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A novel phage, �241, specific for Escherichia coli O157:H7 was isolated from an industrial
cucumber fermentation where both acidity (pH ≤ 3.7) and salinity (≥5% NaCl) were
high.The phage belongs to the Myoviridae family. Its latent period was 15 min and average
burst size was 53 phage particles per infected cell. The phage was able to lyse 48 E. coli
O157:H7 strains, but none of the 18 non-O157 strains (including E. coli O104:H7) or the 2 O
antigen-negative mutants of O157:H7 strain, 43895�per (also lacking H7 antigen) and F12
(still expressing H7 antigen). However, the phage was able to lyse a per -complemented
strain (43895�perComp) which expresses O157 antigen. These results indicated that
phage �241 is specific for O157 antigen, and E. coli strains lacking O157 antigen were
resistant to the phage infection, regardless of the presence or absence of H7 antigen.
SDS-PAGE profile revealed at least 13 structural proteins of the phage.The phage DNA was
resistant to many commonly used restriction endonucleases, suggesting the presence of
modified nucleotides in the phage genome. At the multiplicity of infection of 10, 3, or 0.3,
the phage caused a rapid cell lysis within 1 or 2 h, resulting in 3.5- or 4.5-log-unit reduction
in cell concentration. The high lytic activity, specificity and tolerance to low pH and high
salinity make phage �241 a potentially ideal biocontrol agent of E. coli O157:H7 in various
foods. To our knowledge, this is the first report on E. coli O157:H7 phage isolated from
high acidity and salinity environment.
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INTRODUCTION
Escherichia coli O157:H7 has emerged as one of the major food-
borne pathogens. Each year, it causes more than 73,000 illnesses,
2,100 hospitalizations, and 60 deaths in the U.S. (Mead and Grif-
fin, 1998; Mead et al., 1999; Rangel et al., 2005). A variety of foods
have been associated with these outbreaks such as undercooked
ground beef (Griffin and Tauxe, 1991; Anonymous, 1993, 2014;
Bell et al., 1994), raw milk (Riley et al., 1983), cheese (Anonymous,
2010), bologna (Anonymous, 2011), cold sandwiches (Karmali,
1989), water (Swerdlow et al., 1992; Bopp et al., 2003), unpasteur-
ized apple juice (Anonymous, 1996), sprouts, lettuce, spinach, and
other vegetables (Como-Sebetti et al., 1997; Jinneman et al., 2003;
Anonymous, 2006, 2012a,b, 2013). Healthy cattle are the primary
reservoir of E. coli O157:H7. Human infection by E. coli O157:H7
can frequently be traced to the food or water contaminated with
cattle manure (Gyles, 2007). The infection by this pathogen can
result in severe hemorrhagic colitis and life-threatening hemolytic
uremic syndrome (Remis et al., 1984; Cleary, 1988; Tarr, 1995;
Nataro and Kaper, 1998). E. coli O157:H7 has a very low infec-
tious dose (as low as 10 cells; Griffin and Tauxe, 1991; Griffin et al.,
1994; Tuttle et al., 1999) partly due to its very efficient mechanisms
of stress resistance (Price et al., 2004). Acid resistance is one of
the characteristics of E. coli O157:H7. The bacterium has evolved
multiple mechanisms to survive in low-pH environments (Lin

et al., 1996; Castanie-Cornet et al., 1999; Jordan et al., 1999; Price
et al., 2000, 2004; Large et al., 2005) such as gastrointestinal tracts
and various acidic foods (Weagant et al., 1994; Diez-Gonzalez and
Russell, 1999; Price et al., 2004). Acid resistance is especially cru-
cial for food-borne pathogens that must survive the hostile acidic
condition in the stomach before entering and colonizing the small
intestines or colon (Berk et al., 2005; Chen and Jiang, 2014).

Acid adaptation can further enhance the survival of E. coli
O157:H7 in fermented or acidified foods, and induce the cross-
protection against heat, salt, and acids (Farber and Pagotto, 1992;
Leyer and Johnson, 1993; Leyer et al., 1995; Cheville et al., 1996). A
variety of acidic foods have been involved in the outbreaks caused
by E. coli O157:H7. These include apple cider (Besser et al., 1993;
Hilborn et al., 2000), unpasteurized apple juice (Cody et al., 1999),
salami (Anonymous, 1995), and fermented sausage (Glass et al.,
1992). E. coli O157:H7 can also tolerate high concentration of
NaCl (Glass et al., 1992).

Many physical, chemical, and biological methods (such as pas-
teurization, radiation, addition of preservatives, or addition of
lactic acid bacteria) have been used to control E. coli O157:H7 in
foods. However, these control methods are not very effective for
certain foods or they can alter the color, flavor, or texture of the
foods. Safe and effective alternative methods are needed to control
E. coli O157:H7 in foods. Recent studies have showed that the use
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of phages to control pathogenic bacteria in foods is a promising
novel strategy.

