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Tropical smallholder agriculture is undergoing rapid transformation in nutrient cycling
pathways as international development efforts strongly promote greater use of mineral
fertilizers to increase crop yields. These changes in nutrient availability may alter the
composition of microbial communities with consequences for rates of biogeochemical
processes that control nutrient losses to the environment. Ecological theory suggests that
altered microbial diversity will strongly influence processes performed by relatively few
microbial taxa, such as denitrification and hence nitrogen losses as nitrous oxide, a powerful
greenhouse gas. Whether this theory helps predict nutrient losses from agriculture
depends on the relative effects of microbial community change and increased nutrient
availability on ecosystem processes. We find that mineral and organic nutrient addition to
smallholder farms in Kenya alters the taxonomic and functional diversity of soil microbes.
However, we find that the direct effects of farm management on both denitrification and
carbon mineralization are greater than indirect effects through changes in the taxonomic and
functional diversity of microbial communities. Changes in functional diversity are strongly
coupled to changes in specific functional genes involved in denitrification, suggesting that
it is the expression, rather than abundance, of key functional genes that can serve as an
indicator of ecosystem process rates. Our results thus suggest that widely used broad
summary statistics of microbial diversity based on DNA may be inappropriate for linking
microbial communities to ecosystem processes in certain applied settings. Our results also
raise doubts about the relative control of microbial composition compared to direct effects
of management on nutrient losses in applied settings such as tropical agriculture.
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INTRODUCTION
Agricultural management, such as mineral nutrient addition, can
lead to marked changes in the taxonomic composition of soil
microbial communities (Ramirez et al., 2010, 2012; Fierer et al.,
2011; Wood et al., 2015). The pairing of mineral and organic
nutrient addition to agriculture can significantly impact the abil-
ity of soil microbial communities to catabolize a range of carbon
(C) substrates as well as affect the abundance of microbial func-
tional genes involved in multiple aspects of C, nitrogen (N), and
phosphorus (P) cycling (Wood et al., 2015). Some of the micro-
bially driven processes associated with these changes in functional
capacity, such as denitrification and decomposition, determine
the retention and loss of nutrients in ecosystems and are thus
important to managing agriculture for crop production while
minimizing nutrient losses to the environment (Vitousek et al.,

2009). There is thus keen interest in whether changes in microbial
community composition can directly impact rates of ecosystem
processes (e.g., Wessén et al., 2011; Wallenstein and Hall, 2012;
Philippot et al., 2013; van der Heijden and Wagg, 2013; Krause
et al., 2014).

Certain ecosystem processes are likely to be more sensitive
to changes in microbial community composition than others.
Narrow processes are most likely to be affected by changes in
community composition because they require a specific phys-
iological pathway and/or are carried out by a phylogenetically
clustered group of organisms (Schimel and Schaeffer, 2012). Thus,
processes can be either physiologically narrow, phylogenetically
narrow, or both. In this manuscript we use the term “narrow”
to refer to physiologically narrow processes that require spe-
cific physiological pathways, regardless of their distribution in
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the microbial phylogeny. For instance, we refer to denitrifica-
tion as a narrow process because it requires particular genes that
code for enzymes capable of reducing various forms of nitrogen.
Because a relatively small proportion of microorganisms carry
these genes, changes in community composition that lead to a
shift in the relative abundance of denitrifiers—or changes in the
abundances of the relevant functional genes—should have signifi-
cant impacts on rates of denitrification (Pett-Ridge and Firestone,
2005; Philippot et al., 2013; Powell et al., 2015). Mineralization
of soil C to CO2, by contrast, is a broad process because the
ability to mineralize and respire C substrates is relatively sim-
ple and shared by many microbial taxa (Schimel and Schaeffer,
2012). We thus expect that carbon mineralization would not
respond strongly to changes in the composition of microbial
communities.

