BIOGENESIS OF THE CYTOPLASMIC
MEMBRANE AND SECRETION OF PREPROTEINS

The quality control of membrane proteins is essential for proper
cell physiology. In bacteria and eukaryotic organelles a major
role in this process is performed by the energy-dependent mem-
brane protease FtsH (Dalbey etal., 2012; Langklotz etal., 2012).
Archaea possess only two ATP-dependent proteases: the 20S pro-
teasome (soluble enzyme) and an unusually membrane-bound
version of the Lon protease (LonB). The archaeal LonB proba-
bly resembles functionally to the FtsH protease which is absent in
archaea. LonB has been biochemically and/or structurally char-
acterized in several archaeal members (Table 1). In agreement
with the genomic prediction, LonB has been immunolocalized in
association with the cell membrane in the haloarchaea Natrialba
magadii and H. volcanii. The recombinant protease derived from
N. magadii (NmLon) showed DNA binding capacity in vitro, a
feature in common with LonA proteases (Sastre etal., 2011). As
FtsH is for Escherichia coli (Langklotz etal., 2012), LonB is essen-
tial for viability of H. volcanii cells. On the other hand suboptimal
expression of this protease affects growth rate, cell shape, antibi-
otic sensitivity, and lipid composition (Cerletti etal., 2014). Also,
H. volcanii mutant cells deficient in Lon content are more sen-
sitive to puromycin compared to wild type cells suggesting that
LonB is involved in the disposal of abnormal proteins. A distinc-
tive feature of haloarchaea is the presence of red membrane-bound
carotenoid pigments (C50-bacterioruberins) which serve to pro-
tect their macromolecules from the damaging effects of UV light
(Khanafari etal., 2010). Interestingly, the cellular content of bac-
terioruberins dramatically increased in H. volcanii mutant cells
with a suboptimal Lon concentration while overexpression of this
protease rendered the cells colorless (Cerletti etal., 2014). This
observation suggests that LonB controls carotenoid biosynthe-
sis in H. volcanii probably by degrading enzyme/s involved in
this pathway. It is likely that deregulation of the cellular con-
centration of bacterioruberins and other lipids affects membrane
stability contributing to the lethal phenotype of the lon knock out
mutant.

Signal peptidases are central in the protein secretion process
as they remove signal peptides from secretory and membrane-
bound polypeptides. In archaea, type I signal peptidase (SPI),
type IV prepilin peptidase (TFPP)-like enzymes and signal peptide
peptidase (SPP) have been characterized. A detailed description
on the distribution and properties of these enzymes has been
previously reported (Ng etal., 2007). SPIs process the major-
ity of pre-proteins that are translocated through the general
secretion pathway (Sec), however, whether this enzyme also
cleaves Tat signal peptides remains to be demonstrated. Like
all members of the SPI family, archaeal SPIs are serine pro-
teases and based on studies performed in SPI from M. voltae
(Ngand Jarrell, 2003) and H. volcanii (Fink-Lavi and Eichler,
2008) the catalytic mechanism of the archaeal SPT homolog seems
to rely on a Ser/His/Asp tryad resembling the eukaryotic enzyme.
In H. volcanii two different SPIs with distinct efficiency for sub-
strate cleavage exist, Seclla and Secllb, however, only Secllb
is essential for viability (Fine etal., 2006). It is likely that these
enzymes exert different roles and/or cleave distinct substrates
in vivo.
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FIGURE 1 | Membrane proteases implicated in the biogenesis of the cell
envelope and extracellular appendages of the haloarchaeon Haloferax
volcanii. Schematic representation of different protease families that
participate in processes leading to the biogenesis of the cell envelope
(cytoplasmic membrane, S-layer) and cell surface structures (archaellum,

pili) in H. volcanii, and probably in other archaea. LonB is implicated in
bacterioruberin biosynthesis and protein quality control. The signal peptidases

Seclla/b

(¢
Archaell um/ ’(i‘g‘

Sec11a/b process the signal peptide of secreted and membrane proteins
translocated through the Sec pathway. PibD cleaves preflagellins and
prepilins, the protein components of the archaellum and pili. The rhomboid
protease Rholl is involved in the N-glycosylation of the S-layer protein with a
sulfoquinovose-containing oligosaccharide while archaeosortase ArtA
mediates the proteolytic processing coupled-lipid modification of this
glycoprotein facilitating its attachment to the archaeal cell surface.

