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Recent research has demonstrated that infection with the bacterial pathogen Helicobacter
pylori is less common amongst patients with multiple sclerosis (MS), an inflammatory
demyelinating disease of the central nervous system (CNS). We aimed to compare the
prevalence of H. pylori amongst MS patients and healthy controls, and also investigated
the impact of this infection on an animal model for MS, experimental autoimmune
encephalomyelitis (EAE). The H. pylori status of 71 MS patients and 42 healthy controls
was determined by serology. Groups of C57BL/6 mice were infected with H. pylori, or
given diluent alone as a placebo, prior to inducing EAE. Clinical scores were assessed
for all mice, and spleens and spinal cord tissue were harvested. CD4+ T cell subsets
were quantified by flow cytometry, and T cell proliferation assays were performed. In MS
patients the seroprevalence of H. pylori was half that of healthy controls (p = 0.018). Over
three independent experiments, prior H. pylori infection had a moderate effect in reducing
the severity of EAE (p = 0.012). In line with this, the antigen-specific T cell proliferative
responses of infected animals were significantly reduced (p = 0.001), and there was a
fourfold reduction in the number of CD4+ cells in the CNS. CD4+ populations in both the
CNS and the spleens of infected mice also contained greatly reduced proportions of IFNγ+,
IL-17+,T-bet+, and RORγt+ cells, but the proportions of Foxp3+ cells were equivalent.There
were no differences in the frequency of splenic CD4+cells expressing markers of apoptosis
between infected and uninfected animals. H. pylori was less prevalent amongst MS
patients. In mice, the infection exerted some protection against EAE, inhibiting both Th1
and Th17 responses. This could not be explained by the presence of increased numbers
of Foxp3+ regulatory T cells, or T cell apoptosis. This is the first direct experimental
evidence showing that H. pylori may provide protection against inflammatory demyelination
in the CNS.
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INTRODUCTION
Helicobacter pylori is a Gram negative bacterium that usually
establishes lifelong colonization of the human stomach from
early childhood. Approximately 10–15% of those infected develop
symptomatic disease, including gastric or duodenal ulcers and
gastric cancer (Atherton, 2006). In the vast majority of cases,
however, colonization leads to asymptomatic chronic gastritis,
with increased infiltration of neutrophils, dendritic cells (DCs),
macrophages, natural killer (NK) cells, and lymphocytes into the
gastric mucosa (reviewed in Robinson and Atherton, 2010; Koch
et al., 2013). There is increased abundance of pro-inflammatory
T-helper 1 (Th1) and Th17 subsets, as well as anti-inflammatory
regulatory T cells (Tregs) (Lundgren et al., 2005; Robinson et al.,
2008; Serrano et al., 2013). Infected individuals without gastro-
duodenal disease tend to have a more robust Treg response, which
may also provide protection against extra-gastric conditions such
as asthma, allergy, and inflammatory bowel disease (Kao et al.,
2010; Arnold et al., 2011, 2012; Wang et al., 2013; Amberbir et al.,
2014).

There have been a number of cross-sectional epidemiological
studies reporting a lower prevalence of H. pylori amongst patients
with multiple sclerosis (MS) (Wender, 2003; Li et al., 2007; Mohebi
et al., 2013; Yoshimura et al., 2014). A recent case control study
in Iran also reported that neurological disability was lower in H.
pylori-seropositive than in seronegative MS patients (Mohebi et al.,
2013), in agreement with a previous study in a Japanese MS patient
cohort (Li et al., 2007). In contrast, some other studies have failed
to find any association between H. pylori infection and MS (Danese
et al., 2000), and there is strong serological evidence to support a
positive association between H. pylori and neuromyelitis optica
(NMO), an antibody-mediated, severe variant of MS that involves
the spinal cord and the optic nerves (reviewed by Smyk et al., 2014).

The incidence of autoimmune diseases has been increasing
worldwide over the last few decades and their prevalence has been
linked to decreased exposure to microbial infections including H.
pylori (Okada et al., 2010). MS is an inflammatory demyelinating
immune-mediated disorder which affects the central nervous sys-
tem (CNS). Development of autoreactive T cell responses against
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CNS-derived antigens leads to infiltration of Th1 and Th17 cells
into the CNS (Goverman, 2009; Baker et al., 2011), resulting
in damage to the myelin sheath of neural axons, inflamma-
tion, and neurodegeneration (Frohman et al., 2006). Studies have
shown that the balance between pro-inflammatory Th1 and Th17
responses and anti-inflammatory Treg responses, either in terms
of numbers or functional activity, are important in MS develop-
ment and progression (Edstrom et al., 2011; Sellebjerg et al., 2012).
We previously showed that patients infected with H. pylori have
elevated Treg populations in their peripheral blood (Cook et al.,
2014). We hypothesized that H. pylori protects against MS via the
stimulation of increased numbers of Tregs, which enter the CNS to
suppress the effector T cell-mediated inflammation and damage.