The use of phages as antibacterial agents has several advan-
tages over traditional antibacterial methods. First of all, phages
are highly host specific. They only infect specific bacterial hosts
and cause rapid bacterial lysis. They do not infect humans and
other eukaryotes. Phages specific for pathogenic bacteria do not
disrupt normal microflora in humans (Kudva et al., 1999) or in
animals. Secondly, phages are not toxic to humans. Although cer-
tain cell lysis may release endotoxins, phages themselves do not
generate any toxic products during their multiplication (Hagens
and Loessner, 2010). Thirdly, phages do not alter food quality
because they do not produce any substances that can change the
taste, composition, aroma, or color of foods. In addition, phages
are stable (Coffey et al., 2010), but also self-limiting in foods. They
do not replicate unless their bacterial hosts are present (Hagens and
Loessner, 2010). Moreover, phages are the most abundant biolog-
ical entities and naturally present in the environment and a wide
variety of foods (Guenther et al., 2009). It is relatively easy to isolate
phages from the environment and propagate them in laboratories.
All these features make phages promising novel biocontrol agents
of bacterial pathogens in foods.

Recent studies have shown high efficacy of using phages against
several major food-borne pathogens including E. coli O157:H7,
Listeria monocytogenes, and Salmonella enterica in food prod-
ucts or on food contact surfaces. Use of phages specific for
E. coli O157:H7 resulted in significant, log-unit reductions in
E. coli O157:H7 counts in a variety of foods such as tomato,
spinach, broccoli, and ground beef (Abuladze et al., 2008), beef
(Carter et al., 2012), cantaloupe (Sharma et al., 2009), lettuce
(Sharma et al., 2009; Ferguson et al., 2013), and other leafy
green vegetables (Viazis et al., 2011). Such reductions could
substantially decrease a risk of food-borne infections by the
pathogen.

Significant progress in phage research for food safety has
been made toward phage applications in foods. Several phage-
based food additives have been recently approved or cleared
by the U.S. Food and Drug Administration (FDA). These
approvals have increased the impetus of phage research to uncover
phage-mediated applications against other food-borne pathogens
(Mahony et al., 2011). It is likely that more phage products will
be developed and gradually gain market acceptance by the food
industry and the consumers as a means of a safe, natural, and
effective prevention of food-borne diseases (O’Flaherty et al., 2009;
Sharma, 2013).

Phages specific for E. coli O157 have previously been isolated
from human fecal materials or animal manures from bovine,
ovine, swine, and chicken (Kudva et al., 1999; Morita et al.,
2002; O’Flynn et al., 2004; Tomat et al., 2013), lake or pond
water (Shahrbabak et al., 2013), and sewage (Sheng et al., 2006;
Shahrbabak et al., 2013). No E. coli O157-specific phages were
isolated from the environment where both acidity and salinity
are high. The objectives of this study were to isolate an E. coli
O157:H7-specific phage from a cucumber fermentation with low
pH (3.7) and high salt concentration (5% NaCl), to characterize
the phage, and to evaluate the potential of the phage as an effective
biocontrol agent against E. coli O157:H7 in various foods.

MATERIALS AND METHODS
BACTERIAL STRAINS AND CULTURE CONDITIONS
The E. coli strains used in this study are listed in Tables 1 and
2. A total of 46 E. coli O157:H7 strains, and 18 E. coli non-
O157:H7 strains from various sources were obtained from the
culture collection of USDA Agricultural Research Service located
at North Carolina State University. The non-O157 strains included
a variety of E. coli strains that express a variety of H antigens
including H7 antigen. Two previously described O antigen-
negative mutants (43895�per and F12), one per-complemented
mutant (43895�perComp), and two E. coli O157:H7 parent
strains (ATCC 43895 and 8624) were kindly provided by Pina
Fratamico (Table 3). All strains were stored in tryptic soy broth
(TSB; Difco) supplemented with 16% (v/v) glycerol at −80◦C
until use. Fresh overnight culture of each E. coli strain was
prepared by inoculating 10 ml of TSB with an isolated colony
from a tryptic soy agar (TSA) plate and incubating statically
for 12 h at 37◦C. For phage lysate preparation, TSB broth was
supplemented with 10 mM CaCl2 (Sigma–Aldrich, St. Louis,
MO, USA) unless otherwise stated. Soft TSA agar used in
plaque assay was prepared with TSB broth supplemented with
0.6% agar.

