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Fungal secondary metabolism and morphological development have been shown to be
intimately associated at the genetic level. Much of the literature has focused on the
co-regulation of secondary metabolite production (e.g., sterigmatocystin and aflatoxin in
Aspergillus nidulans and Aspergillus flavus, respectively) with conidiation or formation
of sexual fruiting bodies. However, many of these genetic links also control sclerotial
production. Sclerotia are resistant structures produced by a number of fungal genera.They
also represent the principal source of primary inoculum for some phytopathogenic fungi. In
nature, higher plants often concentrate secondary metabolites in reproductive structures
as a means of defense against herbivores and insects. By analogy, fungi also sequester
a number of secondary metabolites in sclerotia that act as a chemical defense system
against fungivorous predators. These include antiinsectant compounds such as tetramic
acids, indole diterpenoids, pyridones, and diketopiperazines. This chapter will focus on the
molecular mechanisms governing production of secondary metabolites and the role they
play in sclerotial development and fungal ecology, with particular emphasis on Aspergillus
species. The global regulatory proteins VeA and LaeA, components of the velvet nuclear
protein complex, serve as virulence factors and control both development and secondary
metabolite production in many Aspergillus species. We will discuss a number of VeA-
and LaeA-regulated secondary metabolic gene clusters in A. flavus that are postulated to
be involved in sclerotial morphogenesis and chemical defense. The presence of multiple
regulatory factors that control secondary metabolism and sclerotial formation suggests
that fungi have evolved these complex regulatory mechanisms as a means to rapidly
adapt chemical responses to protect sclerotia from predators, competitors and other
environmental stressors.
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INTRODUCTION
Fungal species are able to develop specialized structures allowing
them to disseminate and survive adverse environmental condi-
tions. Aspergilli differentiate by forming conidiophores, structures
that produce conidiospores. Some Aspergillus species, such as the
model species Aspergillus nidulans, also produce sexual fruiting
bodies known as cleistothecia where meiospores (i.e., ascospores)
are generated. Both reproductive processes, asexual and sexual
development, are controlled by temporal and spatial genetic reg-
ulation (Adams and Yu, 1998; Calvo et al., 2002; Fischer and Kues,
2006). Other species, such as Aspergillus flavus or Aspergillus
parasiticus, form resting structures capable of surviving envi-
ronmental extremes termed sclerotia that represent vestiges of
fruiting bodies incapable of producing ascospores (Coley-Smith
and Cooke, 1971; Malloch and Cain, 1972; Wicklow, 1987). Initial
evidence presented by Geiser et al. (1996) supported that asexual
Aspergilli are often derived from meiotic lineages and postulated
for the first time that sclerotia might be vestigial cleistothecia that
lost the capacity to produce ascospores. In more recent years,
the complementary alpha- and HMG-domain MAT genes have

been characterized from A. flavus and A. parasiticus (Ramirez-
Prado et al., 2008). Presence and functionality of mating type
genes in Aspergillus oryzae was also found, supporting a pos-
sible heterothallic breeding system in this fungus (Wada et al.,
2012). Furthermore, Horn et al. (2009b, 2014) reported ascospore-
bearing ascocarps embedded within sclerotia of A. flavus and
A. parasiticus. The proposed common origin between cleistothecia
and sclerotia suggested that conserved genetic regulatory pathways
controlling cleistothecia formation could also control sclerotial
production. Rapid progress on studies of the cleistothecium-
producing model fungus A. nidulans and other related fungi [i.e.,
Dyer and O’Gorman (2012) and references therein] has facilitated
uncovering regulatory pathways controlling sclerotial production
in other fungi, particularly in A. flavus.

Studies have found that a number of genetic regulators con-
trolling the formation of developmental structures, including
sclerotia, also govern the production of secondary metabolites
(Calvo et al., 2002; Calvo, 2008). While some of these compounds,
also termed natural products, are beneficial (e.g., penicillin and
lovastatin), other secondary metabolites are deleterious, such
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as mycotoxins [reviewed in Gloer (2007)]. Among fungal sec-
ondary metabolites, aflatoxins (AFs) are probably the most
well known and studied. These compounds were discovered
after the United Kingdom’s outbreak of Turkey X disease in
1962, caused by consumption of A. flavus-contaminated feed
and resulted in the deaths of numerous turkey poults (Bennett
and Klich, 2003). A. flavus is capable of colonizing economi-
cally important crops such as peanut, cotton, maize and other
oilseed crops both pre- and post-harvest. In the U.S. alone,
A. flavus costs 100s of millions USD annually due to market
losses from AF contaminated crops (Wu, 2004). In addition to
AFs, A. flavus produces other secondary metabolites and many
of them have been found in sclerotia (Gloer, 1995). Genetic
regulation of development and secondary metabolism has been
intensely studied in the Aspergilli, and in particular A. flavus
and A. nidulans. In this review we focus on the association
between secondary metabolism and sclerotial formation in this
fungal genus, including genetic co-regulatory patterns leading
to the activation of the secondary metabolic gene clusters and
formation of sclerotia. Important components of this shared reg-
ulatory mechanism are the global regulatory proteins VeA and
LaeA, part of the velvet complex (Bayram et al., 2008a; Bayram
and Braus, 2012). Additionally, we also discuss the possible roles
of secondary metabolites associated with sclerotia, particularly in
Aspergilli.

SECONDARY METABOLITES PRESENT IN FUNGAL
SCLEROTIA
It is difficult to determine just how many species of fungi exist, but
estimates have suggested that the fungal kingdom is very diverse
having anywhere from 1.0 to 2.7 million species with only a frac-
tion of these having been isolated and described Hawksworth and
Rossman (1997) and Mueller and Schmit (2007). One common
theme of many of the described species is that they are prolific
producers of biologically active secondary metabolites. The diver-
sity of these natural products rivals that of the fungal kingdom.
Fungal secondary metabolites have garnered much attention for
their beneficial impact as therapeutic agents (e.g., lovastatin and
penicillin) and continue to be mined as a source of important end
products and building blocks for pharmaceutical development. On
the other hand, secondary metabolites have also received consid-
erable attention for their adverse impact of humans and animals
due to their widespread occurrence as mycotoxins (e.g., AFs and
fumonisins) on food and feed crops as well as indoor environ-
ments. Fungi produce a number of structural classes of secondary
metabolites including polyketides (PKs), non-ribosomal peptides
(NRPs), hybrid PK-NRPs, indole alkaloids, and terpenes (Keller
et al., 2005). In almost all cases the genes responsible for the pro-
duction of these classes of secondary metabolites are organized
as a gene cluster (discussed below). Secondary metabolites of this
type that have been identified in sclerotia will be the main focus
of this section.

Though many of the recognized biological activities of impor-
tant secondary metabolites relate to their direct influence on
humans and other vertebrates, it is generally accepted that these
natural products play key roles in the ecology of the fungus as well.
Over the course of evolution, secondary metabolites have been

fashioned for numerous biological functions in microorganisms,
as chemical messengers between microbes and as a means of
defense from predation and competing microbes (Wicklow, 1988;
Yim et al., 2007; Rohlfs and Churchill, 2011; Yin et al., 2012). Fungi
are much like plants in that; in general, they are static organ-
isms incapable of readily escaping from encroaching predators
and competing microbes. In spite of this, fungi are quite success-
ful at inhabiting and surviving for long periods of time in highly
competitive environments. It has been hypothesized that these
competitive environments have provided considerable selective
pressure for fungi to produce an array of antagonistic secondary
metabolites as part of their “chemical” defense against numer-
ous fungivores and competitors (Gloer, 2007; Rohlfs et al., 2007;
Rohlfs and Churchill, 2011). A recent study showed that arthro-
pod grazing induces a “resistance” phenotype in A. nidulans to
fungivory that coincided with elevated levels of secondary metabo-
lite and sexual fruiting body formation (Rohlfs and Churchill,
2011). Plants also tend to concentrate secondary metabolites in
reproductive structures (e.g., seeds) as a means of defense against
herbivores; as well, herbivores tend to avoid feeding or oviposition
on plants or plant tissues that contain high levels of secondary
metabolites (Rhoades, 1985). In an analogous fashion, various
fungi are known to sequester secondary metabolites in asexual
conidia and sexual fruiting structures that are critical to survival
and which often results in reduced incidences of insect fungivory
(Doll et al., 2013).