So far there is very little evidence to conclusively evaluate the
links between MS and H. pylori. No data have been published on
the impact of H. pylori eradication therapy on MS, and only one
animal model study has been reported so far (Boziki et al., 2012).
This showed that co-administration of heat killed H. pylori bacte-
ria, with the injected doses of myelin oligodendrocyte glycoprotein
(MOG) peptide and adjuvant used to induce EAE, completely
inhibited EAE development. However, there was no attempt to
evaluate the mechanism.

The current study aimed to determine the effect of H. pylori
infection on the development and severity of EAE. C57BL/6 mice
were infected with H. pylori or given a placebo by oral gavage
3 weeks prior to EAE induction treatment. H. pylori infected mice
had significantly decreased EAE clinical scores, accompanied by
markedly lower frequencies of CD4+ and CD8+ cells in the spinal
cord. In the spleen, the proportions of Th1 and Th17 cells amongst
the CD4+ population were significantly diminished but there were
no differences in the frequency of Foxp3+ cells. This trend was
also found in the CNS. Protection therefore did not appear to be
mediated via increased Foxp3+ Treg infiltration of the CNS.

MATERIALS AND METHODS
HUMAN CLINICAL SAMPLES
Venous blood samples were collected from 71 MS patients (20
male, 51 female; mean ± SD age 53 ± 10; 48 with relapsing-
remitting MS, 19 with secondary progressive MS and 4 with
primary progressive MS) and 42 age and gender matched healthy
controls (15 male, 27 female; mean ± SD age 50 ± 11) at the
Queen’s Medical Centre, Nottingham, UK, with informed written
consent and approval from the Nottingham Research Ethics Com-
mittee 2. Seventeen patients were on disease modifying treatment
(10 interferon; two copaxone; one daclizumab; one fingolimod;
one azathioprine). Serum was separated, aliquoted and stored at
−80◦C. H. pylori status was determined using a Biohit H. pylori
IgG ELISA kit (Biohit Healthcare Ltd., Cheshire, UK), according
to the manufacturer’s instructions.

ANIMAL EXPERIMENTS
All animal experiments were approved by the University Animal
Welfare and Ethical Review Body and performed in accordance
with the UK Home Office License regulations, under Project
License 40/3676. 6 week old female C57BL/6 mice were infected
by oral gavage on three alternate days, with doses of 1 × 109

H. pylori strain SS1 in 100 μL Brucella broth (Oxoid Ltd.,

Basingstoke, UK), as previously described (Winter et al., 2014).
H. pylori colonization was confirmed at 3 weeks post inocu-
lation, by conducting H. pylori stool antigen tests on freshly
collected fecal pellets using the Premier Platinum HpSA® PLUS
kit (Meridian Bioscience Inc., Cincinnati, OH, USA). At 3 weeks
post infection, EAE induction treatment was commenced: mice
were immunized via sub-cutaneous injection at two sites with
MOG peptide MOG35−55 (Cambridge Research Biochemicals;
275 μg/mouse) in 0.2 ml incomplete Freund’s adjuvant (DIFCO,
Becton Dickinson & Company, Franklin Lakes, NJ, USA), contain-
ing 4 mg/ml Mycobacterium tuberculosis H37 Ra (DIFCO; O’Brien
et al., 2010). An intraperitoneal injection of 200 ng pertussis toxin
(List Biological Laboratories Inc., Campbell, CA, USA) was also
administered on the same day, with a second subsequent dose
2 days later. Mice were weighed and scored at least once daily
in a blinded manner, according to a published clinical scoring
scale (O’Brien et al., 2010): 0-healthy, 1-flaccid tail, 2-impaired
righting reflex and/or impaired gait, 3-partial hind-leg paralysis,
4-total hind-leg paralysis, 5-any sign of front-leg paralysis, and
6-moribund/dead. Mice were monitored and humanely eutha-
nized at the end of the experiment, or if symptoms reached the
authorized endpoint (weight loss reaching 25%, a score of 4 last-
ing up to 5 days, or a score above 4 at any point during the
study).