SPII removes signal peptides from lipoproteins. Although there
are numerous proteins in archaea that contain signal peptides with
the lipobox motif, including several predicted to be secreted via the
Tat pathway, homologs of bacterial SPII have not been identified
in archaeal genomes (Giménez etal., 2007). Thus, it has been
proposed that a distinct enzyme may exist in archaea to process
prelipoproteins (Ng etal., 2007).

PROTEASES INVOLVED IN MATURATION OF THE CELL WALL (S-LAYER
GLYCOPROTEIN)

In H. volcanii the S-layer glycoprotein is the sole structure that
constitutes the cell wall. This protein has been used to examine
the molecular/structural adaptations of haloarchaeal proteins to
high salt and has served as a model to study protein glycosylation
in archaea (Eichler etal., 2013; Jarrell etal., 2014). In haloar-
chaea, maturation of the S-layer glycoprotein requires at least
three different types of posttranslational modifications: glycosyla-
tion, proteolytic cleavage and isoprenylation (Konrad and Eichler,
2002; Eichler, 2003). The glycosylation process of the S-layer has
been recently reviewed (Eichler etal., 2013).

Sortases are cysteine proteases from Gram-positive bacteria
that “sort” proteins to the cell surface by covalently joining them
to the cell wall or polymerize pilins to build pili (Proft and
Baker, 2009; Clancy etal., 2010; Hendrickx etal., 2011; Spirig

etal,, 2011). These enzymes modify surface proteins by recog-
nizing and cleaving a sorting signal located either in the N or
C-terminus of the target protein. Many genomes in bacteria
and archaea encode proteins containing a C-terminal domain
with structural similarity to the C-terminus of sortase substrates.
These proteins coexist in these genomes with at least one mem-
ber of the protease families denoted as exosortases (bacteria) or
archaeosortases (archaea). Exo and archaeosortases are polytopic
membrane proteins with no sequence homology to bacterial sor-
tases. However, they contain the conserved cysteine, arginine, and
histidine residues found in the active site of sortases suggest-
ing that they may perform similar functions (Haft etal., 2012).
Recently it was reported that H. volcanii mutant cells with a
deletion in the archaeosortase gene artA showed growth defects
(which were more evident under low-salt conditions), alterations
in cell shape and the S-layer organization, impaired motility and
decreased conjugation rates (Abdul Halim etal., 2013). This work
demonstrated that ArtA is involved in C-terminal processing of
the S-layer glycoprotein suggesting that archaeosortases are func-
tional homologs of bacterial sortases. Considering the location
of the archaeosortase recognition sequence (PGF) immediately
following the TMS of the substrate protein, it was proposed
that this enzyme may facilitate the covalent attachment of tar-
get proteins (e.g., S-layer glycoprotein) to a membrane lipid in
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contrast to sortases which attach proteins to the growing cell
wall.

Rhomboids are membrane serine proteases involved in reg-
ulatory intramembrane proteolysis (RIP) and are conserved in
the three domains of life (Lemberg, 2013). The catalytic mecha-
nism of rhomboids relies on a Ser/His dyad located in different
TMS of the protease to cleave membrane protein substrates. In
eukaryotic cells the functions of this protease family are very
diverse and include cell-cell signaling, development, apoptosis,
organelle integrity and parasite invasion (reviewed in Freeman,
2014). The relevance of rhomboids in the prokaryotic cell physi-
ology is scarcely understood. In bacteria, rhomboid null mutants
show phenotypes that may be related to defective cell envelope
and/or cell-surface structures. In Bacillus subtilis, a mutant strain
in the rhomboid homolog YqgP displayed a slight decrease in glu-
cose uptake and a defect in cell division leading to the formation
of filamentous cells (Mesak et al., 2004); Mycobacterium smegmatis
rhomboid mutants showed reduced capacity for biofilm forma-
tion and increased sensitivity to antibiotics (Kateete etal., 2012).
So far only TatA, a protein component of the Tat translocon in
the pathogenic bacterium Providencia stuartii, has been exper-
imentally confirmed as a rhomboid substrate (Stevenson etal.,
2007). In this organism the rhomboid protease AarA cleaves an
N-terminal extension of TatA which in turn allows for secre-
tion of an unknown quorum sensing signal. Archaea appear to
encode various sequences for rhomboid proteases (Table S1).
In haloarchaea, homologs with various topologies can be found
including proteins with six or more TMS as well as unusual rhom-
boids containing an AN-1 Zn-finger domain at the N-terminus.
H. volcanii has two putative genes for rhomboids, Rhol (nine
TMS) and Rholl (six TMS, with N-terminal AN-1 Zn finger
domain). A knock-out mutant of rholl in H. volcanii displayed
mild defects in motility and novobiocin sensitivity. This mutant
strain was also affected in the glycosylation of the S-layer. In H.
volcanii wild type cells the S-layer glycoprotein Asn732 is bound
to an oligosaccharide containing at least 6 repeating units of
sulfoquinovose-hexose (SQ-Hex) while in the mutant strain this
residue contained only two SQ-Hex suggesting that Rholl con-
trols (directly or indirectly) the protein glycosylation process in H.
volcanii (Parente etal., 2014).