Whether this framework of broad and narrow processes helps
predict nutrient losses from agriculture depends on the relative
importance of the multiple potential drivers of ecosystem pro-
cess rates, including microbial community composition, nutrient
availability, and soil and environmental properties. Though sev-
eral studies have found support for microbial influence on narrow
processes, such as denitrification, such studies often focus on iden-
tifying whether microbial community composition is related to
ecosystem processes, but stop short of quantifying the relative con-
tribution of the multiple controls on ecosystem processes (e.g.,
Philippot et al., 2013). Understanding the importance of biodi-
versity requires assessing the influence of composition relative to
other biotic and abiotic controls (Laliberté and Tylianakis, 2012;
Bradford et al., 2014).

Following theory (Schimel, 1995; Schimel and Schaeffer, 2012),
we hypothesize that changes in microbial diversity will have a
stronger effect on denitrification than will the direct effect of nutri-
ent addition—measured as both N addition and the inclusion of
seasonal legume rotations (henceforth agroforestry) to increase soil
C—if changes in diversity correspond with changes in the relative
abundance of denitrifying taxa and the abundances of functional
genes involved in denitrification. Because C mineralization is a
broad process, we expect that nutrient addition will have a stronger
effect on process rates than changes in the microbial community.

MATERIALS AND METHODS
SITE SELECTION
We examine our hypotheses on 24 smallholder farms in western
Kenya participating in the Millennium Villages Project (MVP) site
in Sauri, Kenya (Figure 1; Wood et al., 2015). The center of the
study area is located at 0◦06′04.88 N, 34◦30′40.12 E at an eleva-
tion of 1450 m. The mean annual temperature and precipitation
for the study region are 24◦C and 1800 mm, respectively. Annual
precipitation is distributed bi-modally with 1120 mm in a long
rainy season from March to June and 710 mm in a short rainy
season from September to December. The soils are classified as
Oxisols and are well drained sandy clay loams (on average 53.75%
sand, 12.59% silt, 33.54% clay) with a mean pH of 5.45 and C:N
of 11.52 (0–20 cm). The study zone was originally part of the
moist broadleaf forest area in eastern and central Africa, but is
now a mixed-maize agricultural system, with most farmers cul-
tivating maize in both the long and short rainy seasons. Some

farmers, however, replace the short rain maize crop with a sea-
sonal legume rotation that fixes nitrogen and builds soil organic
matter.

The MVP was designed to meet the Millennium Development
Goals at the village scale in Sub-Saharan Africa and includes an
agricultural component that focuses on increasing crop yields
through mineral and organic nutrient addition to redress nega-
tive soil nutrient balances (Sanchez et al., 2007). This is primarily

FIGURE 1 | Maize production in western Kenya mainly occurs on

smallholder farms of around 1 hectare (A). Map (B) shows the study
farms and their distribution across the Millennium Villages Project site area
in western Kenya. Farm types are coded by color.
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achieved by subsidizing mineral fertilizers (primarily diammo-
nium phosphate and urea). Farmers are also trained in seasonal
legume rotations to fix nitrogen and build soil organic matter. In
Sauri, rotational legume trainings have been promoted since the
early 1990s (Kiptot et al., 2007) and fertilizer subsidy programs
were active from 2005 to 2008.

We selected farms to participate in the study based on 2 years
of household surveys. We determined nutrient inputs and out-
puts for each of these farms through a combination of interviews,
on-farm crop harvests, and biomass estimations. Farms were clas-
sified into three categories: low fertilizer, high fertilizer, and high
fertilizer + agroforestry (specifically, seasonal legume rotations).
Low fertilizer farms have applied less than 10 kg mineral N ha−1

y−1 since 2005; high fertilizer farms have applied at least 60 kg N
ha−1 y−1 over the same time period. High fertilizer + agroforestry
farms (henceforth agroforestry) apply amounts of mineral N com-
parable to high fertilizer farms, but also use agroforestry techniques
to build soil organic matter. These agroforestry techniques replace
short-rain maize crops with fast-growing leguminous tree, shrub,
or herbaceous species that are planted from seed and cut each
year for organic inputs to crop fields. These techniques are
referred to generally as agroforestry, though agroforestry is a
general term that captures different practices not studied here
(e.g., wind breaks, live fencing, etc.). Our results, therefore,
apply to agroforestry strategies that seasonally incorporate legume
rotations.