For assessment of H. pylori effects on markers of T cell and
Foxp3+ cell apoptosis, working under Home Office Project License
40/3399, Foxp3-green fluorescent protein (GFP) C57/BL6 mice
(JAX strain B6.Cg-Foxp3tm2(EGFP)Tch/J) (Haribhai et al., 2007)
were infected by oral gavage on three alternate days with doses
of 1 × 109 H. pylori and killed at 3 weeks post infection as above.

CELL ISOLATION AND ANALYSIS BY FLOW CYTOMETRY
Mice were humanely killed 3 weeks after the start of EAE induc-
tion treatment and perfused with PBS prior to removal of tissues.
Spleens were collected into culture medium RPMI 1640/10% fetal
calf serum/100 U/mL penicillin G/100 μg/mL streptomycin sul-
fate (Sigma–Aldrich, Poole, UK). Individual spleens were rubbed
through sterile disposable 40 μm cell strainers (Fisher Scientific
UK Ltd., Loughborough, UK), and the cells treated with Red Blood
Cell Lysis Buffer (Sigma–Aldrich), washed and resuspended at
1 × 106/ml in culture medium. Spinal cords were removed from
the mice, disrupted through a 100 μm cell strainer (Fisher) and
washed with PBS. The pooled spinal cord cells from each treat-
ment group were fractionated in a 60/30% Percoll gradient (GE
Healthcare, Buckinghamshire, UK), by centrifugation at 300 × g
for 20 min. Mononuclear cells were harvested from the interface,
washed and resuspended at 1 × 106/ml in culture medium.

1 ml of cells was aliquotted into sterile 12 × 75 mm culture
tubes (Elkay Laboratory Products UK Ltd., Basingstoke, UK). For
direct analysis of cell surface markers and transcription factors
expressed by Th1, Th17, and Treg subsets (T-bet, RORγt and
Foxp3, respectively), the cells were stained immediately. CD4+
cells expressing the signature Th1 and Th17 cytokines IFNγ and
IL-17A were quantified after stimulation with phorbol myristate
acetate (PMA) and ionomycin (Robinson et al., 2008). As a nega-
tive control, medium alone was added. The tubes were incubated
at 37◦C in an atmosphere of 5% carbon dioxide, and brefeldin A
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(Sigma–Aldrich) was added to a final concentration of 10 μg/ml
after the first hour of a 6-h long incubation period.

As previously described (Cook et al., 2014), extracellular stain-
ing using fluorochrome-conjugated anti-CD4-phycoerythrin-
Texas-Red (ECD; Beckman Coulter UK Ltd., Buckinghamshire,
UK) and anti-CD8-phycoerythrin-cyanin 5 (PC5; eBioscience
Ltd., Hatfield, UK) was carried out before cells were fixed in 0.5%
formaldehyde (Sigma–Aldrich). For intracellular markers, the cells
were permeabilised with FOXP3 Perm Buffer (BioLegend, Lon-
don, UK), before staining with anti-Foxp3-Alexa Fluor 488 (A488;
BioLegend), anti-T-bet-Alexa Fluor 647 (A647; eBioscience),
anti-RORγt-phycoerythrin (PE; eBioscience), or anti-IL-17A-PE
(BioLegend) and anti-IFNγ-A488 (BD Pharmingen, Oxford, UK),
or the appropriate isotype controls. Data on 200,000 events per
tube was acquired using an FC500 flow cytometer (Beckman
Coulter Cytomics). Analysis was performed using Weasel version
3.0 (http://www.wehi.edu.au/faculty/advanced_research_technolo
gies/flow_cytometry/weasel_for_flow_cytometry_data_analysis),
with respect to isotype controls and fluorescence-minus-one
controls.

PROLIFERATION ASSAY
As described previously (O’Brien et al., 2010), 4 × 105 spleen
cells in culture medium (0.2 ml per well) were plated in 96 well
U-bottom Corning Costar cell culture plates (Sigma–Aldrich).
MOG35−55 peptide was added to final concentrations of 1, 10,
or 100 μg/ml. As a positive control, 1 μg/ml anti-CD3 and anti-
CD28 antibodies (Beckman Coulter) were added. The equivalent
volume of medium was added as a negative control. Cells were cul-
tured for 72 h at 37◦C with 5% carbon dioxide, pulsed with 1 μCi
[3H]thymidine (Perkin Elmer, Cambridge, UK) per well, and cul-
tured for a further 16 h. The cells were harvested onto glass fiber
filter mats using a Packard harvester, and the plates were left to dry
overnight. 25 μl of Microscint scintillation fluid (Perkin Elmer)
was then added to each well before being assessed for thymidine
incorporation using a liquid scintillation β counter (Top Count,
Microplate Scintillation Counter; Packard, UK). Cell proliferation
was recorded in counts per minute (CPM).