In addition to conidia and fruiting bodies, numerous fungi
also produce structures termed sclerotia. Sclerotia are compacted
mats of hyphae produced by certain fungi that allow survival
for long periods of time under adverse environmental conditions
(Coley-Smith and Cooke, 1971). Upon onset of favorable condi-
tions, sclerotia can germinate to produce large quantities of either
hyphae or conidia, and as such they represent a primary source
of fungal inoculum in the field. Sclerotia are commonly produced
on plant tissues during fungal invasion and eventually end up
in soil, or on decaying plant tissues, in the field where they are
exposed to predation by insects. In addition to serving as sur-
vival structures, in many Aspergillus species (e.g., A. flavus and
A. nomius), with proper environmental conditions and mating
pair interactions, sclerotia can serve as a substrate (termed stro-
mata) for the formation of sexual structures (Horn et al., 2009a,
2011). The stromata harbor ascospore-bearing cleistothecia, simi-
lar to cleistothecia of other ascomycetous species that have a sexual
cycle (Horn et al., 2009a, 2014). Many of the genetic mechanisms
that connect secondary metabolism to morphogenesis of sexual
fruiting bodies have also been shown to control sclerotial pro-
duction (discussed below). Production of sclerotia represents a
substantial metabolic investment by the fungus that is warranted
based on the critical role of these structures in reproduction and
survival. The importance of sclerotia to fungal biology combined
with their high nutrient value to insects would justify the existence
of considerable selective pressure on the fungus to produce antiin-
sectan/antifeedant secondary metabolites as part of their chemical
defenses. In fact, this appears to be the case as numerous stud-
ies have shown sclerotia to be veritable storehouses of a diversity
of secondary metabolites with antiinsectan properties [reviewed
in Wicklow (1988) and Gloer (1995, 1997, 2007)]. The fungus’
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need for a diverse array of defensive secondary metabolites may
be a reflection of the ability of the target organism to develop
resistance to specific inhibitory agents. One would predict that
the presence of a number of secondary metabolites in sclero-
tia, many of which may have different modes of action, would
make it more difficult for the target organism to evolve resis-
tance either through mutation or acquisition of resistance genes
than if it were faced with having to overcome just one inhibitory
metabolite.

Perhaps the quintessential example of sclerotia-based chemical
defense is that of Claviceps purpurea. This ascomycetous fungus
produces a group of indole-derived secondary metabolites known
as ergot alkaloids (EAs) during growth on a number of plants
including many cereal crops (Haarmann et al., 2009). Consump-
tion of food and feeds contaminated with the alkaloid-containing
sclerotia (ergot) resulted in vast epidemics of human and animal
disease that were reported as early as 600 BC. In addition to C.
purpurea, a number of chemically diverse EAs are produced by
other fungi including many grass endophytes, as well as strains of
Penicillium and Aspergillus, though most of these strains are not
known to produce sclerotia (Gloer, 2007). The proposed ecologi-
cal role of EAs is to protect the fungus by reducing consumption of
the host crop by herbivores or from direct consumption by fungiv-
orous insects (Schardl et al., 2006). The remainder of this section
will focus on secondary metabolites identified in sclerotia, primar-
ily of Aspergillus species, though a few examples will be provided
for other fungi. A list of secondary metabolites found in sclerotia
from Aspergillus species is presented in Table 1. Reports by Gloer
(1995, 1997, 2007) provide an excellent source of information on
the chemistry and biological function of fungal metabolites asso-
ciated with sclerotia. This review will only touch on new findings
since the (Gloer, 2007) publication and provide a few examples
of interest. In many cases, previous literature on fungal secondary
metabolites describe whole culture extracts and fail to specify if the
metabolite(s) was present in sclerotia. In some instances, the inves-
tigators report on secondary metabolites that were extracted from
isolated sclerotia but fail to indicate if they were also present in
other fungal structures such as mycelia and conidia. This review is
focused on secondary metabolites of sclerotial origin, but in some
cases information will be presented on metabolites that are present
in sclerotia as well as other fungal structures, or secreted outside
of the cell.

One of the most intensely studied fungal genera with respect
to production of secondary metabolites is Aspergillus. Members
of this genus of fungi are ubiquitous in nature and are capable
of living as saprophytes in soils or as opportunistic pathogens
of humans, plants and animals. With well over 250 identified
species of Aspergillus (Geiser et al., 2007), probably the best known
members of this genus are A. flavus and A. parasiticus, that pro-
duce carcinogenic and toxigenic AFs. Many species of Aspergillus
produce both sclerotia and the polyketide-derived AFs, however,
the majority of the literature has focused on AF production in
A. flavus as it is most commonly associated with contamination
of food and feed crops (Payne and Brown, 1998; Cary et al., 2000;
Bhatnagar et al., 2002). AFs are produced during growth of the
fungus on oilseed crops such as corn, peanuts, cottonseed, and
treenuts and they can also contaminate many additional crops

during storage. Production of AFs in A. flavus and A. parasiti-
cus is known to occur in specialized endosomes of mycelia and
subsequently secreted into the environment (Chanda et al., 2009).
AFs have also been found in all fungal cell structures including
mycelia, conidia, and sclerotia (Wicklow and Cole, 1982; Wicklow
and Shotwell, 1983). Though the exact role of AFs in the biol-
ogy of producing species remains elusive, evidence suggests that
they are produced in response to oxidative stress and may also
be endowed with antiinsectan properties (Chinnici and Bettinger,
1984; Narasaiah et al., 2006; Grintzalis et al., 2014). In addition,
AF production and sclerotial development may be closely related,
as increased production of AF precursors was associated with a
decrease in sclerotial size (Chang et al., 2002). It was suggested
that this may be due to common substrates like acetate being
directed toward AF production resulting in lowered availability
for biogenesis of sclerotia.

Cyclopiazonic acid (CPA) is an indole-tetramic acid mycotoxin
that is produced by a number of species of Aspergillus and Peni-
cillium (Burdock and Flamm, 2000; Vinokurova et al., 2007). It is
a common contaminate of a number of food commodities and is
often present as a co-contaminate with AFs (Martins and Martins,
1999). CPA has been found in sclerotia of A. flavus, however, it was
also detected in mycelia (Wicklow and Cole, 1982). Though its role
in the ecology of the fungus is not known, CPA has been shown to
be an inhibitor of calcium-dependent ATPase in the sarcoplasmic
reticulum with exposure in some animals leading to organ necrosis
and death (Riley et al., 1992).

Another mycotoxin of importance to human health is ochra-
toxin A (OTA; El Khoury and Atoui, 2010). OTA is produced by
several species of Aspergillus and Penicillium via a pentaketide that
is derived from a dihydrocoumarin coupled to β-phenylalanine. It
is detected worldwide in various food and beverage sources. OTA
can have several toxicological effects such as nephrotoxic, hepato-
toxic, neurotoxic, teratogenic, and immunotoxic. OTA has been
isolated from sclerotia of Aspergillus ochraceus, Aspergillus scle-
rotioniger, and Aspergillus carbonarius, with OTA isolated from
the latter shown to have antiinsectan properties (Paster et al.,
1984; Wicklow et al., 1996; Frisvad et al., 2014). Only a few
strains of Aspergillus section Nigri have been reported to pro-
duce sclerotia, but when cultured in artificial media supplemented
with natural substrates such as fruits and grains, sclerotial pro-
duction was induced along with numerous sclerotial secondary
metabolites (Frisvad et al., 2014). In addition to detection of
OTA, some isolates were found to produce apolar indoloter-
penes of the aflavinine type and okaramines (Frisvad et al., 2014;
Petersen et al., 2014).