We estimated the amount of N added to farms with farmer-
reported data on the quantity of N added through mineral and
organic sources (diammonium phosphate, urea, biological N2-
fixation, and manure). For agroforestry farms, we also estimated
the amount of N added through N2-fixation based on both
literature-reported values and field-reported biomass estimates.
To estimate the amount of N added through N2-fixation we col-
lected data on legume species planted, original planting density,
thinning practices, wood harvesting, and legume management.
We used plant density to estimate the amount of aboveground
biomass N for each species present and then used literature data
on the percent of total N derived from biological N2-fixation for
each species to calculate the amount of N derived from fixation
(Gathumbi et al., 2002a,b; Ojiem et al., 2007). Because farmers
tend to remove woody stems but incorporate fresh leaves, we
removed the amount of N stored in woody biomass from this
value to estimate the net N contribution from the legume species
to the farm fields. We conservatively estimate that N2-fixation
contributed between 30 and 50 kg N ha−1 year−1 during the short
rain fallow, up to 30 kg of which may be due to the presence of
Mucuna pruriens, an annual climbing legume (Ojiem et al., 2007).
Planting densities, however, can vary widely from year-to-year
with low-density years being as low as an order of magnitude
less than those assumed in this estimate. Thus, depending on
the year, actual fixation rates may be as low as 5–30 kg N ha−1

short rainy season−1. We use the term ‘nutrient addition’ to refer
to both N addition on low- and high-fertilizer and agroforestry
farms as well as C addition through agroforestry. The final farms
included in the study are distributed across the Sauri village clus-
ter, but are clustered by treatment (Figure 1) on similar underlying
soils.

SAMPLE COLLECTION AND MEASUREMENT
Soil sampling was conducted in June 2012, in the middle of the
long rains, 2 weeks after fertilizer application. On the farm fields,
we took 15 2-cm diameter soil cores from the top 20 cm of bulk
soil. Cores were taken at regular intervals throughout the entire
farm field and homogenized and aggregated to a composite sam-
ple. At each core location we recorded temperature and volumetric
soil moisture content using a soil thermometer and a HydroSense
moisture probe (Campbell Scientific, Logan, UT, USA). We sieved
soils to 2 mm and stored soil for DNA extraction at −20◦ C. Soils
for DNA extraction were transported to the U.S. within 1 week
of sampling. Subsamples of sieved field soil were stored at 4◦
C, transported to the U.S. within 1 week of sampling, and used
to determine pH, gravimetric soil moisture, and water holding
capacity. Gravimetric soil moisture and water holding capacity
(after wetting soils to field capacity) were determined by drying
soil at 105◦C for 24 h. Soil pH was determined using a benchtop
meter of a 1:1 slurry of soil:H2O by volume.

A subsample of sieved soil was air-dried and used to deter-
mine total C and total N by combustion with an Elementar Vario
Macro CNS analyzer. Total extractable P was assessed by combin-
ing a 5-g soil sample with 20 mL of Mehlich I extraction solution
and shaking for 5 min followed by inductively coupled plasma
spectrometry (Varian Vista MPX Radial ICP-OES). Soil nutrient
assays were performed at the Auburn University Soil Testing Labo-
ratory (AL, USA). Sieved, air-dried soil was also used to determine
soil texture using the hydrometer method that uses sodium hex-
ametaphosphate to complex the anions that bind to clay and silt
particles into aggregates and suspend organic matter in solution.
The density of the soil suspension is determined using a hydrom-
eter after the sand particles settle and then after the silt particles
settle (Bouyoucos method).