T CELL APOPTOSIS
Groups of 4 C57BL/6 Foxp3-GFP reporter mice were infected
with H. pylori or given oral doses of Brucella broth as a placebo.
Three weeks later, the mice were killed, splenocytes were harvested
and immediately stained with fluorochrome-conjugated antibod-
ies [anti-CD4-ECD (Beckman Coulter), anti-active caspase-3-PE
(BD Pharmingen), anti-Fas-PC7 (BD Pharmingen), anti-FasL-PE
(BD Pharmingen)], and propidium iodide (PI; Invitrogen), as
markers for apoptosis or cell death. The cells were then analyzed
by flow cytometry, detecting GFP+ events as a marker for Foxp3.
Stimulation for 3 h with 5 μM camptothecin (MP Biomedicals,
Santa Ana, CA, USA) as a positive control inducer of apopto-
sis, resulted in >70% of CD4+ events staining positive for active
caspase-3.

STATISTICAL ANALYSIS
Statistical analyses were carried out using Prism 6.00 (GraphPad,
Software CA, USA). A p-value < 0.05 was taken as significant.

A Chi-squared test was used to compare the prevalence of H.
pylori infection amongst MS patients and healthy controls. A
Mann–Whitney U-test was used to compare clinical scores and
immunological parameters between treatment groups in mouse
experiments.

RESULTS
FEWER MS PATIENTS WERE H. pylori -POSITIVE COMPARED WITH
HEALTHY CONTROLS
Serum samples were collected from MS patients and matched
healthy controls at the Queen’s Medical Centre, Nottingham,
UK. H. pylori infection status was determined by serology. Of
the MS patients, 21.1% were infected with H. pylori (15/71)
compared with 42.9% (14/42) of the healthy controls (Chi
squared test, p = 0.018). This shows that patients with MS
were half as likely to have a H. pylori infection. There were
no differences in the proportion of patients receiving disease
modifying treatment between H. pylori positive and negative
patients; the distribution of MS clinical subtypes, or the gen-
der or age showed no differences between H. pylori positive
and negative patients. In order to investigate whether the results
could be due to a direct protective effect we then performed
infection experiments in the well-established mouse model for
MS, EAE.

EAE CLINICAL SCORES WERE REDUCED IN MICE INFECTED WITH H.
pylori
Three independent experiments were performed in mice, in order
to investigate the effect of H. pylori infection on EAE. Mice were
given oral doses of 1 × 109 H. pylori (Hp/EAE group) or plain
Brucella broth as a placebo (Broth/EAE group). After 3 weeks,
EAE was induced in all mice, the animals were closely moni-
tored and clinical scores recorded daily (Figure 1). The cumulative
scores, maximal scores, and time to symptomatic EAE onset were
calculated (Table 1).

FIGURE 1 | Clinical scores from mice inoculated with Helicobacter

pylori or broth before experimental autoimmune encephalomyelitis

(EAE) induction. Mice were infected with H. pylori (©©©), or given a placebo
broth dose (�). After 3 weeks EAE induction treatment with MOG peptide
was administered (day 0). Clinical scores were recorded daily. Graph shows
the mean clinical scores and SEM for each group of six mice, from three
independent experiments. *p = 0.05.
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Table 1 | Key parameters from experimental autoimmune encephalomyelitis (EAE) clinical scores of Helicobacter pylori-infected and broth

placebo-treated mice.

Cumulative score p-value Maximal score p-value Day of onset p-value

Broth/EAE 22.59 ± 2.00
0.103

3.54 ± 0.24
0.012

12.89 ± 0.59
0.715

Hp/EAE 15.73 ± 2.85 2.39 ± 0.35 12.48 ± 0.37

Animals were scored daily for clinical signs of disease in line with published criteria. Data represents mean ± SEM. p-values were calculated using Mann–Whitney
U-tests.

Overall, clinical scores were reduced in mice infected with H.
pylori prior to EAE induction. At both day 17 and day 18 there was a
significant difference in the mean clinical scores observed between
Hp/EAE and Broth/EAE groups (p = 0.05). In addition, the mean
maximal score in the Broth/EAE group was 3.54 compared to 2.39
in the Hp/EAE group (p = 0.012). There was a trend for a reduced
cumulative score in the H. pylori infected animals, although this
did not reach statistical significance (p = 0.103). The time to EAE
onset was similar in both treatment groups (Table 1).

