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Infectious diseases are still among the major and prevalent health problems, mostly
because of the drug resistance of novel variants of pathogens. Molecular interactions
between pathogens and their hosts are the key parts of the infection mechanisms. Novel
antimicrobial therapeutics to fight drug resistance is only possible in case of a thorough
understanding of pathogen-host interaction (PHI) systems. Existing databases, which
contain experimentally verified PHI data, suffer from scarcity of reported interactions
due to the technically challenging and time consuming process of experiments. These
have motivated many researchers to address the problem by proposing computational
approaches for analysis and prediction of PHIs. The computational methods primarily
utilize sequence information, protein structure and known interactions. Classic machine
learning techniques are used when there are sufficient known interactions to be used as
training data. On the opposite case, transfer and multitask learning methods are preferred.
Here, we present an overview of these computational approaches for predicting PHI
systems, discussing their weakness and abilities, with future directions.

Keywords: protein-protein interaction, pathogen-host interaction (PHI), computational PHI prediction, machine
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INTRODUCTION
Many studies concerning identification of protein interactions
and their associated networks were published (Aloy and Russell,
2003). Most of the previous studies were primarily focused on
determining protein-protein interactions (PPIs) within a sin-
gle organism (intra-species PPI prediction), while the prediction
of PPIs between different organisms (inter-species PPI predic-
tion) has recently emerged. Inter-species interactions may take
many forms; in this survey, however, we focus on PPIs between
pathogens and their hosts. Pathogen-host interaction (PHI) pre-
diction is worthwhile to enlighten the infection mechanisms
in the scarcity of experimentally-verified PHI data. Interactions
between pathogen and host proteins allow pathogenic microor-
ganisms to manipulate host mechanisms in order to use host
capabilities and to escape from host immune responses (Dyer
et al., 2010). Therefore, a complete understanding of infection
mechanisms through PHIs is crucial for the development of new
and more effective therapeutics.

Despite the critical need to improve the PHI knowledge, cur-
rent progress is not adequate, suffering from scarcity of available
experimental PHI data. Reliable experimental methods are time-
consuming and expensive, making it unjustifiable to evaluate all
possible PHIs. For instance, considering about 26,000 human
proteins paired with a few thousands of pathogen proteins lead
to millions of protein pairs to test experimentally. Scarce veri-
fied interactions are collected within a number of databases like
HPIDB (Kumar and Nanduri, 2010), PATRIC (Wattam et al.,
2014), PHISTO (Durmuş Tekir et al., 2013), VirHostNet (Navratil

et al., 2009), and VirusMentha (Calderone et al., 2014). At this
point, computational approaches come to help by predicting
putative PHIs. In this paper, we concentrate on these computa-
tional studies, which are mandatory for enriching the available
data and consequently increasing the pace of research in the
field. The methods which were successfully applied specifically
for PHI prediction in the literature are categorized based on
pathogen-host systems in Table 1.

Considering the relative availability of interaction data for
HIV-Human system, notable number of studies are dedicated to
this pathogen. Some other viral and bacterial pathogens are inves-
tigated and human is the main target as the host for investigation.
Computational methods for predicting PHIs exploit known pro-
tein and domain interactions, and information on sequence of
proteins. Network topology measures can complement these data.
For instance, targeting hubs and bottleneck proteins in human
PPI network by pathogen proteins is a well-accepted idea (Dyer
et al., 2008; Durmuş Tekir et al., 2012; Schleker and Trilling, 2013;
Zheng et al., 2014), though, they are not the sole targeted pro-
teins (Chen et al., 2012). Classic machine learning methods are
valuable remedy for cases where enough data for training are
available. However, valuable efforts have recently been performed
to apply these techniques for situations suffer from scarcity of
known interaction data using machine learning based methods as
transfer and multitask learning (Xu et al., 2010; Kshirsagar et al.,
2013a,b).

In PPI prediction studies, methods specific for intra-species
interactions are usually used. On the other hand, concentrating
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Table 1 | Computational studies for prediction of PHIs.

Pathogen-host system References

Plasmodium falciparum-Human Krishnadev and Srinivasan, 2008

Lee et al., 2008

Wuchty, 2011

Dyer et al., 2007

Helicobacter pylori-Human Kim et al., 2007; Tyagi et al., 2009

Hepatitis C virus (HCV)-Human Cui et al., 2012; Zheng et al., 2014

Phage T4-Escherichia coli Krishnadev and Srinivasan, 2011

Phage lambda-E. coli Krishnadev and Srinivasan, 2011

C. albicans-Zebrafish Wang et al., 2013

E. coli-Human Krishnadev and Srinivasan, 2011

Plasmodium berghei-Mouse Reid and Berriman, 2013

Plasmodium berghei-Insect
vector (Mosquito)

Reid and Berriman, 2013

Oral microbial-Human Coelho et al., 2014

Salmonella-Human Krishnadev and Srinivasan, 2011

Arnold et al., 2012

Kshirsagar et al., 2012

Kshirsagar et al., 2013b

Schleker et al., 2012a

Mei and Zhu, 2014
Schleker et al., 2014 (Review)

Mycobacterium Tuberculosis
H37Rv-Human

Zhou et al., 2014

Yersinia pestis-Human Krishnadev and Srinivasan, 2011
Kshirsagar et al., 2012
Kshirsagar et al., 2013b