Denitrification and C mineralization assays were performed in
Kenya on fresh soils at the MVP regional office in Kisumu, Kenya.
Denitrification potential was estimated based on N2O emissions
during denitrifying enzyme activity (DEA) assays (Smith and
Tiedje, 1979). In a 125-mL flask, we combined 20 g of soil with
20 mL of a 1-mM sucrose and 1-mM KNO3

− solution. We fit
each flask with a #5 stopper, which was inserted with a 22G
needle capped with a stopcock. We then brought the headspace
of the flask to 10% acetylene (C2H2) concentration by volume
(to inhibit the reduction of N2O to N2 via denitrification). At
the beginning of the incubation we closed the stopcocks and
placed the flasks onto a shaker table at 125 rpm; flasks were only
removed from the table for sampling. We sampled the headspace
five times: at 30, 150, 210, and 270 min, by removing 30 mL of gas
from the headspace and then replacing the volume of headspace
that was removed with 30 mL of 10% C2H2 room air (fluxes
were corrected for N2O molecules removed at each sampling
period). DEA headspace samples were stored in pre-evacuated
vials.

Water-amended soil incubations were used to measure CO2

efflux and, thus, actual C mineralization. These incubations
were performed identically to the DEA incubations with three
exceptions: (1) 20 mL of deionized water was added to soil in
place of the sucrose and KNO3

− solution; (2) no C2H2 was
added to the headspace; and (3) headspace samples were taken
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at only two time points (240 and 360 min). We also sampled room
air at the beginning and end of each incubation and included
travel standards to accompany samples, in order to correct for
any sample loss during transport and storage. DEA and CO2

headspace samples were transported to the U.S., where we deter-
mined N2O and CO2 concentrations by gas chromatography using
a Shimadzu GC-14 GC with electron capture (for N2O) and
thermal conductivity (for CO2) detectors at the Cary Institute
(Millbrook, NY).

To measure taxonomic diversity, we performed 16S rRNA
amplicon sequencing of bacteria and archaea following standard
protocols of the Earth Microbiome Project using an Illumina
MiSeq instrument (1Gilbert et al., 2010; Caporaso et al., 2012).
Briefly, we extracted DNA using a MoBio PowerSoil 96-well
extraction kit and we amplified the 16S rRNA V4 gene from
bacterial and archaeal genomes using the primers 515F (for-
ward) and 806R (reverse; Caporaso et al., 2012). The 16S rRNA
gene is a well-conserved gene in bacteria and thus captures evo-
lutionary relationships among bacterial taxa. Quality filtering
was performed by comparing input sequences with Phred scores
(Q ≥ 20). Sequences shorter than 75% of the Phred score were
discarded as well as sequences with ambiguous base call char-
acters. All quality filtering and demultiplexing were performed
using the split_libraries_fastq.py algorithm in QIIME and its asso-
ciated default parameters (1Caporaso et al., 2010). Sequence reads
were were binned into operational taxonomic units (OTUs) at
a 97% similarity threshold. OTUs were then compared to Gen-
Bank to identify bacterial lineages. A total of 3,462,835 bacterial
sequences were generated across all samples, representing 29,195
OTUs. Sequence lengths averaged 150.63 ± 2.93 per sample. Rar-
efaction was used to compare samples at depth of 40 sequences
per sample. We calculated taxonomic diversity as Shannon diver-
sity (H’) of all OTUs. We calculated other diversity metrics, such
as Faith’s PD, and found similar patterns. All data checks and
processing were done using QIIME (Caporaso et al., 2010).