A number of fungi produce polyketide-derived melanins which
are the black or near-black pigments formed by oxidative poly-
merization of phenolic compounds produced by the dihydroxy-
naphthalene (DHN)-melanin pathway (Wheeler, 1983; Butler and
Day, 1998). Melanin has been shown to be a virulence factor in
plant, animal, and human pathogenic fungi and it also functions in
survival and longevity in nature of fungal propagules such as scle-
rotia (Butler and Day, 1998). Sclerotial DHN-melanins have been
reported as a component of black sclerotia of Sclerotinia sclerotio-
rum and S. trifoliorum (Butler et al., 2009). Recently, an A. flavus
gene cluster was found to be responsible for the production of
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Table 1 | Secondary metabolites associated with sclerotia of Aspergillus species.

Fungus Metabolite Structural class Reference

A. alliaceus Isokotanins Polyketide Laakso et al. (1994)

Nominine Indole diterpene Laakso et al. (1994)

Paspaline Indole diterpene Laakso et al. (1994)

A. arenarius Arenarins Prenylated terphenyl Oh et al. (1998)

A. auricomus Variecolactol Sesterterpene lactone De Guzman et al. (1999)

Penicillic acid Polyketide De Guzman et al. (1999)

Dihydropenicillic acid Polyketide De Guzman et al. (1999)

A. carbonarius Ochratoxin A Polyketide Frisvad et al. (2014)

Carbonarin A Naphthopyrone Gloer (1997)

Aurasperone Naphthopyrone Gloer (1997)

A. flavus Aflatoxins Polyketide Wicklow and Cole (1982)

Aflatrems Indole diterpene Wicklow and Cole (1982)

Asparasone Polyketide Cary et al. (2014)

Cyclopiazonic acid Indole tetramic acid Wicklow and Cole (1982)

Aflavarin Polyketide Gloer (1995)

Aflavinines Indole diterpene Gloer (1995)

Aflavazole Indole diterpene Gloer (1995)

Kotanin Polyketide Gloer (1995)

A. leporis Leporin A 2-pyridone Gloer (1995)

A. melleus Bis-indoyl benzenoids Bis-indoyl benzenoid Gloer (1995)

Variecolin Sesterterpenoid Gloer (1995)

A. variecolor Variecolin Sesterterpenoid Gloer (1995)

A. nomius Nominine Indole diterpene Gloer (1995, 1997)

Aspernomine Indole diterpene Gloer (1995, 1997)

Paspalinine derivatives Indole diterpene Gloer (1995, 1997)

A. ochraceus Ochratoxin A Polyketide Paster et al. (1984)

Diketopiperazines Diketopiperazine Gloer (1995)

Ochrindoles Bis-indoyl benzenoid Gloer (1995)

A. sclerotiorum Sclerotiamide Diketopiperazine Gloer (1997)

Scleramide Cyclic hexapeptide Whyte et al. (2000)

Oxoasterriquinol D Bis-indoyl benzenoid Whyte et al. (2000)

A. sulphureus Penitrem analogs Indole diterpene Gloer (1995)

Radarins Indole diterpene Gloer (1995)

Sulpinines Indole diterpene Gloer (1995)

Aspergillus section Nigri a Aflavinines Indole diterpene Gloer (1997), Frisvad et al. (2014)

Ochratoxin A Polyketide Frisvad et al. (2014)

aAspergillus section Nigri is composed of 15 related black-spored species of Aspergillus.

a sclerotia-specific pigment identified as the polyketide, aspara-
sone (discussed below; Cary et al., 2014). Sclerotia produced by
mutants of the asparasone polyketide synthase (PKS) lacked dark
pigmentation, were significantly less resistant to insect predation
than wild-type sclerotia and were more susceptible to the dele-
terious effects of ultraviolet light and heat. Fungal sclerotia and
conidia were previously thought to be mostly resistant to this type
of damage due to the presence of DHN-melanins. The study of
Cary et al. (2014) showed that the dark brown pigments in A. flavus

sclerotia derive from anthraquinones produced by the asparasone
cluster rather than from the typical DHN-melanin pathway.

GLOBAL GENETIC REGULATORY MECHANISMS GOVERNING
PRODUCTION OF SECONDARY METABOLITES THAT
INFLUENCE SCLEROTIA
The global regulatory proteins VeA and LaeA, components of the
velvet nuclear protein complex, control both development and
secondary metabolism in numerous fungi, including Aspergillus
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species. The characterization of the veA gene began more than
60 years ago, when Kafer (1965) generated the first veA mutant in
A. nidulans, veA1, a mutant with partial loss-of-function. How-
ever, its characterization was delayed for many years due to the
fact that the VeA predicted protein did not demonstrate homol-
ogy with any other proteins of known function. Further studies
with veA deletion mutants in A. nidulans and in other fungi pro-
vided valuable insight into the role of this regulator. veA is known
to have a role in activating sexual development and inhibiting
asexual development (Champe et al., 1981; Yager, 1992; Kim et al.,
2002). Interestingly the role of veA in the regulation of morpho-
genesis is light-dependent; light reduces and delays cleistothecial
formation and promotes conidiation in A. nidulans strains with a
veA wild-type allele, while in the dark the fungus develops fruit-
ing bodies (Yager, 1992; Stinnett et al., 2007). Deletion of veA in
A. nidulans resulted in hyperconidiating strains unable to produce
cleistothecia (Kim et al., 2002; Kato et al., 2003). Similarly, dele-
tion of veA increases conidiation and completely blocks sclerotial
formation in A. flavus and A. parasiticus (Calvo et al., 2004; Duran
et al., 2007).

Another major breakthrough contributing to the understand-
ing of veA function was the discovery of its regulatory role in
secondary metabolism in A. nidulans (Kato et al., 2003). veA was
shown to control the biosynthesis of several compounds including
antibiotics and mycotoxins, specifically sterigmatocystin (ST), the
penultimate intermediate in the AF biosynthetic pathway (Kato
et al., 2003). Further studies revealed this regulatory role to be
conserved in many other fungi. Importantly, veA was demon-
strated to be required for the production of AFs in A. parasiticus
and A. flavus, as well as CPA and aflatrem in A. flavus (Calvo et al.,
2004; Duran et al., 2007, 2009). Studies of the veA-dependent tran-
scriptome in Aspergillus fumigatus indicated that veA affects the
expression of 100s of genes (Dhingra et al., 2013), while studies in
A. flavus and Fusarium verticillioides demonstrated a role for veA
in response to oxidative stress (Baidya et al., 2014; Lan et al., 2014)
and hydrolytic activity (Duran et al., 2014). However, in this review
we will mainly focus on the role of veA and known veA-related
regulatory factors in the control of morphogenesis, particularly
in the formation of sclerotia and in the biosynthesis of secondary
metabolites.