MOG PEPTIDE-SPECIFIC PROLIFERATION WAS REDUCED IN
SPLENOCYTES FROM H. pylori -INFECTED MICE
We then assessed whether H. pylori infection had an impact on
the MOG-specific T cell response generated. Splenocytes isolated
from the Hp/EAE mice made a significantly impaired MOG-
specific proliferation response (Figure 2). With 1 μg/ml MOG,
the splenocytes from Hp/EAE mice proliferated threefold less than
the Broth/EAE control group (p = 0.001), and there were sim-
ilar trends with 10 and 100 μg/ml (p = 0.037). In the absence
of antigen stimulation, cells from the Hp/EAE group gave lower

FIGURE 2 | Proliferation of splenocytes in response to stimulation by

MOG35−55 peptide. Mice were infected with H. pylori (Hp/EAE), or given
a placebo dose (Broth/EAE). After 3 weeks, EAE induction treatment with
MOG35−55 peptide was administered. Splenocytes were isolated from
mice after a further 3 weeks. Splenocytes were stimulated with
MOG35−55 peptide and incorporation of [3H]thymidine was used to
measure the proliferative response in counts per minute (CPM). The
median CPMs following stimulation with anti-CD3/28 antibodies were
118946 and 57633 for the Broth/EAE and Hp/EAE groups, respectively. Bars
depict the mean CPM for mice in each group; error bars represent SD.
p-values were calculated using Mann–Whitney U-tests.

counts than the Broth/EAE group (p = 0.003), and the response to
anti-CD3/28 stimulation was also reduced by twofold (p = 0.001).

H. pylori INFECTION WAS ASSOCIATED WITH DECREASED
FREQUENCIES OF TH1 AND TH17 CELLS IN THE SPLEENS AFTER EAE
INDUCTION
The proportion of CD4+ splenocytes expressing the signature
transcription factors associated with T-helper subsets was assessed
by flow cytometry. Splenocytes were isolated and immediately
stained with fluorochrome-conjugated antibodies for CD4 and
the transcription factors T-bet, RORγt and Foxp3. The pro-
portions of CD4+ events expressing each transcription factor
were determined for individual mice (Figure 3A). T-bet, the
transcription factor expressed by Th1 cells was expressed by
markedly lower proportions of CD4+ events in the Hp/EAE mice
compared to the Broth/EAE group (medians 0.93 and 28.8%,
respectively, p = 0.0051). Similarly, the frequency of CD4 events
expressing the Th17 lineage transcription factor RORγt was also
reduced (medians 0.36 and 3.88%, respectively; p = 0.0051). The
proportion of CD4+ events expressing the Treg associated tran-
scription factor Foxp3 was not statistically different between the
two groups (6.40 and 8.43% in Hp/EAE and Broth/EAE mice,
respectively).

In order to confirm the Th1 and Th17 data, the cytokine profiles
of the CD4+ populations were then examined. Splenocytes were
cultured in the presence of PMA/ionomycin or in medium alone
for 6 h before permeabilising and staining with fluorochrome-
conjugated antibodies against CD4, IFNγ and IL-17. In accordance
with the transcription factor data, the proportions of CD4+ events
expressing IFNγ and IL-17 were again lower in the Hp/EAE group.
For unstimulated cultures (Figure 3B), 0.82% of CD4+ cells
were IL-17+ in the Hp/EAE group, compared to 46.2% for the
Broth/EAE mice (p = 0.0043). The median percentage of CD4+
cells expressing IFNγ was 0.58% for Hp/EAE mice compared to
13.7% for the Broth/EAE group (p = 0.0043). When cells were
stimulated with PMA and ionomycin, the results were almost
exactly the same. The frequencies of IL-17+ CD4+ cells in the
Hp/EAE and Broth/EAE groups were 5.33 and 82.75%, respec-
tively, (p = 0.0043), and the data for IFNγ+ CD4+ cells were 9.93
and 32.8% (p = 0.0043).