PROTEASES INVOLVED IN THE BIOGENESIS OF CELL SURFACE
APPENDAGES

In bacteria, the precursors of type IV pilins and related pseu-
dopilins are processed by a special enzyme belonging to a novel
aspartic acid protease family, the type IV prepilin signal pepti-
dase (SPIV/TFPP; Ng etal., 2009). In contrast to SPI and SPII,
this enzyme cleaves the signal peptides directly after the n-region
leaving the h-region bound to the mature protein facilitating
anchoring/assembly of pilin subunits onto the cell surface (Ng
etal., 2007). Archaea encode TFPP-like proteins and they have
been studied with regard to their role in the assembly of the struc-
tures composing the motility apparatus (Table 1). The archaellum
is composed of unique proteins that are unrelated to bacterial
flagellins. Archaeal preflagellins contain short signal peptides at
the N-terminus which are similar to those of bacterial type IV
pilins, the protein components of pili. These filamentous surface

structures facilitate twitching motility in bacteria. TFPP-like pro-
teases process the signal peptides of archaeal preflagellins. The
enzymes present in M. maripaludis and Methanococcus voltae
(FlaK), Sulfolobus solfataricus, and H. volcanii (PibD) are the
most extensively characterized TFPPs of archaea (see references
in Table 1). FlaK and PibD show some divergences including the
length of the signal peptide, key amino acid residues surround-
ing the cleavage site as well as substrate preference (Ng etal,
2009). PibD from S. solfataricus and H. volcanii has a broader
substrate selection than FlaK, as, in addition to preflagellins,
these enzymes can mature prepilins (Albers etal., 2003; Tripepi
etal,, 2010). S. solfataricus PibD also processes certain sugar-
binding proteins of the “bindosome,” filamentous-like structures
that extend from the cell surface (Albers etal., 2003; Szabo et al.,
2006).

The H. volcanii genome encodes flagellins and contains genes
for other type IV pilin-like proteins. Tripepi etal. (2010) showed
that deletion of pibD disrupted preflagellins processing and pre-
vented maturation of type IV pilin-like proteins. The mutant
cells were non-motile and were unable to adhere to a glass sur-
face. These results suggest that PibD is needed for maturation of
preflagellins and other type IV pilin-like proteins in H. volcanii.

Recently, based on in vivo analysis of the catalytic activity of
Sulfolobus acidocaldarius PibD, TFPPs were renamed as GxHyD
group of proteases (rather than DxGD; Henche etal., 2014).

CONCLUDING REMARKS

In prokaryotes the assembly and composition of cell surface struc-
tures are essential for the adjustment to the varying conditions
of the environment and to interact with their surroundings (e.g.,
establish cell-cell and/or cell-substrate contacts). In the haloar-
chaeon H. volcanii, several membrane-associated proteases are
implicated in different processes (protein secretion, processing and
sorting) leading to the biogenesis of the cell wall and extracellu-
lar appendages (Figure 1), highlighting the importance of these
enzymes in the adaptation and interaction of archaea with their
environment.

Structural analysis of archaeal membrane proteases (Flak and
GxGD proteases) have advanced the knowledge on the catalytic
and molecular mechanism of intramembrane cleaving proteases.
This will help to understand the mechanism of the eukaryotic
homologous enzymes which are implicated in human physiology
(regulation of immune response) and/or in the development of
diseases (e g. Alzheimer).

There are still many open questions in this field: e.g., endoge-
nous substrates of most membrane proteases are unknown. Efforts
should continue to better understand the role of membrane
proteases in archaeal physiology.
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