Numerous putative veA homologs have been identified in other
fungal species and many of them have been experimentally char-
acterized (Li et al., 2006; Dreyer et al., 2007; Bayram et al., 2008b;
Chettri et al., 2012; Dhingra et al., 2012; Laskowski-Peak et al.,
2012; Myung et al., 2012; Lopez-Berges et al., 2013). In A. nidu-
lans the study of possible veA-interacting proteins revealed that
VeA forms complexes with other proteins (Bayram et al., 2008a;
Calvo, 2008; Purschwitz et al., 2008; Figure 1). After its trans-
port to the nucleus by the alpha-importin KapA (Stinnett et al.,
2007; Araujo-Bazan et al., 2009) VeA forms a complex with the
red phytochrome FphA (Purschwitz et al., 2008). This interaction
is dependent on the presence of the tetrapyrrole chromophore.
LreA and LreB, blue sensing proteins, do not interact directly with
VeA, but through FphA association; the FphA protein was found
to interact with LreB, which interacts with LreA. Deletion of either
fphA or lreA/lreB genes affected sexual development as well as sec-
ondary metabolism in A. nidulans where they play antagonistic

functions (Purschwitz et al., 2008). FphA also negatively affects
VeA transport to the nucleus in the presence of light. It is likely
that a similar regulatory output of the light-sensing proteins is also
conserved in A. flavus.

Additional studies in A. nidulans showed that VeA also inter-
acts with LaeA, forming part of the velvet complex (Bayram
et al., 2008a). LaeA encodes a putative methyl transferase involved
in chromatin remodeling (Keller et al., 2005; Bok et al., 2006b;
Reyes-Dominguez et al., 2010). In addition, LaeA influences VeA
post-translational modifications and inhibits sexual development
in A. nidulans in response to light (Sarikaya Bayram et al., 2010).
Moreover, laeA has been shown to be a positive regulator of gene
clusters involved in secondary metabolism in this model organism
(Keller et al., 2005; Bok et al., 2006a). In A. flavus the laeA homolog
is necessary for production of AFs and sclerotial formation (Kale
et al., 2008). Additionally, it has been shown that laeA is a negative
regulator of veA expression in A. flavus. Transcriptome analysis of
A. flavus wild-type and laeA deletion strains indicated that laeA
not only regulates AF production but also controls the expres-
sion of other secondary metabolic gene clusters (Georgianna et al.,
2010). Similar to FphA, an A. nidulans LaeA-like putative methyl-
transferase, designated LlmF, also interacts with VeA, negatively
affecting VeA transport to the nucleus and acting as negative reg-
ulator of ST production and sexual development (Palmer et al.,
2013).

Another component of the velvet complex interacting directly
with VeA is VelB (Bayram et al., 2008a; Park et al., 2012), a mem-
ber of the velvet protein family together with VosA and VelC (Ni
and Yu, 2007; Park et al., 2014). In A. nidulans, VelB binds to
VeA in the cytoplasm and they are co-transported to the nucleus
(Bayram et al., 2008a). Similar to the veA deletion mutant, deletion
of velB results in a strain unable to display a light-dependent devel-
opmental pattern and it is unable to form cleistothecia (Bayram
et al., 2008a). However, dissimilar from the veA deletion, absence
of velB only showed reduced and delayed production of ST. VelB
also interacts with VosA (Bayram et al., 2010). The velvet domain
in these two proteins has been shown to bind DNA in A. nidu-
lans (Ahmed et al., 2013) and in Histoplasma capsulatum, where
there are involved in the activation of the yeast-phase specific gene
expression program (Beyhan et al., 2013). In addition, the VelC
velvet protein functions as a positive regulator of sexual develop-
ment in A. nidulans (Park et al., 2014). Homologs of A. nidulans
VelB, and VelC have also been characterized in A. flavus (Chang
et al., 2013). Deletion of A. flavus velB (but not velC), similar to
the case of veA (Duran et al., 2007), prevents sclerotial formation
and AF biosynthesis.

In addition to the interaction between A. flavus LaeA and VelB
with VeA, Chang et al. (2013) also described interactions between
LaeA and VelB with FluG (Figure 1), a known developmental reg-
ulator previously characterized in A. nidulans. FluG contributes
to the inactivation of the FadA G-protein signaling pathway in
the model fungus, leading to ST production and allowing sexual
and asexual development. Mutations in A. nidulans fluG result
in proliferation of undifferentiated vegetative hyphae that yield
fluffy cotton-like colonies lacking the capacity to produce ST
(Adams et al., 1992; Wieser et al., 1994). FadA function was also
conserved in the AF-producer A. parasiticus (Hicks et al., 1997).
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FIGURE 1 | A model illustrating interactions between velvet family

proteins, LaeA and other associated proteins in the model fungus

Aspergillus nidulans. The α-importin KapA transports the VeA-VelB dimer
from the cytoplasm to the nucleus, particularly in the dark. This transport is
negatively influenced by other proteins, such as FphA, LlmF and Vip-VapB
dimer in the light. In the nucleus, VelB-VeA activates sexual development
and can interact with LaeA, forming the velvet complex. VeA also interacts
with FphA, which is associated with LreB-LreA forming a light-sensing
protein complex. VelB, repressor of asexual development, also forms

homodimers and heterodimers with VosA, a protein required for spore
viability activating trehalose biosynthesis. VosA also interacts with VelC,
which positively regulates sexual development. Additionally, VipC and VapB
associate with VeA in the nucleus repressing cleistothecial formation. These
complexes regulate development and secondary metabolism in a
coordinated manner. VeA, LaeA, and VelB have also been shown to control
sclerotial and AF production in A. flavus, where they also form a protein
complex, together with FluG (box). ST, sterigmatocystin. PN, penicillin; AF,
aflatoxin B1.

Evidence for a connection between fluG and veA was previously
provided by Mooney and Yager (1990) and Yager et al. (1998).
Mooney et al. (1990) found three extragenic veA1 suppressor
mutations that restored light-dependent conidiation in A. nidu-
lans corresponded to different fluG alleles. This suggested that
veA light-dependent activities are related to fluG function. fluG is
involved in the synthesis of a diffusible compound that triggers
the FluG signaling pathway directing conidiation and mycotoxin
biosynthesis while reducing vegetative growth (Lee and Adams,
1996). The diffusible molecule was determined to be dehydroausti-
nol (Rodriguez-Urra et al., 2012). Two gene clusters in A. nidulans
have been found to encode the complete dehydroaustinol pathway
(Lo et al., 2012). However, co-culturing experiments did not show
a similar diffusible secondary metabolite produced by A. flavus.
These results suggest that the function of fluG and the signaling
pathways related to conidiation might be different in these two
related Aspergilli (Chang et al., 2012). Based on A. flavus stud-
ies, Chang et al. (2013) postulated that a delicate balance in the
interaction between VeA, VelB, FluG, and LaeA is necessary to
maintain normal sclerotiogenesis, conidiogenesis and secondary
metabolism, where FluG plays an antagonistic role with respect to
VeA, VelB, and LaeA regarding sclerotia formation (Chang et al.,

2012). Deletion of fluG resulted in a notable increase in sclerotial
formation but did not affect AF production. This also differs from
the role of fluG in A. nidulans, where this gene is necessary for ST
biosynthesis.

Other characterized VeA-interacting proteins include VipC-
VapB methyltransferases, released from the VapA-VipC-VapB
membrane-bound complex (Sarikaya Bayram et al., 2014). Pres-
ence of VipC-VapB reduces the abundance of the nuclear VelB-
VeA-LaeA complex resulting in decreased sexual development.
Additionally, VapB also decreases histone 3 lysine 9 trimethylation
favoring asexual development.

Post-translational modification of VeA, such as that detected
in LaeA-dependent modification in A. nidulans, could also have
an effect on the velvet complex function (Sarikaya Bayram
et al., 2010). Purschwitz et al. (2009) demonstrated that VeA is
phosphorylated. Later Bayram et al. (2012) showed that MpkB
phosphorylates VeA. The MAP-kinase mpkB, homolog of FUS3
in Saccharomyces cerevisiae, was first characterized in A. nidulans
by Paoletti et al. (2007) and Atoui et al. (2008). MpkB transcrip-
tion increased during sexual development and deletion of the
mpkB gene resulted in sterility (Paoletti et al., 2007), as well as
in a decreased in the expression of ST biosynthetic genes and
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concomitant ST biosynthesis (Atoui et al., 2008). Furthermore,
the absence of mpkB also decreased the expression of genes in the
penicillin and terrequinone A gene clusters (Atoui et al., 2008).
mpkB is also necessary for normal expression of laeA, that as dis-
cussed above, is a global regulator of secondary metabolism (Atoui
et al., 2008). The mpkB homolog is present in the A. flavus genome,
however, its possible function in sclerotial development and sec-
ondary metabolism has not yet been characterized experimentally
in this AF producer.