H. pylori INFECTION WAS ASSOCIATED WITH REDUCED NUMBERS OF
CD4+, CD8+, TH1, AND TH17 CELLS IN THE CNS OF MICE WITH EAE
Experimental autoimmune encephalomyelitis is characterized by
infiltration of CD4+ and CD8+ cells into the CNS (Murphy et al.,
2010). To determine whether H. pylori infection altered the pat-
tern of infiltration observed, and if there were differences in the
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FIGURE 3 | Flow cytometry analysis of splenocytes from infected and

uninfected mice with EAE. Groups of six mice were orally inoculated with
H. pylori (Hp/EAE) or given Brucella broth as a placebo (Broth/EAE). After
3 weeks EAE was induced in all mice. Spleens were disrupted, stained
using fluorochrome-conjugated antibodies and analyzed using flow
cytometry. Graphs show the proportion of CD4+ events which expressed
the transcription factors T-bet, RORγt, and Foxp3 (A), and the proportion of
CD4+ events which expressed the cytokines IFNγ and IL-17 (B). Medians
are shown with a horizontal line. p-values were calculated using
Mann–Whitney U -tests.

frequencies of Th1 and Th17 cells, CNS samples were collected
from Hp/EAE and Broth/EAE mice and pooled for each group.

The frequency of CD4+ cells was lower in the Hp/EAE group
(1.1%) compared to the Broth/EAE (5.0%). The frequency of
CD8+ cells was also lower (1.5 and 3.77%, respectively; data not
shown). Transcription factor staining was used to determine the
relative proportions of Th1, Th17, and Treg cells (Figure 4). The
median proportion of T-bet+ cells amongst the CD4+ popula-
tion was lower in the Hp/EAE group (40%) than the Broth/EAE
mice (74%), and the proportions of RORγt+ Th17 cells were also
reduced (18.2 and 42.0%, respectively). The frequency of Foxp3+
CD4+ cells was slightly lower in the Hp/EAE group (14%) com-
pared to the Broth/EAE group (18.2%). The pooled cells were
also stained for the cytokines IFNγ and IL-17 following PMA and
ionomycin stimulation (Figure 5). The proportion of CD4+ cells

FIGURE 4 | Flow cytometry analysis of pooled cells extracted from the

CNS of infected and uninfected mice with EAE. Groups of six mice were
orally inoculated with H. pylori (EAE/Hp) or given Brucella broth as a
placebo (EAE/Broth). After 3 weeks EAE was induced in all mice. Samples
were collected 3 weeks after EAE induction. CNS and brain tissue were
pooled from each group of mice (six mice per group). Cells were extracted,
stained with fluorochrome-conjugated antibodies and analyzed by flow
cytometry. Lymphocyte gated dot plots showing the CD4 and T-bet (A),
RORγt (B), and Foxp3 (C) staining. The percentage of CD4+ cells that
express each marker is given in the top right hand corner.

expressing these cytokines was again lower in the Hp/EAE group.
In the Hp/EAE sample 28.6% of CD4+ events were IFNγ+ and
15.4% were IL-17+, whereas in the Broth/EAE sample 48.4% of
CD4+ events were IFNγ+ and 28.1% were IL-17+.

H. pylori INFECTION DID NOT CAUSE AN INCREASE IN MARKERS OF
APOPTOSIS ON CD4+ CELLS
Helicobacter pylori infection has previously been shown to cause
increased T cell apoptosis in vivo, via the induction of FasL (Wang
et al., 2001). To investigate if this may be a mechanism for reducing
the numbers of Th1 and Th17 cells in the spleen and CNS, groups
of four Foxp3-GFP reporter mice were infected with H. pylori or
given placebo broth doses. After 3 weeks (when EAE-induction
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FIGURE 5 | Flow cytometry analysis of cytokine expression on pooled

cells extracted from the CNS of infected and uninfected mice with

EAE. Groups of six mice were orally inoculated with H. pylori (EAE/Hp) or
given Brucella broth as a placebo (EAE/Broth). After 3 weeks EAE was
induced in all mice. Samples were collected 3 weeks after induction of
EAE. CNS and brain tissue were pooled from each group of mice (six mice
per group). Cells were extracted, stimulated with PMA and ionomycin,
stained with fluorochrome-conjugated antibodies and analyzed by flow
cytometry. Lymphocyte gated dot plots showing the CD4 and IFNγ (A) and
IL-17 (B) staining. The percentage of CD4+ cells that expressed each
cytokine is given in the top right hand corner.

would have commenced), splenocytes were collected, stained for
a number of markers of apoptosis and cell death, and assessed
by flow cytometry (Figure 6). The proportion of CD4+ events
expressing either Fas, FasL, or active caspase-3 was not signifi-
cantly altered during H. pylori infection. The proportion of CD4+
and CD8+ events which took up PI, a membrane-impermeable
dye taken up by dead cells, was significantly lower in the infected
group but these differences were very small and are unlikely to be
biologically relevant. For CD4+ events, 24.7 and 26.9% were PI+
amongst infected and uninfected mice, respectively, (p = 0.041).
For CD8+ events, 25.5 and 27.4% were PI+ amongst infected
and uninfected mice (p = 0.041). There was no difference in the
proportion of PI+ events amongst gated CD4+ Foxp3+(GFP+)
cells.