To estimate microbial functional diversity, we measured the
abundance of key functional genes using GeoChip 4.0 to analyze
DNA samples that were extracted following the protocol for taxo-
nomic assessment. GeoChip is a functional gene array of bacteria,
archaea, and fungi covering 401 gene categories involved in major
biogeochemical and ecological processes, as previously described
(He et al., 2007; Yang et al., 2013; Tu et al., 2014). GeoChip exam-
ines the abundance of thousands of functional gene variants
simultaneously through a fluorescent procedure. DNA samples
were labeled with a fluorescent dye and purified using a QIA quick
purification kit (Qiagen, Valencia, CA, USA) following He et al.
(2007) and Tu et al. (2014). DNA was then dried in a Speed-
Vac (ThermoSavant, Milford, MA, USA) and labeled DNA was
resuspended in a hybridization solution before hybridization of
DNA was carried out on a MAUI hybridization station (BioMi-
cro, Salt Lake City, UT, USA). GeoChip microarrays were scanned
by a NimbleGen MS200 scanner (Roche, Madison, WI, USA).
Poor quality spots were removed when flagged as one or three
by ImaGene (Arrayit, Sunnyvale, CA, USA) or with a signal-to-
noise ratio of less than 2.0. Signal-to-noise ratio indicates the

1http://www.earthmicrobiome.org/emp-standard-protocols/

amount of luminescence from the sample compared to back-
ground noise. Average signal-to-noise ratios are often greater than
50 (He et al., 2007), so 2.0 represents high noise to signal. Pro-
cessed data were subjected to the following steps: (i) normalize
the signal intensity by dividing the signal intensity by the total
intensity of the microarray followed by multiplying by a con-
stant; (ii) transform by the natural logarithm; (iii) remove genes
detected in only one out of three samples from the same treat-
ment. Signal intensities were quantified and processed using a
previously described data analysis procedure (He et al., 2007; Yang
et al., 2013). We calculated functional diversity as Shannon diver-
sity (H’) of the signal intensity for all of the genes reported from
the array. We also analyzed the response of individual denitri-
fication genes to changes in functional diversity. These include
genes involved in nitrite reduction (nirK, nirS), nitrate reduction
(narG), and nitric oxide reduction (norB). GeoChip also includes
nosZ, which is involved in nitrous oxide reduction, but we do
not analyze this gene because it is involved in a later stage of
denitrification than represented by the denitrification potential
assay.

DATA ANALYSIS
We used structural equation models to simultaneously esti-
mate each of the pathways among nutrient addition, soil and
environmental properties (pH, texture, and moisture), micro-
bial communities, and ecosystem processes while accounting for
correlations between multiple response variables (Grace, 2006).
Structural equation modeling is increasing used in ecology and
environmental sciences to assess the relative impacts of multiple
variables on each other and a set of response variables (Grace,
2006). This technique has been applied to a wide range of issues
in ecology and environmental sciences (e.g., Byrnes et al., 2011;
Flynn et al., 2011; Laliberté and Tylianakis, 2012). Relevant to
our study, it was used by Colman and Schimel (2013) to deter-
mine the drivers of microbial respiration and N mineralization at
continental scales.

To test our hypotheses about the relative importance of nutri-
ent addition and microbial composition, we first fitted models
including both nutrient addition and microbial diversity variables.
Soil pH was the only significant environmental control and was
thus the only environmental variable retained in the final mod-
els. We then fitted models to optimize goodness-of-fit and do
not include variables that do not contribute strongly to model
goodness-of-fit. Different models were fitted for each of the two
response variables (denitrification potential and C mineraliza-
tion). For each response variable, constrained (microbial + nutri-
ent addition) and unconstrained models were compared based
on change in AIC values. The final, unconstrained model
retained nutrient addition and pH, but did not include microbial
diversity.

We report standardized path estimates that allow for compari-
son of the relative magnitude of variables within the same model
(Grace and Bollen, 2005). For model goodness-of-fit, we report X2

and root mean square error of approximation (RMSEA). These
measures assess the similarity between the covariance matrix of
the observed data and the covariance matrix implied by the spec-
ified model. A X2 P-value greater than 0.05 implies significant
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Table 1 | Means and SD for variables included in structural equation models among the three categories of nutrient addition: low fertilizer, high

fertilizer, and agroforestry.