BRINE SAMPLE COLLECTION AND TREATMENT
To isolate E. coli O157:H7-specific phages, brine samples (40 ml
each) were taken from seven industrial cucumber fermentation
tanks (capacity: 32,000 l) from a commercial processing plant.
The tanks contained approximately 55% pickling cucumbers in
5 to 8% recycled NaCl brine, prepared essentially as described
by Breidt et al. (2013). These samples were taken during the fer-
mentation (3–5 days after the tanks were packed and brined).
Samples were transported to the laboratory at ambient tem-
perature (∼23◦C), stored at 4◦C, and processed within 24 h.
The pH of each brine sample was measured and adjusted to
around 6.4 with 5 M NaOH. The pH-adjusted brine samples
were then centrifuged (5,000 × g for 10 min). The super-
natants were filtered through syringe filters (0.45 μm pore size) to
remove cellular materials and solid particles. The filtrates were
stored at 4◦C until used as potential phage source for phage
isolation.

PHAGE ISOLATION
Ten E. coli O157:H7 strains (shown in bold text, Table 1) were
used as potential hosts for phage isolation. Overnight cultures of
these O157 strains (∼109 CFU/ml) were prepared in TSB. A 96-
well microplate was used to enrich phages potentially present in
the filtered brines. Each well of the microplate contained 200 μl
of TSB, 5 μl of one of the 10 E. coli O157:H7 strains and 45 μl
of one of the eight filtered brines, so the eight wells in the same
column received the same O157:H7 strain. The first 10 wells in
the same row received the same filtered brine. After incubation
at 37◦C for 20 h, the microplate was centrifuged (SH-3000 rotor,
RC-5B centrifuge, Sorvall, Newtown, CT, USA) at 4,000 rpm, 4◦C
for 20 min. The supernatant (lysate) in each well was collected
and used in spot tests to detect the presence of phages. Each spot
test was performed by adding 10 μl of a phage lysate onto a lawn
of E. coli O157:H7 in a soft agar overlay on a TSA plate. After
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Table 1 | Escherichia coli O157:H7 strains that are sensitive to phage

�241.

IDa Serotype Source

B0201b O157:H7 Apple cider outbreak

B0349 O157:H7 Spinach outbreak

B0264 O157:H7 Apple juice outbreak, 1996

B0204 O157:H7 Pork

B0202 O157:H7 Salami outbreak

B0203 O157:H7 Ground beef

B0348 O157:H7 Salami

B0350 O157:H7 Sakai

B0243 O157:H7 Bovine carcass

B0242 O157:H7 Bovine carcass

B0240 O157:H7 Bovine carcass

B0239 O157:H7 Bovine carcass

B0238 O157:H7 Bovine carcass

B0241 O157:H7 Bovine carcass

B0258 O157:H7 Bovine feces

B0259 O157:H7 Bovine feces

B0301 O157:H7 Water

B0307 O157:H7 Water

B0306 O157:H7 Water

B0309 O157:H7 Water

B0302 O157:H7 Water

B0297 O157:H7 Water

B0299 O157:H7 Water

B0285 O157:H7 Water

B0275 O157:H7 Water

B0305 O157:H7 Water

B0281 O157:H7 Water

B0289 O157:H7 Water

B0280 O157:H7 Water

B0287 O157:H7 Water

B0283 O157:H7 Water

B0269 O157:H7 Human, outbreak, 2000, waterborne

B0273 O157:H7 Human, outbreak, 2002, leafy vegetable

B0247 O157:H7 Human, outbreak

B0296 O157:H7 Human, outbreak, 2005, leafy vegetable

B0311 O157:H7 Human, outbreak, 2006, leafy vegetable

B0246 O157:H7 Human, outbreak

B0271 O157:H7 Human, outbreak, 2003, leafy vegetable

B0250 O157:H7 Human, outbreak

B0263 O157:H7 Human, sporadic, 1997,

B0251 O157:H7 Human, outbreak

B0249 O157:H7 Human, outbreak

B0266 O157:H7 Human, outbreak, 1999, taco meat

B0245 O157:H7 Human, outbreak

B0265 O157:H7 Human, outbreak, 1999, lettuce

B0244 O157:H7 Human, outbreak

aID, identification number in the culture collection of USDA-ARS Food Fermenta-
tion Laboratory.
bThe strains with ID bolded were used for initial phage isolation.

Table 2 | Non-O157 strains of E. coli that are resistant to phage �241.

IDa Serotype Source

B0445 O26:H11 Human

B0449 O26:H11 Human

B0463 O103:H6 Human diarrhea

B0460 O103:H25 Human

B0469 O104:H4 Human

B0467 O104:H21 Human, milk outbreak

B0475 O111:NMb Human

B0478 O111:H8 Human

B0479 O121:NM Human diarrhea

B0485 O145:NM Human

B0457 O45:H2 Cow (calf)

B0468 O104:H7 Ground beef

B0235 Non-O157c Bovine feces

B0237 Non-O157 Bovine feces

B0234 Non-O157 Bovine feces

B0236 Non-O157 Bovine feces

B0233 Non-O157 Bovine feces

25922 O6:H1 ATCCd

aID, identification number.
bNM, non-motile.
cThe strains were not completely serotyped. But the data showed that they did
not respond to the serum antibody against O157 strains.
dATCC, American Type Culture Collection.

overnight incubation at 37◦C, the plates were checked for a zone
of bacterial lysis.