DISCUSSION
This study examined the direct protective role of H. pylori infection
on development of EAE for the first time. The results show that
prior infection with H. pylori altered the immune response to EAE
induction, and had a small but significant protective effect on the
clinical outcome of EAE.

FIGURE 6 | Induction of markers of apoptosis in H. pylori infected

mice. Groups of four Foxp3-GFP reporter mice were infected with H. pylori
or given placebo doses of plain broth. After 3 weeks, mice were
killed and spleens were harvested. Splenocytes were stained with
fluorochrome-conjugated antibodies or propidium iodide (PI) as markers for
apoptosis or cell death. They were then analyzed by flow cytometry,
detecting Foxp3+ cells as GFP+. The proportion of CD4+ events that
expressed Fas (A), FasL (B), or active caspase-3 are shown (A). The
proportion of CD8+, CD4+, and CD4+Foxp3+ events which were stained
with PI are shown (B). Medians are depicted as horizontal lines for each
group. p-values were calculated using Mann–Whitney U -tests.

Experimental autoimmune encephalomyelitis is the most com-
monly used model for investigating human MS (Constantinescu
et al., 2011). In this study EAE was induced by immunization with
MOG35−55 peptide in the C57BL/6 mouse strain, which leads to
an autoimmune response mimicking aspects of chronic MS (Con-
stantinescu et al., 2011; ’t Hart et al., 2011). The C57BL/6 mouse is
the most commonly used for investigating H. pylori infection and
immunity, including the mechanisms of protection against allergy
and colitis (Arnold et al., 2011; Higgins et al., 2011). We found that
maximal clinical scores of EAE were significantly reduced in mice
with an established H. pylori infection. Infected mice on average
had milder hind-limb paralysis. The time to EAE onset was not
altered by H. pylori infection, however, suggesting that the infec-
tion did not interfere with the induction of EAE, but inhibited
the development and severity of motor deficits. This observation
correlates with a clinical study which found that MS patients with
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positive H. pylori serology tests had lower disability scores than
seronegative patients (Mohebi et al., 2013). Infiltration of leuko-
cytes into the CNS has been shown to correlate with lesion load
within the spinal cord of EAE mice (Baker et al., 2011). Those
infected with H. pylori had markedly reduced numbers of Th1
and Th17 cells in both the CNS and spleen. Infiltration of these
effector T cells into the CNS is a major marker of disease severity
in EAE (Murphy et al., 2010; Lovett-Racke et al., 2011), confirm-
ing the importance of H. pylori infection in altering the pathogenic
immune response in immune-mediated inflammatory demyelina-
tion. Further studies are required to more clearly establish the role
of Th1 and Th17 cells in MS lesions (Lovett-Racke et al., 2011).

Myelin-specific Th1 and Th17 cells are found in the CNS of
EAE mice and MS patients, and both are thought to play a role in
disease pathogenesis (Lovett-Racke et al., 2011). Evidence suggests
that T-bet+ T cells are of particular importance in the genera-
tion of CNS inflammation and demyelinating lesions. In EAE,
both IFNγ+ and IL-17+ cells may express T-bet (Yang et al., 2009;
Grifka-Walk et al., 2013). In line with the fact that CNS-infiltrating
Th17 cells may acquire Th1 characteristics in EAE (Lovett-Racke
et al., 2011; Grifka-Walk et al., 2013), we found that T-bet+ cells
were more prevalent than RORγt+ cells in the spleen and CNS.
Interestingly, we have shown that the H. pylori-infected EAE mice
had 30-fold fewer T-bet+ cells in the spleen than Broth/EAE mice.
The reduction in RORγt+ cells was 10-fold. We anticipate that
these dramatic changes in the immune cell populations are respon-
sible for the difference in EAE clinical scores. Although many
studies have focused on the role of CD4+ cell populations in
EAE and MS, CD8+ cells are also important (Saxena et al., 2011).
Antigen-specific CD8+ cells infiltrate the CNS, causing inflamma-
tory lesions in the optic nerve, brain and spinal cord, with focal loss
of oligodendrocytes and axonal damage (Saxena et al., 2011). In
our experiments we found a twofold reduction in CNS CD8+ cells
from infected EAE mice compared to the Broth/EAE group. This
difference was not as large as for the CD4+ population (fivefold
reduction), but it is likely to have an impact on the level of inflam-
matory damage and thus contribute to reduced EAE severity in
infected mice.