Both sclerotial and conidial development and secondary
metabolism have been shown to be modulated by A. flavus oxylip-
ins as well as by endogenous plant oxylipins that interact with
the infecting fungus (Burow et al., 1997; Calvo et al., 1999; Brown
et al., 2008; Affeldt et al., 2012; Scarpari et al., 2014). The A. flavus
genome harbors four dioxygenase genes, ppoA, ppoB, ppoC, and
ppoD, and one lipoxygenase gene, loxA (Brown et al., 2008, 2009).
In the model fungus A. nidulans it has been shown that veA
is important for ppo-dependent regulation of development. For
instance, veA regulates ppoA expression (Tsitsigiannis et al., 2004).
Furthermore, the triple mutant ppoA/B/C showed an increase in
veA expression suggesting a regulatory loop between ppo genes
and the master regulator veA (Tsitsigiannis et al., 2005). Absence
of these genes results in alteration in morphological and chemical
development in A. flavus [review by Amaike and Keller (2011)].
For example, strains with deletion of these five genes showed
high levels of AF production and sclerotial formation (Brown
et al., 2009). The antagonistic roles of different types of oxylip-
ins appear to contribute to a balance between conidiation and
sclerotial formation.

The necessity of veA for sclerotial production and AF biosyn-
thesis could also be related to the requirement of veA for a
proper oxidative stress response in A. flavus (Baidya et al., 2014).
Using modulators that inhibit oxidative stress as well as thiol
redox state, Grintzalis et al. (2014) demonstrated that oxidative
stress regulates both AF biosynthesis and sclerotial development.
Several research groups have also provided evidence of the associ-
ation between AF production and oxidative stress in Aspergilli
(Chang et al., 2011; Reverberi et al., 2012; Hong et al., 2013;
Roze et al., 2013).

Recently other regulatory genes have been found to affect devel-
opment and secondary metabolism in A. flavus, specifically nsdD
and nsdC (Cary et al., 2012). The nsdD gene, first described in
A. nidulans, encodes a GATA-type zinc finger transcription fac-
tor necessary for cleistothecia formation (Han et al., 2001), while
nsdC encodes a C2H2 zinc finger-type transcription factor shown
to negatively regulate asexual sporulation (Kim et al., 2009). veA
only slightly affects nsdD expression (Kato et al., 2003), and has
no effect on nsdC expression (Kim et al., 2009), suggesting that
the role of these genes is independent of veA in A. nidulans. In
A. flavus, both nsdC and nsdD are necessary for sclerotial produc-
tion and normal levels of AF biosynthesis (Figure 2; Cary et al.,
2012).

Functional genomic analysis is a powerful approach that has
helped to elucidate the genetic connections between sclerotial for-
mation and secondary metabolism. For instance, Wu et al. (2014)
compared the transcriptome of mycelium and sclerotium devel-
opmental stages and found that backbone genes of 38 secondary

FIGURE 2 | Production of sclerotia and aflatoxins in A. flavus CA14

ΔnsdC and ΔnsdD mutants. (A) Surface of colonies demonstrating
sclerotial production after 14 days growth in the dark. Sclerotia were absent
in the ΔnsdC and ΔnsdD mutants and were produced in the wild-type
CA14 (dark structures). (B) TLC analysis of aflatoxin production from the
wild-type CA14, ΔnsdC, and ΔnsdD mutants. Extracts (5 ul) were spotted
onto 250 um silica gel TLC plates and metabolites were separated in ethyl
acetate: methanol: water (40:1:1). Aflatoxin standards were also spotted on
the plate. Adapted and modified from Cary et al. (2012).

metabolite pathways were transcribed in both the mycelial and
sclerotial cultures, including the AF biosynthetic pathway. A tran-
scriptome study by Lin et al. (2013) of A. flavus cultures treated
with 5-azacytidine, an inactivator of DNA methyltransferase,
provided further evidence that secondary metabolism and devel-
opment are co-regulated. Addition of 5-azacytidine altered the
expression of backbone genes of two identified secondary metabo-
lite gene clusters, #35 and also #27, both of which have been
demonstrated experimentally to be associated to sclerotial biol-
ogy in either a veA- or laeA-dependent manner (Forseth et al.,
2012; Cary et al., 2014). Additionally, Chang et al. (2014) studied
the transcriptome of cultures treated with decanal and observed
that this volatile compound halted development at the vegetative
state rendering the fungus unable to produce sclerotia. This coin-
cided with early transcriptional activation of AF and kojic acid
biosynthesis gene clusters as well as subtle altered timing of other
secondary metabolite gene clusters.

GENE CLUSTERS PRODUCING SECONDARY METABOLITES
ASSOCIATED WITH SCLEROTIA
Rapid progress in sequencing of fungal genomes, coupled
with bioinformatics, has provided researchers with an in silico
approach for identifying potential secondary metabolic gene clus-
ters (Bergmann et al., 2007; Winter et al., 2011; Ehrlich and Mack,
2014). Many of the prediction algorithms (e.g., SMURF, anti-
SMASH, and MIDDAS-M) in use are based on identification of
core or “backbone” genes that encode enzymes such as a PKSs,
NRPSs, or dimethylallyltryptophans (DMATs) as well as closely
allied genes encoding “decorating” enzymes (e.g., dehydrogenases,
methyltransferases, and oxidases), transcription factors and trans-
porters (Khaldi et al., 2010; Medema et al., 2011). The MIDDAS-M
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algorithm has been used to identify potential secondary metabolic
gene clusters that may not contain common core genes such
as that for ustiloxin B, an A. flavus secondary metabolite pro-
duced by a ribosomal peptide synthetic pathway (Umemura et al.,
2014). These types of algorithms have resulted in the identifi-
cation of numerous putative secondary metabolic gene clusters in
fungi, typically between 30 and 40 in Aspergillus species sequenced
(Brakhage and Schroeckh, 2011; Andersen et al., 2013; Inglis et al.,
2013) including as many as 55 in A. flavus (Georgianna et al.,
2010). Some of the products of these clusters have been verified
based on prior knowledge of genes and metabolites that constitute
the cluster (e.g., AF and CPA). In other cases, the products have
been predicted in one species based on homology to genes known
to produce the metabolite in another fungal species; for exam-
ple, the identification of the penicillin gene cluster in A. flavus
based on amino acid identity to the known penicillin biosynthetic
genes from A. nidulans. However, in most instances, the iden-
tity of the metabolites encoded by predicted secondary metabolic
gene clusters remains unknown. In these instances the clusters
have been termed “orphans.” In a number of cases, these orphan
clusters can be “cryptic” or silent when the conditions required
to activate expression of the cluster genes have not been deter-
mined (Brakhage and Schroeckh, 2011; Brakhage, 2013). Once
a putative secondary metabolic gene cluster has been identified,
a number of techniques can then be utilized to aid in identifi-
cation of the cluster metabolite (Brakhage and Schroeckh, 2011;
Sanchez et al., 2012).