PHAGE PURIFICATION AND CONCENTRATION
Phage from a positive spot-test plate was purified and concen-
trated using the methods described by Lu et al. (2003) with minor
modification. Briefly, an isolated single plaque was picked and
propagated against its natural host in TSB at 37◦C. After two runs
of plaque purification, the phage lysate was prepared and then
centrifuged at 5,000 × g for 10 min. The supernatant was fil-
tered through bottle-top filter (0.45 μm pore size). The filtered
high titer phage stock (typically ca. 1010 PFU/ml) was stored at
4◦C. To further purify and concentrate the phage, a portion of
the phage stock were treated with DNase I and RNase A, and then
concentrated by PEG precipitation. The concentrated phage was
further purified by CsCl step density gradient ultracentrifugation
at 600,000 × g for 6 h at 4◦C followed by dialysis as described by
Lu et al. (2003). The ultracentrifuge-purified phage was used for
electron microscopy analysis, SDS-PAGE, and DNA extraction.

ELECTRON MICROSCOPY
Phage samples were negatively stained with 2% (w/v) aqueous
uranyl acetate (pH 4) on carbon-coated grids and examined by
transmission electron microscopy (JEM 1200EX TEM, JEOL) at
an accelerating voltage of 80 kV. Electron micrographs were taken
at a magnification of 50,000× (Center for Electron Microscopy,
North Carolina State University, Raleigh, NC, USA).
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Table 3 | Phage susceptibility of E. coli O157:H7 strains and their O antigen-negative mutants.

E. coli strain Description Plaque formationa Source or reference

ATCC 43895 Wild-type E. coli O157:H7, clinical isolate, stx1
+/stx2

+ + ATCCb

43895�per O antigen-negative mutant of ATCC 43895 with perosamine synthetase deleted – Sheng et al. (2008)

43895�perComp 43895�per transformed with pCRII::per + Sheng et al. (2008)

8624 Wild-type E. coli O157:H7, clinical isolate, stx1/stx2
+ + Bilge et al. (1996)

F12 O antigen-negative mutant of strain 8624 – Bilge et al. (1996)

a+, susceptible to �241; –, not susceptible to �241.
bATCC, American Type Culture Collection.

ONE-STEP GROWTH KINETICS
One step growth experiments were carried out based on the
method described by Leuschner et al. (1993) and Foschino et al.
(1995) with some modifications. Briefly, the experiment started
at a multiplicity of infection (MOI) of 0.01 in a 15-ml tube con-
taining the phage (approximately 1 × 106 PFU/ml) and its natural
host O157:H7 strain B0241 in 10 ml TSB. After incubation in a
water bath at 37◦C for 10 min (to allow phage adsorption), the
tube was centrifuged at 13,000 × g for 30 s. The supernatant was
removed and subjected to plaque assay to determine the titer of
the un-absorbed phage. The pellet containing (partially) infected
cells was immediately re-suspended in 10 ml of pre-warmed TSB.
After taking the first sample, the tube was returned to the water
bath (37◦C). A sample (100 μl) was collected every 5 min (up to
60 min). Each sample was immediately diluted and subjected to
plaque assay. All assays were carried out in triplicate. The exper-
iment was repeated three times. Latent period was defined as the
time interval between the end of the adsorption and the beginning
of the first burst, as indicated by the initial rise in phage titer (Ellis
and Delbruck, 1939; Adams, 1959). Burst size was calculated as
the ratio of the final number of liberated phage particles to the
initial number of infected bacterial cells during the latent period
(Adams, 1959).

HOST RANGE
Phage �241 was the only phage isolated from one of the seven
samples. The host range of �241 was determined by spot tests
against 46 E. coli O157:H7 strains (Table 1) and 18 non-O157
strains (Table 2) on TSA. In each test, 10 μl of high titer phage
stock (1010 PFU/ml) was used to spot a bacterial lawn of a strain
on a plate. Each test was done in duplicate. The O antigen-negative
mutants of E. coli O157:H7 and their parent strains (Table 3) were
also tested using the agar overlay method.