Th1 and Th17 cells are also associated with the gastric mucosal
immune response elicited by H. pylori infection (Gray et al., 2013).
It is therefore interesting that infected mice had reduced numbers
of these cells in the spleen and CNS after EAE induction. The dif-
ference in numbers of CD4+ cells in the CNS did not appear to be
linked with increased levels of T cell apoptosis, however, this was
not explored in mice after EAE induction. Our initial hypothesis
was that, similar to H. pylori-mediated protection from asthma
(Arnold et al., 2011), reduced EAE severity could be due to the
induction of an enhanced Foxp3+ Treg population. Such cells
might act by suppressing the induction and activity of MOG-
specific Th1 and Th17 effector cells. Whilst total numbers of
CD4+ T cells were decreased in the CNS of H. pylori infected
mice, H. pylori infection was not associated with increased pro-
portions of Tregs amongst them in either the spleen or the CNS.
In the present study, we limited our quantification of Tregs to
Foxp3+ cells, and this work must now be expanded to examine
other Treg populations. H. pylori-induced Tregs tend to act via
secretion of the suppressive cytokine IL-10 (Robinson et al., 2008;

Arnold et al., 2012), and the IL-10-secreting Tr1 type of Tregs are
Foxp3− (Roncarolo et al., 2014). It has recently been shown that a
subset of FoxA1+, Foxp3− Tregs are protective against EAE, and
these are also present in humans (Liu et al., 2014).

A number of other potential mechanisms will need to be inves-
tigated in the future. In patients, H. pylori infection is associated
with alterations in the profile of homing receptors expressed by
peripheral blood T cells, directing their migration toward the
inflamed gastric mucosa (Lundgren et al., 2005). We previously
showed that H. pylori infection results in increased proportions of
human peripheral blood Tregs that express the chemokine recep-
tor CCR6 (Cook et al., 2014). CCR6 has been implicated in EAE
progression, with one study showing that CCR6 deficient mice
develop less severe disease (Liston et al., 2009) and another con-
cluding that they are less able to control EAE when it develops
(Elhofy et al., 2009). It has been suggested that CCR6 is also
important in moderating the balance between Tregs and Th17
cells (Comerford et al., 2010). The infection may therefore alter
the expression of chemokine receptors and integrins by T-effector
or regulatory T cells, resulting in fewer T cells entering the CNS
and thus inhibiting EAE development.

In allergy studies, H. pylori infection has been shown to stim-
ulate the differentiation of tolerogenic DC populations, which
provide protection against the development of allergic asthma
(Oertli and Muller, 2012). Interestingly, the peak of severity in
EAE has previously been shown to correlate with DC recruitment
to the CNS (Sagar et al., 2012). Given that this study showed that
H. pylori infection altered the clinical severity at the peak of EAE
clinical scores, the involvement of DCs should also be further
investigated.

This study provides the first suggestion that H. pylori infec-
tion reduces the severity of EAE in mice, which has important
implications. We and others demonstrated a negative associa-
tion between H. pylori infection and Western-type (Kira et al.,
1996) MS in patients (Wender, 2003; Li et al., 2007; Mohebi
et al., 2013; Yoshimura et al., 2014), however, this approach could
not establish a causal relationship. H. pylori may merely be a
marker for other protective factors. Atherton and Blaser (2009)
put forward two hypotheses to explain the mechanisms by which
H. pylori and allergy could be negatively associated. They sug-
gested that H. pylori infection either directly alters the immune
response, leading to decreased risk of allergy, or that the presence
of other factors such as commensal bacteria and parasite infec-
tions dampen the immune response, leading to both increased H.
pylori infection and decreased risk of allergic disease (Atherton
and Blaser, 2009). There is evidence from the Mongolian gerbil
model that H. pylori infection causes alterations in the micro-
biota of the inflamed stomach and duodenum (Yin et al., 2011). A
recent long-term colonization study in gerbils, using a pathogenic
H. pylori strain, showed that there was a change in the micro-
biota of the large intestine (Heimesaat et al., 2014). Since the
gut microbiota is known to have an impact on EAE (Berer et al.,
2011; Lee et al., 2011), it remains a possibility that the protective
effects of H. pylori are mediated indirectly via manipulation of the
flora.

In conclusion, our studies provide strong evidence that H.
pylori infection exerts an impact on MS and EAE. Further
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mechanistic animal model experiments and longitudinal clinical
studies are now necessary to fully evaluate the effects of H. pylori
on development of conventional MS.
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