When genes from orphan clusters are actively transcribed
under laboratory growth conditions, standard gene-inactivation
techniques can be applied, coupled with comparative metabolic
profiling of the pathway mutant and the control strain using LC–
MS. A common method used for the identification of cryptic gene
cluster metabolites is to overexpress the pathway-specific tran-
scriptional activator (if known) by placing it under the control
of a strong inducible or constitutive promoter. For example, nor-
mally silent genes of the A. nidulans aspyridone (apd) gene cluster
were activated by coupling of the apdR transcriptional activator to
the inducible alcohol dehydrogenase promoter of A. nidulans, thus
allowing identification of aspyridones A and B (Bergmann et al.,
2007). In the absence of a pathway-specific transcription factor, it
may be possible to activate gene expression of cryptic clusters by
overexpressing global regulatory factors. This is exemplified by the
use of overexpressing and deletion mutants of the global regula-
tor, laeA, to identify the terrequinone A gene cluster in A. nidulans
(Bok et al., 2006a). In keeping with epigenetic regulation of sec-
ondary metabolite production, a number of chemical agents (e.g.,
histone deacetylase or DNA methyltransferase inhibitors) or genes
(e.g., inactivation of a histone deacetylase or sumoylation gene)
that modulate chromatin structure have been used to successfully
induce expression of cryptic clusters [reviewed in Sanchez et al.
(2012) and Brakhage (2013)].

A recent study indicated the presence of secondary metabolite-
mediated crosstalk between two separate gene clusters (Forseth
et al., 2012). Comparative metabolomics of gene knockout, knock-
down (RNAi-based), and overexpression strains of A. flavus were
used to identify a group of secondary metabolites derived from
two laeA-regulated orphan gene clusters, designated lna and lnb.

The lna cluster is located on chromosome 6 and lnb on chromo-
some 8. The two clusters harbor non-canonical NRPS genes (lnaA
and lnbA) with high sequence identity as well as associated genes
encoding tailoring enzymes that are involved in the production of
a group of piperazines. It was shown that addition of the one of the
piperazine metabolites, produced almost exclusively by the lnaA
cluster, to wild-type cultures greatly increased expression of the
lnaB NRPS. The apparent “sensing” of a metabolite produced by a
separate but related gene cluster may represent another layer in the
complex regulation of secondary metabolism in fungi. Interest-
ingly, loss of these lnaA- and lnaB-derived piperazines resulted in a
significant reduction in sclerotial formation in the mutant strains,
thereby demonstrating a role of these secondary metabolites in
fungal development.

Lastly, the most ecologically based of all secondary metabolite
induction techniques, is the simulation of interactions in nature
between the fungus and other resident microbes. This technique
is based on the premise that microorganisms share ecological
niches; and as such, produce secondary metabolites as a means
of intra- and interspecies communication or as defense mecha-
nisms. By simulating these interactions in culture, using two or
more organisms, there is a chance that the organism of interest
will respond by eliciting production of a secondary metabolite.
For example, utilizing microarray technology with co-cultivation
techniques, the interaction of A. nidulans with the soil-dwelling
actinomycete, Streptomyces rapamycinicus, induced the expression
of a cryptic gene cluster in A. nidulans involved in the production
of the polyketide, orsellinic acid (Schroeckh et al., 2009).

Sclerotia represent a means by which fungi maintain a quies-
cent viable state in the absence of a suitable host or of conditions
favoring active growth (Coley-Smith and Cooke, 1971). As such,
mature sclerotia are essentially dormant metabolically, and there-
fore would not be amenable to any of the methods discussed above
for activation of cryptic secondary metabolic pathways. However,
it is probable that many of the secondary metabolites present in
sclerotia are produced in the hyphae that coalesce during the early
phases of sclerotial morphogenesis. Most sclerotial metabolites
identified so far in fungi have been identified from extracts of scle-
rotia generated under laboratory conditions on artificial media.
It is likely that sclerotia found in nature harbor many additional
as of yet unidentified secondary metabolites. Below we describe a
number of genetically and biochemically well characterized sec-
ondary metabolite gene clusters whose products have been found
in sclerotia of filamentous fungi. As most of these clusters have
been thoroughly reviewed in the literature, only a brief synopsis
with references will be provided here.

ERGOT ALKALOIDS
Ergot alkaloids represent a complex family of indole derivatives
with diverse structures and broad biological and pharmacolog-
ical activities. The genetics and enzymology of EA biosynthesis
is detailed in reviews by Wallwey and Li (2011) and Jakubczyk
et al. (2014). Chemically, EAs can be divided into three groups:
ergoamides, ergopeptines, and clavines. The biosynthetic gene
clusters responsible for the production of each of these types of EAs
have been identified in a number of fungal species. The gene cluster
in C. purpurea leading to the formation of complex ergopeptines
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consists of 14 genes spanning about 68.5 kb of the genome. The
Claviceps fusiformis cluster is responsible for the production of the
clavines, agroclavine and elymoclavine, that lack the peptide moi-
eties present on the ergoline ring of ergopeptines. The C. purpurea
and C. fusiformis gene clusters are homologous with the excep-
tion of three genes that are lacking in C. fusiformis. These genes
(lpsA1, lpsA2, and lpsC) encode NRPSs that are responsible for
biosynthesis of the peptide moieties present in the ergopeptines.
A. fumigatus also produces the clavine-type metabolites, fumiga-
clavines, but these have only been associated with conidiation.
No genes encoding a putative pathway-specific transcriptional
activator or transporter have been identified in EA gene clusters.

The genes involved in EA biosynthesis are divided into early and
late pathway steps. The first step of the early pathway is catalyzed
by the dimethylallyl prenyltransferases (DmaW) that prenylates
L-tryptophan in the presence of dimethylallyl pyrophosphate
(DMAPP) to form DMAT. Subsequent methylation (EasF) and
two successive oxidations (EasC and EasE) produce chanoclavine-
I, the ergoline ring C structure. Chanoclavine-I is then oxidized
by EasD to generate the aldehyde form which in Claviceps is
subsequently cyclized by EasA and EasG reductases to form the
unsaturated ergoline ring D structure, agroclavine, that represents
the last intermediate of the early pathway. The late step pathway
genes encode an oxidase (CloA) responsible for the formation of
paspalic acid which, either spontaneously or via an isomerase,
forms lysergic acid. Three NRPSs (Lps1, Lps2, and lpsC) activate
lysergic acid and form the tripeptide moiety of the ergopeptine
end products.

ASPARASONE A
Expression of genes present in an A. flavus cluster, designated #27
based on SMURF analysis by Georgianna et al. (2010) was found
to be significantly downregulated in a veA mutant (Cary et al.,
2014). The cluster was predicted to consist of a Zn(2)-Cys(6)-
type transcription factor, PKS, two putative transporters and a
gene encoding a hypothetical protein. A schematic depiction of
the cluster is shown in Figure 3A. Expression of the pks27 gene
was first observable at 48 h, was maximal at 120 h, and decreased
by 144 h (Cary et al., 2014). Transcription paralleled sclerotial
development and pigmentation which appeared to be maximal at
120 h in wild-type A. flavus. The transcription factor, znf27, was
required for wild-type levels of expression of the other three cluster
genes but not for the gene encoding the hypothetical protein. The
putative high-affinity glucose (mfs1) and MFS transporter (mfs2)
genes showed an expression profile similar to that observed for
the pks27 and the znf27 genes. qRT-PCR of RNA isolated from
mycelia, conidia, and sclerotia of the A. flavus wild-type showed
that expression of pks27 and znf27 was specific to the sclerotium.