PHAGE STRUCTURAL PROTEINS
The phage structural proteins were analyzed using the method
previously described by Lu et al. (2003) with some modifica-
tions. Briefly, the ultracentrifuge-purified phage particles were
mixed with SDS-PAGE sample buffer and then heated in a
boiling water bath for 10 min. The boiled sample was loaded
onto a NuPAGE precast gradient minigel (4–12% Bis-Tris, Invit-
rogen Corporation, Carlsbad, CA, USA). Electrophoresis was
carried out at 75 V for 2 h. Pre-stained protein standard
(Invitrogen) was used to estimate the molecular weights of

the proteins. The gel was stained with SimplyBlue SafeStain
(Invitrogen).

PHAGE DNA EXTRACTION AND RESTRICTION
Phage DNA was prepared from the concentrated lysate using the
phenol–chloroform extraction method as described by Lu et al.
(2003), and digested with restriction endonucleases (AluI, BamHI,
ClaI, EcoRI, EcoRV, HindIII, MspI, SwaI, and XbaI; New Eng-
land BioLabs, Beverly, MA, USA) according to the manufacturer’s
instructions. The resulting DNA fragments were separated on the
1% agarose gel containing 0.001% SYBR Safe DNA gel stain (Invit-
rogen) by gel electrophoresis in Tris-borate-EDTA buffer at 70 V
for 2 h. The 1 kb DNA ladder (Promega, Madison, WI, USA) was
used to estimate the size of the digested phage DNA.

PHAGE INFECTION
The lytic activity of phage �241 against host E. coli O157:H7
B0241 was investigated in TSB medium at three different MOIs. A
bacterial overnight culture was diluted with TSB to a concentration
of ca. 9 × 106 CFU/ml. Ten milliliter of the diluted bacterial
culture was then transferred into each of the four 15-ml tubes.
One of these tubes served as a control. To each of other three
tubes, a high titer phage stock (2.8 × 1010 PFU/ml) was added to
achieve an initial MOI of 10, 3, or 0.3, respectively. The four tubes
were incubated statically at 37◦C. Samples were taken from each
tube at 60-min intervals for a 12-h period. After serial dilution,
each sample was plated onto TSA plates using a spiral autoplater
(Model 4000, Spiral Biotech, Bethesda, MD, USA). The plates were
incubated at 37◦C overnight. The colonies on each plate were
enumerated using Q-Count system (Model 510, Spiral Biotech,
Norwood, MA, USA). The experiment was repeated two more
times.

STATISTICAL ANALYSIS
Differences in bacterial cell concentration between various group-
ing of MOIs were analyzed by using one-way analysis of variance
(ANOVA) and Tukey’s multiple comparison.

RESULTS AND DISCUSSION
ISOLATION OF PHAGE Φ241
Seven brine samples from 32,000-l cucumber fermentation tanks
(all from the same commercial plant) were enriched for phage iso-
lation. One sample was found to contain a phage that infects E.
coli O157:H7. The phage-containing sample was taken from a tank
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3 days after the tank was packed with size 2A cucumbers (∼27–
32 mm in diameter). The pH and the salt (NaCl) concentration
of the sample were 3.7 and 5%, respectively. In contrast, the pH
and salt concentration of the samples from other six tanks were
in the range of 3.42–3.92, and 6 to 8%, respectively. The higher
salinity in these six tanks may greatly inhibit phages, which may
explain why no O157:H7 phages were isolated from them. The
isolated O157:H7 phage was designated �241. The presence of
phage �241 specifically active against E. coli O157:H7 in an early
stage of the commercial cucumber fermentation indicates that the
host strain(s) may be present as well. The most likely source for E.
coli O157:H7 in the commercial fermentation would be the fresh
cucumbers. Application of animal waste as fertilizer and irrigation
of crops with waste water have been recognized as important routes
through which E. coli O157:H7 can contaminate fresh vegetables
during primary production (Ongeng et al., 2013). However, we
are unaware of any reports of disease outbreaks caused by veg-
etative pathogens from fermented vegetables. Previous research
has shown that E. coli O157:H7 will be killed during fermentation
of cucumbers in a pH and time dependent manner (Breidt and
Caldwell, 2011).

The isolated phage �241 forms small (ca. 1 mm in diameter)
plaques on the lawn of its natural host, E. coli O157:H7 strain
B0241 which contains stx2 gene and was originally isolated from
bovine carcass (Table 1). The concentration of high-titer phage
stock (ca. 1010 PFU/ml) remained unchanged during 2 years of
storage at a refrigeration temperature, indicating that the phage is
very stable.

MORPHOLOGY
The electron micrograph (Figure 1) showed that phage �241 has
an icosahedral head (about 80 nm in diameter) and a contractile
tail (ca. 33 nm long in the contracted state) with a base plate and
several tail fibers. The overall morphology of �241 indicates that
it is a T4-like phage, belonging to the Myoviridae family of the
Caudovirales order. Interestingly, several phage particles appeared
to cluster together through the tail fibers (Figure 1). The base
plate and tail fibers are usually involved in the host cell recognition
and receptor-binding by many tailed phages (Riede, 1987; Leiman
et al., 2004; Bartual et al., 2010; Garcia-Doval and van Raaij, 2012).