Farm type Denitrification

(ng N g dry

soil−1 h−1)

C mineralization

(ug C g dry

soil−1 h−1)

Taxonomic

diversity

Functional

diversity

Sand Silt

%

Clay pH

log [H+]

C

%

N

%

P

ppm

H’

Low fertilizer 0.61

[0.49]

1.04

[0.24]

10.02

[0.31]

8.88

[0.07]

53.76

[5.64]

14.40

[7.61]

31.74

[6.34]

5.41

[0.35]

1.83

[0.20]

0.20

[0.03]

16.63

[9.15]

High fertilizer 0.48

[0.09]

0.99

[0.41]

9.78

[0.45]

8.99

[0.08]

56.00

[3.13]

9.71

[5.91]

34.15

[6.57]

5.06

[0.37]

1.95

[0.16]

0.22

[0.03]

19.13

[10.30]

Agroforestry 1.00

[0.58]

1.27

[0.13]

9.79

[0.30]

9.05

[0.09]

58.58

[2.06]

10.46

[4.67]

30.86

[4.96]

5.47

[0.72]

1.72

[0.27]

0.18

[0.02]

7.00

[2.55]

All soil properties are to a depth of 20 cm. Because of unbalanced design statistical comparisons between groups are not valid; instead the effect of Farm type is
represented by the path coefficients of Agroforestry and N Addition in the structural equation models. Further detail on changes in soil properties is presented in
Wood et al. (2015).

FIGURE 2 | Path diagrams for structural equation models of the

relationship between farm management, microbial diversity, and

(A) denitrification enzyme activity or (B) carbon mineralization.

Models (A,B) show the relative effect of management and microbial
diversity. Solid paths are statistically significant at p < 0.10. Dashed

paths are insignificant, but were included for hypothesis testing or
overall model fit. Line color represents effect direction (light
green = positive, deep red = negative). Path widths are proportional to
standardized regression coefficients, which are shown next to each path.
Results and model statistics are in Table 2.

overlap between the observed and implied data, and thus ade-
quate model fit. We report Sartorra-Bentler X2 correction factors
to improve estimates based on violations of multivariate nor-
mality. Because the X2 test is based on large sample theory, we
also report RMSEA, which is a goodness-of-fit measure weighted
by sample size. We use an RMSEA value below 0.1 to represent
good model fit because for sample sizes less than 50, the con-
ventional RMSEA cut-off value of 0.05 is overly conservative

(Chen et al., 2008). Individual paths were estimated using max-
imum likelihood and we considered paths to be significant at
P < 0.05 and marginally significant at P < 0.10 (Hurlbert and
Lombardi, 2009). Insignificant paths were excluded from models
unless they significantly improved overall model fit, based on X2

and RMSEA values as well as assessment of modification indices
(Grace, 2006). All models were fitted using the lavaan package in R
(Rosseel, 2012).

www.frontiersin.org March 2015 | Volume 6 | Article 90 | 5

http://www.frontiersin.org/
http://www.frontiersin.org/Terrestrial_Microbiology/archive


Wood et al. Nutrient loss from tropical agriculture

Table 2 | Model results and goodness of fit statistics for structural equation models.

Denitrification C Mineralization

Standardized estimate P Standardized estimate P

Denitrification∼ C mineralization∼
Agroforestry 0.63 0.00 Agroforestry 0.47 0.00

Functional diversity −0.18 0.31 Functional diversity −0.08 0.72

N addition −0.33 0.10 N addition −0.01 0.95

Taxonomic diversity −0.24 0.18 Taxonomic diversity −0.23 0.35

Taxonomic diversity∼ Taxonomic diversity∼
N Addition −0.35 0.06 N Addition −0.31 0.18

pH −0.41 0.00 pH −0.40 0.01

Functional diversity∼ Functional diversity∼
Agroforestry 0.50 0.01 Agroforestry 0.48 0.03

Structural equation model metrics Structural equation model metrics

n 21 n 21

df 5 df 5

χ2 2.14 χ2 2.62

Pχ2 0.83 Pχ2 0.76

RMSEA 0.00 RMSEA 0.00

PRMSEA 0.85 PRMSEA 0.75

We report robust X 2 statistics for model fit. P > 0.05 indicates that estimated models have covariance matrices among variables that are not strongly different from
observed values and that the model, therefore, adequately represents the data. Root mean square error of approximation (RMSEA) is a sample-size weighted measure
of model fit. Values below 0.1 indicate good model fit.