Inactivation of pks27 resulted in A. flavus colonies that pro-
duced only grayish-yellow sclerotia, instead of the characteristic
dark brown color of the wild-type, indicating that the mutational
defect was only in pigmentation and not in sclerotial maturity
(Figure 3B). Comparison of extracts of the wild-type and the
�pks27 mutant by ultra-high performance liquid chromatogra-
phy and mass spectrometry revealed a metabolite of mass 358 Da
that was present in the wild-type but missing in the mutant.
Based on this mass, the metabolite was putatively identified

FIGURE 3 | (A) Schematic representation of the A. flavus asparasone gene
cluster. The cluster is composed of four genes [putative Gal4-type
transcription factor (ZnF); polyketide synthase (PKS); putative high-affinity
glucose transporter (MFS1); and a second putative MFS transporter
(MFS2)]. The two hypothetical protein encoding non-cluster genes (Pro)
flanking the asparasone cluster are shown in white. The size in bp of
intergenic regions are shown. Arrowheads denote direction of
transcription. (B) Microscopic examination of sclerotia. Sclerotium
production in Af70 pyrG-1 (WT) and an Af70 Δpks27 mutant was observed
using an Olympus SZH10 stereomicroscope and Nikon DS-Qi1 camera.
Panel: (1) colony surface, X10 magnification; (2) colony surface, X25
magnification. (C) Chemical structure of asparasone A. Adapted and
modified from Cary et al. (2014).

as the anthraquinone asparasone A [1,3,6,8-tetrahydroxy-2-(1′-
hydroxy-3′-oxobutyl)-anthraquinone; M = 358 Da; Figure 3C].
It was previously reported to be produced by A. parasiticus which
is a close relative of A. flavus (Sobolev et al., 1997). The identifica-
tion of the 358 Da metabolite as asparasone A was confirmed by
LC–MS comparison with an authentic asparasone A standard. It
was hypothesized that dehydration of asparasone would result in
conjugated olefins which, like styrene, might rapidly polymerize
in the presence of metal dioxygenases such as laccases to form the
dark sclerotial pigment (Cary et al., 2014).

AFLATOXIN
The genetics, molecular biology, and biochemistry of AF biosyn-
thesis in A. flavus and A. parasiticus have been the focus of a
number of reviews, and we direct the reader to these references
for more detailed information (Yu et al., 2004; Ehrlich et al., 2005;
Georgianna and Payne, 2009; Yu, 2012). Many of the contributions
to our understanding of AF biosynthesis and its regulation have
come from studies in the model fungus, A. nidulans, on the biosyn-
thesis of ST. ST a precursor of AF, and the genes for ST biosynthesis
in A. nidulans are highly homologous to those required for the
production of ST in the AF gene cluster. The AF biosynthetic gene
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cluster of A. flavus spans ∼70 kb of chromosome 3 and consists of
28 genes including two regulatory factors, aflR and aflS (aflJ). AflR
is a Zn(2)-Cys(6)-type, pathway-specific transcriptional activator
while AflS does not share any significant identity with other fun-
gal proteins but has been shown to be required for AF production.
AflS has been shown to interact with AflR and facilitate the activa-
tion of other AF biosynthetic genes (Du et al., 2007). AflR protein
binds to the palindromic sequence 5′-TCGN5CGA-3′ (or devia-
tions thereof) found in the promoter region of all AF biosynthetic
genes. The AF gene cluster in A. flavus is under the control of the
global regulators, VeA, NsdD, NsdC, and LaeA (Duran et al., 2007;
Kale et al., 2008; Cary et al., 2012).

Aflatoxins are a group of polyketide-derived furanocoumarins
that are produced from acetate via a PKS (AflC) and two fatty acid
synthetases (AflA and AflB), and a number of tailoring enzymes.
AF biosynthesis requires at least 18 known enzymatic reactions to
catalyze synthesis of the four major AFs, AFB1, AFB2, AFG1, and
AFG2 found in A. parasiticus. In general, A. flavus only produces
AFB1 and AFB2. Just outside of the distal end of the AF gene cluster
in A. parasiticus and A. flavus is a conserved sugar utilization gene
cluster. However, the genetic composition at the proximal end (the
end closest to the telomere) of the AF cluster is not conserved in
these two species. A. flavus strains contain a deletion at the proxi-
mal end of the cluster that result in functional loss of aflU (cypA)
and aflF (norB) genes. The inability of A. flavus to produce the G
toxins is due to the partial deletions of aflU and aflF, which encode
a P450 monooxygenase and a putative aryl alcohol dehydrogenase,
respectively, and are required for conversion of hydroxymethyl-ST
to AFG1 in A. parasiticus (Zeng et al., 2011).

Aspergillus flavus as a species contains two morphotypes that
differ in sclerotial size and in their ability to produce AFs. Large
(L) and small (S) sclerotial strains are often found in soils from
agricultural fields, and the S strains are generally found to pro-
duce higher levels of AF than L strains (Zhang and Cotty, 2006;
Horn, 2007). A. flavus is a genetically diverse species and, unlike
other aflatoxigenic Aspergillus species, a portion of A. flavus pop-
ulations has lost the ability to produce AFs (Cotty and Bhatnagar,
1994). A survey of 38 non-aflatoxigenic A. flavus strains, isolated
from across the Southern United States, identified eight patterns of
gene deletion present in the AF gene cluster (Chang et al., 2005).
There is evidence that gene loss in the AF gene cluster of non-
aflatoxigenic A. flavus isolates is irreversible, and that balancing
selection maintains non-aflatoxigenicity and lineage-specific gene
loss in A. flavus populations (Moore et al., 2009, 2011).

AFLATREMS
Both aflatrem and its isomer, β-aflatrem (502 Da), are indole-
diterpenes that have been isolated from the sclerotia of A. flavus
(TePaske et al., 1992). Aflatrems are tremorigenic mycotoxins that
have been shown to cause neurological disorders in mammals,
including muscle tremors and hyperexcitability in livestock, that
have consumed feed contaminated with A. flavus (Valdes et al.,
1985). β-aflatrem displayed significant activity against corn ear-
worm in feeding studies (TePaske et al., 1992). Biosynthesis of
aflatrems proceeds much like that of paxilline in Penicillium paxilli
(Parker and Scott, 2004), in that aflatrem consists of a paxilline-like
core, with an additional prenyl group on the indole moiety and an

acetyl group on the diterpene skeleton (Nicholson et al., 2009).
Utilizing sequence information for genes involved in paxilline
biosynthesis in P. paxilli and the genome sequence of A. flavus, the
genes required for aflatrem biosynthesis were found to be present
on two separate loci in A. flavus (Zhang et al., 2004; Nicholson
et al., 2009). Expression of aflatrem cluster genes and concomitant
production of aflatrem has been shown to require the presence of
veA and laeA (Duran et al., 2007; Georgianna et al., 2010).

Two gene clusters involved in aflatrem biosynthesis have been
described. The ATM1 locus, present on chromosome 5 in A. flavus,
harbors a gene cluster consisting of the atmG, atmC, and atmM
genes. These encode the geranylgeranyl pyrophosphate (GGPP)
synthase, prenyltransferases, and monoxygenase, respectively, that
are involved in synthesis of paspaline, the first stable intermediate
in paxilline and aflatrem biosynthesis. The ATM2 locus, located
on chromosome 7, contains atmD, encoding an aromatic prenyl-
transferse; atmQ and atmP, both encoding P450 monooxygenases;
and atmA and atmB, both encoding predicted membrane pro-
teins believed (but not proven) to be transporters required for
paxilline biosynthesis. The exact functions of atmG, atmC, atmM,
and atmB and their pax orthologs in paspaline biosynthesis are
not clear. It is believed that AtmG catalyzes the condensation
of indole-3-glycerol phosphate and DMAPP to generate GGPP,
which is then epoxidated by AtmM and cyclized by AtmC to form
paspaline (Saikia et al., 2006). AtmP converts paspaline to 13-
desoxypaxilline via removal of the C-30 methyl group and oxida-
tion at C-10. AtmQ catalyzes the oxidation of 13-desoxypaxilline
at C-7 then C-13 to form paspalinine. Finally, AtmD preny-
lates paspalinine on the indole moiety to form aflatrem. No
pathway-specific transcription activator gene was identified in the
clusters.