FIGURE 1 |Transmission electron micrograph of phage �241

negatively stained with 2% uranyl acetate (pH 4). Scale bar, 100 nm.

ONE-STEP GROWTH KINETICS
Figure 2 shows the one-step growth of phage �241. The latent
period was only 15 min (excluding 10 min for adsorption), which
is shorter than the typical latent periods (21–120 min) for most
Myoviridae phages. A short latent period allows phage �241 to
replicate faster than most Myoviridae phages. The average burst
size of �241 was about 53 phage particles per infected cell, which
is in the range of 50–100 PFU/cell for many Myoviridae phages
(Foschino et al., 1995; Chang et al., 2005; Raya et al., 2006; Bao
et al., 2011; Park et al., 2012). A few Myoviridae phages have very
large burst sizes. The burst size of phage PhaxI (another O157:H7
phage) is 420 PFU per cell (Shahrbabak et al., 2013). A phage with
both a short latent period (15 min or less) and a large burst size
(>50 PFU/cell) may have a selective advantage over competing
phages, resulting in very high lytic activity (Park et al., 2012).

HOST RANGE
A total of 69 E. coli strains from various sources (Tables 1–3)
were tested to determine the host range of phage �241. The
phage was able to lyse all 46 O157:H7 strains (Table 1), but
none of the 18 non-O157 strains (Table 2) including O104:H7
strain which has the same H antigen as that of O157:H7. E. coli
O104:H7 was originally isolated from ground beef (Bosilevac and
Koohmaraie, 2011). It is also Shiga toxin-producing strain con-
taining two uncommon Shiga toxin gene variants, stx1c and stx2c

(Bosilevac and Koohmaraie, 2011). The data suggested that the
phage is O157 antigen specific, and H7 antigen may not be involved
in the host recognition and binding. Phage infection requires spe-
cific receptors on bacterial cells. The common receptors on E.
coli include O antigen of lipopolysaccharide (LPS), outer mem-
brane proteins, pili, fimbriae, and flagella (H) antigen (Topley
and Wilson, 1990; Bokete et al., 1997). Many cell wall receptors
can be shared by different bacterial strains and serotypes (Top-
ley and Wilson, 1990). To confirm that O157 antigen (not H7
antigen) serves as the receptor during �241 adsorption, two pre-
viously described O antigen-negative mutants (43895�per and
F12), one per-complemented mutant (43895�perComp), and
two E. coli O157:H7 parent strains (ATCC 43895 and 8624) were

FIGURE 2 | 1-step growth curve of phage �241 infecting Escherichia

coli O157:H7 at MOI 0.01 inTSB medium at 37◦C. The latent period is
15 min. The error bars indicate standard deviations.
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tested for their susceptibility to �241 infection (Table 3). The
mutant 43895�per was generated by deletion of a putative per-
osamine synthetase gene (per) in the rfb gene cluster (Sheng
et al., 2008). The mutant F12 was created by transposon inser-
tion of TnphoA in the per gene (Bilge et al., 1996). Deletion of
per gene or insertion in per gene resulted in a mutant lacking the
O antigen. The �per mutant (43895�per) also lacked H7 anti-
gen, but the transposon insertion mutant (F12) still expressed the
H7 antigen. The per-complemented mutant (43895�perComp)
was constructed by cloning per in the E. coli vector pCRII and
transforming pCRII::per into the mutant to restore O157 anti-
genicity (Sheng et al., 2008). Table 3 showed that phage �241 lysed
the two O157:H7 parent strains (ATCC 43895 and 8624) which
had the full-length O157 antigen, and the per-complemented
strain (43895�perComp) which was able to express O157 anti-
gen. But the phage did not lyse the two O157 antigen-negative
mutants, 43895�per (also lacking H7 antigen) and F12 (still hav-
ing H7 antigen). These results supported our hypothesis that
O157 antigen is required for the infection by phage �241, and
strains lacking O157 antigen were resistant to the phage infec-
tion, regardless of the presence or absence of H7 antigen in the
strains. Similar observations have been reported for other O157-
specific phages. Kudva et al. (1999) studied three O157-specific
phages isolated from bovine and ovine fecal samples. They found
that the three phages lysed all of the eight tested E. coli O157
strains including the strain 8624 and did not lyse non-O157 E. coli
strains, or O157-negative mutants including F12. In addition, the
three phages did not lyse the complement of the O157-deficient
mutant, F12(pF12), which produces a truncated O157 LPS (Kudva
et al., 1999). They found that phage infection and plaque forma-
tion were influenced by the structure of the host cell O157 LPS.
Strains that did not express the O157 antigen or expressed a trun-
cated LPS were not susceptible to plaque formation or lysis by
phage. Interestingly, strains that expressed abundant mid-range-
molecular-weight LPS were lysed in broth media but did not
support plaque formation. They explained that in broth media,
the excess mid-range-molecular-weight LPS can diffuse from cells
into the broth. But on soft agar, those molecules may accumulate
around cells, thereby preventing phage attachment (Kudva et al.,
1999). An appropriate length of the O side chains and an opti-
mal LPS concentration may be necessary to make the receptor
available for phage interaction and/or to allow irreversible phage
binding (Calendar, 1988). The high specificity of phage �241
for O157 antigen makes it an ideal biocontrol agent of E. coli
O157:H7 without disrupting the beneficial bacteria such as pro-
biotics in foods, normal flora in humans, or other microflora in
cattle.