RESULTS
We hypothesized that changes in microbial diversity would have
a stronger effect on denitrification than would the direct effect of
nutrient addition if changes in diversity correspond with changes
in the relative abundance of denitrifying taxa and/or the abun-
dance of associated genes involved in denitrification. We also
hypothesized that nutrient addition would be a stronger predictor
of C mineralization, a broad process, than microbial diversity.

We find that farm management—through N addition and
agroforestry—impacts the taxonomic and functional diversity
of soil microbial communities. Specifically, taxonomic diversity
decreases by 2.40% from low-to-high N addition (Table 1), though
this effect is weaker than the effect of pH, which is also associ-
ated with lower taxonomic diversity (Figures 2A,B). We did not
find that these changes in taxonomic diversity were coupled with
changes in the relative abundance of select groups of denitrifying
taxa (Figure 3). Agroforestry was the strongest driver of func-
tional diversity, which increased 1% between high fertilizer and
agroforestry farms and 2% between low fertilizer and agroforestry
farms (Table 1; Figures 2A,B). We did find that greater func-
tional diversity is significantly related to greater abundances of
several genes involved in denitrification: nirK, nirS, norB, and narG
(Figure 4).

We did not, however, find that changes in taxonomic and
functional diversity were related to rates of either denitrifica-
tion or C mineralization. Instead, ecosystem process rates were

most strongly linked to the direct effect of farm management.
Denitrification decreased by 21.31% from low-to-high N and
increased by 63.93% from low N to agroforestry (Table 1). The
path estimate for agroforestry on denitrification (0.63) is three
times greater than the coefficient for either taxonomic diver-
sity (−0.24) or functional diversity (−0.18). The agroforestry
coefficient is also twice the magnitude of the coefficient for N
addition (−0.33). We find support for our hypothesis that C
mineralization will be more influenced by nutrient addition than
microbial community composition. C mineralization rates were
4.81% lower on high-vs.-low N farms and 22.12% greater under
agroforestry (Table 1). The path coefficient for the effect of
agroforestry on C mineralization (0.47) is more than twice as
great as the coefficient for taxonomic diversity (−0.23) and N
addition (0.16) and around five times the effect of functional
diversity (−0.08).

DISCUSSION
Our results reveal that shifts in microbial taxonomic and func-
tional diversity due to farm management are not significantly
related to either denitrification or C mineralization on smallholder
farms in western Kenya. This finding supports our hypothesis that
C mineralization would not be sensitive to changes in microbial
communities because it is a broad process that can be carried out
by many microbial taxa. However, we did not find support for our
hypothesis that denitrification would be sensitive to community
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FIGURE 3 |Taxonomic diversity is not related to changes in the relative

abundances of select denitrifying taxa. These groups do not represent all
categories of denitrifying taxa and not all taxa within these categories are able

to carry out denitrification. These groups were selected because they broadly
represent evolutionary lineages that are capable of denitrification and had
relatively high relative abundances in our samples.

change because it is a narrow process carried out by relatively few
taxa.

This unexpected result may be explained by the fact that
changes in taxonomic diversity were not coupled with decreases
in the relative abundance of denitrifying taxa. Our hypothesis
was built on the expectation that diversity would relate to deni-
trification rates if changes in diversity were paired with changes
in the relative abundance of taxa able to carry out denitrifica-
tion. Because denitrifying taxa are found widely through the
microbial phylogeny, it is difficult to identify groups of taxa
that are all denitrifiers. However, we found that groups that
broadly contain denitrifiers do not change in relative abun-
dance with changes in diversity. This finding may explain
why taxonomic diversity was not a significant predictor of
denitrification.