CYCLOPIAZONIC ACID
It was noted that A. flavus strains unable to form AFs, due to
deletions that extended from the adjacent subtelomeric region
to within the AF gene cluster, were often unable to produce
CPA (Chang et al., 2009). A region spanning about 30 kb from
the subtelemeric end of the AF cluster was shown to harbor
genes encoding a putative DMAT (dmtA), PKS-NRPS (pks-nrps),
and FAD-dependent oxidoreductase (moaA) that were considered
candidates for CPA production based on enzymes identified in
biosynthesis of EAs. Inactivation of these three genes resulted in
loss of CPA production. Orthologous genes (cpaD = dmtA; cpaA
= pks-nrps; cpaO = moaA) have been identified in A. oryzae and
also shown, by gene disruption, to be required for biosynthesis of
CPA (Shinohara et al., 2011). Interestingly, the CPA cluster in both
of these fungi also contained a putative transcription factor (cpaR
= ctfR1), however, disruption of this gene in both A. flavus and
A. oryzae did not affect CPA production. Production of CPA has
been shown to require the presence of the veA gene (Duran et al.,
2007).

In the initial step in CPA biosynthesis, the PKS-NRPS catalyzes
the condensation of L-tryptophan and two molecules of acetyl-
CoA to generate cycloacetoacetyl-L-tryptophan (cAATrp) which
is then converted by the DMAT to β-CPA. The FAD-dependent
oxidoreductase is then responsible for the cyclization of β-CPA to
CPA (Shinohara et al., 2011). Interestingly, A. oryzae RIB40, which
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does not make CPA, was found to have a truncated version of the
PKS-NRPS (cpaA) gene.

CONCLUSION AND FUTURE PERSPECTIVES
It will be difficult to ascertain the exact role of individual sclerotial
secondary metabolites in fungal biology. However, observations
such as the induction of orsellinic acid production in A. nidu-
lans upon co-culture with a soil microbe provide strong support
for a role of these natural products in cross-species commu-
nication or defense against competing microbes. The potential
role of sclerotial secondary metabolites as a chemical defense
against insect predators is supported by the plethora of studies
that have demonstrated their antiinsectan/antifeedant properties
(Gloer, 1995, 2007). The finding of Cary et al. (2014) of pref-
erential feeding by insects on sclerotia collected from a mutant
A. flavus no longer producing asparasone A represents the first in
vivo experimental evidence of the contribution of a secondary
metabolite to sclerotial chemical defense. These types of gene
knockout experiments should prove invaluable in identifying the
contribution of individual secondary metabolites to fungal chem-
ical defense. This will be important as many of the secondary
metabolites identified in A. flavus have not been assigned to a
predicted gene cluster, and it is highly probable that in the near
future many of these orphan clusters will be found to produce
compounds that are associated with the sclerotium. Advances in
functional genomics and metabolomics will invariably accelerate
the pace in the identification of secondary metabolic gene clusters
associated with the synthesis of sclerotial compounds. Accord-
ingly, these studies will also provide relevant information on the
genetic regulatory networks governing activation and modulation
of secondary metabolic gene clusters that play a role in sclero-
tial biology as well as other cellular processes. In this regard,
continued structural and comparative analyses of sequenced fun-
gal genomes, coupled with ever-increasing understanding of the
molecular and functional biology of secondary metabolites in the
Aspergilli, will undoubtedly accelerate the identification and func-
tional characterization of secondary metabolite gene clusters in
other filamentous fungi.

The majority of studies on the biological functions of sclero-
tial secondary metabolites have focused on their role in chemical
defense against insect predators and other competing organisms.
More research is needed to investigate other possible roles for these
metabolites in sclerotial biology. For example, no information
exists as to why A. flavus produces two morphotypes of sclerotia
and if there is any difference in the secondary metabolic profiles
of these morphotypes. If a metabolite(s) is consistently present in
one sclerotial morphotype versus the other this may indicate a role
for the metabolite(s) in sclerotial morphogenesis. Not only are S
morphotype sclerotia smaller than L morphotype, but they are
almost always produced in greater numbers. The ability to pro-
duce greater numbers of S morphotype sclerotia may represent an
adaptive response by the fungus to survive insect predation com-
pared to that of L strains. A correlation between selective pressure,
due to predation, and sclerotial size has been suggested (Wick-
low, 1988), in which long-term survival of a fungus is improved
by the production of larger, better chemically defended sclero-
tia compared to those of fungi that produce numerous small

sclerotia. However, it can also be argued that smaller size may
increase the ease with which S morphotype sclerotia are dam-
aged/consumed by predators and therefore the fungus has evolved
to produce increased numbers as a means to ensure dissemination
and survival of the species. During the course of evolution, selec-
tive pressure from increased predation on S morphotype sclerotia
may have led to an increase in the levels/classes of antiinsectan sec-
ondary metabolites present in small sclerotia. The study of Chang
et al. (2002) demonstrated that an increase in AF intermediates
led to smaller sclerotial size in A. flavus. A similar correlation may
be used to explain the existence of the S morphotype. If scle-
rotia of S morphotype A. flavus strains have increased levels of
secondary metabolites compared to L morphotype, the increased
demand for carbon building blocks (e.g., acetate) for biosynthe-
sis of the additional secondary metabolites would result in less
availability of carbon for sclerotial biogenesis, resulting in the
observed small sclerotial morphotype. Chemical analysis of scle-
rotial extracts coupled with insect feeding studies should be able to
shed some light on the relationship of sclerotial morphotype and
fungivory.

Another unexplored area is the potential role of secondary
metabolites in mating of normally asexual species of Aspergilli.
It will be of interest to determine if secondary metabolite profiles
differ in the stromata generated from the mating of two A. flavus
strains compared to that present in the sclerotia produced during
normal growth of each strain. Perhaps a chemical signal produced
by hyphae of the interacting mating types can induce production
of novel secondary metabolites in the sexual stromata that are not
present in sclerotia of the individual mating partners. The chem-
ical signal itself could be the product of a secondary metabolic
gene cluster that is activated upon interaction of hyphae of oppo-
site mating types. The presence of novel secondary metabolites in
stromata would indicate that these compounds may play a role in
the recognition and initiation of sexual reproduction by strains
of opposite mating type, or they may be produced as a means of
expanding the chemical arsenal of antiinsectan agents present in
the fruiting structures.

Sclerotia are very important to the survival and dissemination
of fungi in nature, and as such should be the target of strategies
for control of fungal contamination of food and feed crops. As
presented in this review, a number of global regulators that con-
trol production of secondary metabolites also control sclerotial
formation. Novel technologies such as host-induced gene silenc-
ing can take advantage of host plant-derived siRNAs that target
expression of these global regulators in the invading fungus. For
example, maize can be transformed with RNAi-based constructs
that generate siRNAs targeting veA or nsdC gene transcripts of
A. flavus. This approach, in theory, would reduce both AF and
sclerotial production in the invading fungus (Nunes and Dean,
2012). The soundness of this concept has already been demon-
strated for control of several cereal pathogens, including barley
powdery mildew (Nowara et al., 2010), wheat leaf rust (Panwar
et al., 2013) and maize ear-rot caused by F. verticillioides (Tinoco
et al., 2010). Continued study of the biogenesis and function of
fungal secondary metabolites and their association with devel-
opment, as well as elucidation of the regulatory mechanisms
controlling production of these natural products, will facilitate the

www.frontiersin.org February 2015 | Volume 6 | Article 62 | 11

http://www.frontiersin.org/
http://www.frontiersin.org/Microbial_Physiology_and_Metabolism/archive


Calvo and Cary Fungal sclerotia and secondary metabolism

design of additional strategies to reduce the detrimental effects of
pathogenic fungi.
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