STRUCTURAL PROTEINS
SDS-PAGE gel revealed at least 13 protein bands from �241
(Figure 3), indicating that the phage contains many types of struc-
tural proteins. Four of the protein bands are in the molecular
weight (MW) range of 26 to 50 kDa. These include three weak
bands and one strong band (band 7 in Figure 3, MW≈44 kDa).
In fact, this strong band is the strongest one among all bands,
indicating that the protein in this band is the most abundant
protein. In many tailed phages, the most abundant proteins are

FIGURE 3 | SDS-PAGE of �241 structural proteins. Lane M: molecular
weight (MW) standard; lane 1: �241. The MWs of protein bands in the
standard are indicated on the left.

usually identified as the major head proteins (Santos et al., 2011).
The MWs of major head proteins generally fall within the range
of 26–50 kDa. For example, the sequence-predicted MWs of the
major capsid protein in Lactobacillus plantarum phage �JL-1 (Lu
et al., 2005), O157:H7 phage PhaxI (Shahrbabak et al., 2013), Pseu-
domonas aeruginosa phages LKA1 and LKD16 (Ceyssens et al.,
2006), Salmonella enterica phage PVP-SE1 (Santos et al., 2011)
are 30.4, 48.0, 36.7, 37.7, and 38.5 kDa, respectively. Since SDS-
PAGE analysis can only reveal a very limited number of structural
proteins, genomic studies are needed in order to better understand
phage structural proteins and their functions.

DNA RESTRICTION
The �241 genome could be digested by rare-cutters, AluI, MspI,
and SwaI (Figure 4). Restriction by AluI or MspI generated more

FIGURE 4 | Restriction analysis of the DNA from �241. Lane M: 1-kb
ladder; Lane 1: digestion by AluI; lane 2: digestion by MspI; lane 3:
digestion by SwaI; lane 4: undigested DNA.
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than 15 bands on agarose gel while restriction by SwaI only gener-
ated a single band with a high MW. The phage genome could not be
digested by many commonly used restriction endonucleases such
as BamHI, ClaI, EcoRI, EcoRV, HindIII, and XbaI. Similar phe-
nomenon was also observed for other O157:H7-specific phages.
Shahrbabak et al. (2013) reported that the genome of phage PhaxI
was resistant to eight tested restriction endonucleases including
BamHI, EcoRI, EcoRV, HindIII, and a few others (Shahrbabak
et al., 2013). The resistance suggested the presence of modifica-
tion such as methylation and glycosylation in the phage DNA,
allowing the phage to evade the restriction by the host enzymes
(Bickle and Kruger, 1993; Nechaev and Severinov, 2008; Vasu and
Nagaraja, 2013). Sequence analysis may provide insight into the
anti-restriction modification system in phage genome.

PHAGE INFECTION
The lytic activity of phage �241 against its natural host E. coli
O157:H7 B0241 was investigated at three different MOIs. Figure 5
shows the growth curves of phage-free and phage-infected cul-
tures in TSB medium at 37◦C. The phage-free culture (the control
culture) grew steadily during the first 4 h of incubation. After 4 h,
the control culture entered the stationary phase and remained
unchanged (Figure 5). In contrast, the phage infection at the
MOI of 3 or 10 caused a rapid cell lysis within 1 h, resulting
in 3- or 4.5-log decrease in the cell concentration. Such a high
lytic activity within 1 h may be attributed in part to the short
latent period (15 min) of the phage. During the second hour, the
cell concentration of the culture with a MOI of 3 continued to
decrease while the cell concentration of the culture with the MOI
of 10 started to increase. In contrast, infection at the MOI of
0.3 initially caused a slow cell lysis (less than 0.5-log reduction)
during the first hour, but a rapid cell lysis (3-log reduction) dur-
ing the second hour. The data from statistical analysis showed