We also expected that functional diversity would be a significant
control on denitrification if changes in functional diversity were

coupled with changes in the abundances of key denitrifying genes.
We did find a strong coupling between our functional diversity
metric (Shannon diversity of all functional genes from GeoChip)
and the abundances of four particular genes key to denitrifica-
tion: nirK, nirS, narG, and norB. Thus, our finding that functional
diversity was not significantly related to rates of denitrification was
unexpected. However, the finding fits with recent meta-analysis
showing that microbial functional gene abundances are rarely
strongly correlated with corresponding process rates (Rocca et al.,
2014). Our lack of observed relationship between gene abun-
dances and process rates may be explained by the fact that our
measure of functional diversity is based on the presence of func-
tional genes using DNA. Because DNA only indicates the presence
of a gene, rather than whether that gene is expressed, our mea-
sure of functional diversity only represents a coarse picture of
microbial functional capacity. Our results thus suggest that rates
of denitrification are more strongly controlled by the expression of
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FIGURE 4 | Functional diversity is positively correlated with changes in

the abundances of specific genes involved in denitrification. These genes
are involved in nitrite reduction (A: nirK, C: nirS), nitrate reduction (B: narG),

and nitric oxide redunction (D: norB). We did not analyze nosZ because it is
involved in a later stage of denitrification than included in our potential assay
(nitrous oxide reduction).

functional genes, rather than their overall abundance. This finding
suggests that coarse measures of microbial communities based on
DNA—whether taxonomic or functional—may be insufficient to
understanding the changes in the functional contributions of these
communities under certain types of land management (Rocca
et al., 2014).

Though understanding when microbial communities should
impact ecosystem process rates is well established, we show
that actual changes in microbial communities observed in a
tropical agroecosystem are not a strong predictor of denitri-
fication rates because changes in microbial communities are
relatively minor in magnitude. Our findings, however, do not
invalidate the hypothesis that narrow processes are sensitive to
community composition and broad processes are not, which has
been supported in previous work (e.g., Salles et al., 2012; Schimel

and Schaeffer, 2012; Philippot et al., 2013; Powell et al., 2015).
Instead, our findings raise doubts about the relative importance
of microbial community composition compared to direct effects
of nutrient addition on nutrient losses in agricultural settings.
This is because the magnitude of change in microbial diversity
induced by land management was not large enough to significantly
impact ecosystem process rates. As a result, the direct effect of farm
management (rather than the indirect effect through changes in
microbial communities) was the dominant control of both den-
itrification and C mineralization. Whether changes in microbial
community composition translate into changes in rates of ecosys-
tem processes controlled by soil microbes is of great interest in
soil ecology (e.g., Torsvik and Øvreås, 2002; Philippot and Hallin,
2005; van der Heijden et al., 2008), but remains an ongoing debate
(Schimel and Schaeffer, 2012). Our study is unique, however, in
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that few studies have connected changes in microbial communities
to ecosystem process rates in a framework that assesses the relative
importance of the multiple drivers of these ecosystem processes.

Although we focus on smallholder farms in western Kenya,
there is a widespread effort to increase crop yields across
sub-Saharan Africa and in tropical smallholder agriculture
more generally (Wiggins et al., 2010). Because 75% of the
world’s 1.2 billion poorest people are engaged in smallholder,
making up 500 million farms of less than 2 ha (Wiggins
et al., 2010), our findings may help inform understanding
of drivers of nutrient loss in tropical smallholder agricul-
ture due to increased attention from international development
organizations.

It is becoming widely recognized that agricultural sustainability
requires agricultural practices that maximize multiple ecosystem
services while minimizing nutrient losses to the environment
(Foley et al., 2011; Bommarco et al., 2013). This is particularly
important in tropical ecosystems that are undergoing large-scale
modifications of nutrient cycling pathways due to intense efforts
by the international development community to increase fertilizer
use by tropical smallholder farmers. Further work should focus
on understanding how management-induced shifts in micro-
bial communities impact not just potential nutrient loss, but
the multiple ecosystem services provided by soil and how such
understanding can be integrated into sustainable agricultural
strategies.
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