FIGURE 5 | Lytic activity of phage �241 against E. coli O157:H7 inTSB

medium at MOI 10 (o), 3 (�), or 0.3 (���). The control (•) contains only
E. coli O157:H7. All cultures were incubated at 37◦C. The error bars indicate
standard deviations in triplicate experiments.

that at 1 h after phage infection the cell concentrations from
different MOIs were statistically different (P < 0.05) and every
cell concentration was different from all other cell concentrations
(α = 0.05). At 2 h after phage infection the cell concentration
from the MOI of 0.3 was statistically different from all other cell
concentrations while the cell concentrations from the initial MOIs
of 3 and 10 were not statistically different. Similar rapid cell lysis
caused by �241 in cucumber juice was also observed (prelim-
inary data not shown). Kudva et al. (1999) evaluated the lytic
activity of three O157-specific phages in Luria-Bertani medium
supplemented with 5 mM MgSO4 at 37◦C. They reported that
the significant (>4 log) decrease in E. coli O157:H7 concentra-
tion caused by those phages individually or in cocktail required
much higher MOI (103 PFU/CFU) and much longer incuba-
tion time (8 h) compared with those in our study. Figure 5
showed that the cultures with an initial MOI of 3 or 0.3 started
to grow after 2 h. Interestingly, after 3 h of infection, all three
phage-infected cultures, regardless of the initial MOI, reached
the same cell concentration (104 CFU/ml), which was 4.5-log
lower than that of the control and 3-log lower than the initial
cell concentration. As the incubation continued, the three cul-
tures continued to grow at a similar rate, gradually approaching
to the cell concentration of the control. After 12 h of infection,
the phage titers in the cultures at the initial MOI of 10, 3, and 0.3
reached 4 × 109, 5 × 109, and 1.6 × 1010 PFU/ml, respectively.
Apparently, the culture started with the lowest initial MOI (0.3)
contained the highest phage titer (1.6 × 1010 PFU/ml) at the end
of incubation.

The growth of phage-infected cultures after 1 or 2 h of infec-
tion indicated that phage-resistant mutants had emerged. The
emergence of phage-resistant mutants during phage infection has
been reported by many other studies (Kudva et al., 1999; O’Flynn
et al., 2004; Park et al., 2012; Tomat et al., 2013). Phage resis-
tance may result from mutation that alters cell surface receptors,
restriction modification, or abortive infection associated with
the presence of clustered regularly interspaced short palindromic
repeats (CRISPRs) in the bacterial genome (Hill, 1993; Hashemol-
hosseini et al., 1994; Allison and Klaenhammer, 1998; Barrangou
et al., 2007). A few studies found that certain phage resistant
mutants of E. coli O157:H7 had altered OmpC expression or lost
OmpC, suggesting the involvement of the major outer membrane
protein in phage attachment (Yu et al., 2000; Morita et al., 2002;
Mizoguchi et al., 2003). Some studies found that cell morphol-
ogy and colony morphology of phage-resistant mutants differed
greatly from those of the parent E. coli O157:H7 strains (Mizoguchi
et al., 2003; O’Flynn et al., 2004). Phage-resistant mutant cells
appeared coccoid and smaller. As a result, phage-resistant cul-
ture could not reach the same turbidity as that of the parent strain
culture (O’Flynn et al., 2004). The frequency of phage-resistant
mutation is generally around 10−6 CFU for E. coli O157:H7
(O’Flynn et al., 2004; Park et al., 2012; Tomat et al., 2013). With
such a low mutation frequency and the low level of E. coli O157:H7
typically encountered in foods, phage resistance should not hin-
der the use of phages as biocontrol agents against the pathogenic
bacteria (O’Flynn et al., 2004; Tanji et al., 2004). Some studies
explored the potential of using a phage cocktail to minimize the
development of phage resistant mutants on meats and other foods
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(O’Flynn et al., 2004; Tanji et al., 2004; Carter et al., 2012; Tomat
et al., 2013). Using a phage cocktail containing different phages
against the same bacterial species can decrease the likelihood of
selecting phage-resistant mutants. Because different phages may
attach to different receptors on the host, mutations in one phage
receptor gene may not alter the mutant’s susceptibility to another
phage that attaches to a different receptor on the bacterial cells
(Tanji et al., 2004).

In conclusion, phage �241 is highly specific for E. coli O157:H7
and very stable when stored at high titers at refrigeration temper-
ature. The phage causes rapid cell lysis, and tolerates both low pH
and high salinity. These features indicate that the phage has a high
potential as an effective biocontrol agent of E. coli O157:H7 in
foods. Trials are under way to evaluate the efficacy of the phage to
control E. coli O157:H7 in various foods including acidic and/or
salty foods. To our knowledge, this is the first report on the
E. coli O157:H7 phage isolated from low pH and high salinity
environment.
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