Mycobacterium apicomplexa and
Mycobacterium
kinetoplastida-Human

Davis et al., 2007

Xanthomonas oryzae-Rice Kim et al., 2008

HTLV -Human Mei, 2014

HIV1-Human Evans et al., 2009
Tastan et al., 2009
Mei, 2013
Qi et al., 2010
Dyer et al., 2011
Ray et al., 2012
Doolittle and Gomez, 2010

Nouretdinov et al., 2012
Mukhopadhyay et al., 2010, 2012,
2014
Mondal et al., 2012

(Continued)

Table 1 | Continued

Pathogen-host system References

36 viral species-Human Franzosa and Xia, 2011

Influenza A NS1–Human De Chassey et al., 2013

HPV16–Human Dong et al., in press

Bacillus anthracis-Human Kshirsagar et al., 2013b

Francisella tularensis-Human Kshirsagar et al., 2013b

Dengue virus-Human Doolittle and Gomez, 2011

Segura-Cabrera et al., 2013

Insect vector A. aegypti-Human Doolittle and Gomez, 2011

Salmonella-Arabidopsis Schleker et al., 2012a

Schleker et al., 2014 (Review)

Human papilloma viruses
(HPV)-Human

Cui et al., 2012

R. solanacearum-Arabidopsis Li et al., 2012

Y. pestis, M. tuberculosis, C.
diphtheriae, C. ulcerans, E. coli,
and C.
pseudotuberculosis-Human, Goat,
Sheep, and Horse

Barh et al., 2013

on the interactions between different organisms is a young
branch of this field. The traditional methods cannot be applied
here, their adaptation or devising new approaches would be
mandatory.

MACHINE LEARNING AND DATA MINING BASED
APPROACHES
Applying machine learning techniques to bioinformatics is a
well-accepted idea (Baldi and Brunak, 2001), which includes
early efforts for PPI predictions (Bock and Gough, 2001). These
methods utilize available PPI data as features for training and
classifying interacting and non-interacting protein pairs. Both
semi-supervised and supervised learning are used for PHI pre-
diction. A Supervised method, which exploits exclusively labeled
data, is applied in Tastan et al. (2009) integrating 35 features
within eight groups using Random Forest (RF) classifier to deal
with noisy and redundant features. The semi-supervised exten-
sion of their work is presented in Qi et al. (2010) which discarded
17 attributes from the feature vector that is related to determining
17 HIV-1 proteins. However, they have gained better perfor-
mance through incorporating likely interactions (called “partially
labeled”), which do not have sufficient evidence to be categorized
as direct interaction. The same classifier is used as a quality con-
trol in Wuchty (2011), where a RF classifier assesses the quality of
candidate interactions, obtained by discovering homologous and
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FIGURE 1 | Machine learning and data mining based approaches for prediction of PHIs.

conserved interactions. The author filters the predicted results
based on expression and molecular properties.

Conformal prediction is used in Nouretdinov et al. (2012) and
the results are compared with those of Tastan et al. (2009) to
assess the predictions. This method evaluates the conformance
of new pairs with interacting pairs using a method called non-
conformity measure (NCM) which shows distinction measure of
an example regarding others. Their approach also allows the user
to determine confidence level for prediction.

SVM based approaches as a famous classifier are successfully
applied in PHI prediction studies (Kshirsagar et al., 2013a; Mei,
2013). Cui et al. (2012) presents a SVM based approach, which
uses a fixed length feature vector, indicating relative frequency
of consecutive amino acids in the protein sequence. We catego-
rize the machine learning and data mining based approaches in
Figure 1.

TRANSFER AND MULTITASK LEARNING APPROACHES
One of the promising remedies to tackle the problem of data
scarcity is eliciting and transferring data from related domains
to desired formulation. Multitask learning uses commonalities
among different domains and learn problem simultaneously
between them within a shared task formulation, which leads to
better performance rather conducting learning task on individ-
ual domain. A review paper, Xu and Yang (2011) presents some
of the studies utilizing this idea in bioinformatics. For PPI pre-
diction, a method was proposed in Xu et al. (2010) which uses
collective matrix factorization originally proposed by Singh and
Gordon (2008) to transfer knowledge from a relatively dense PPI
network called “source” for predicting new PPIs in a sparse target
PPI network. Their goal is to predict intra-species pathogen PPIs
as target with the aid of human PPIs as source network through
defining a similarity matrix to act as a bridge between them.
Another study conducts three different individual classifiers on
three GO features (molecular functions, cellular localization, and
biological processes) on available protein features and at the
same time three classifiers on alternative homolog features to

exploit transfer learning. An ensemble classifier produces final
result using weighting probability outputs of individual classi-
fiers (Mei, 2013). They applied relatively same idea using a multi
instance AdaBoost method to transfer homolog feature as the
second instance of proteins (Mei, 2014; Mei and Zhu, 2014).
A combination of supervised and semi-supervised approaches
is proposed by Qi et al. (2010) through multitask learning.
Semi-supervised task on partially positive labels is conducted
to improve the supervised classification which trains multi-layer
perceptron using labeled data. Another multitask formulation is
used in Kshirsagar et al. (2013b) to integrate knowledge from dif-
ferent pathogen-host systems to increase the prediction power
of the combined model. Each task is formulated as predicting
PHI data between each pathogen and its host. To define simi-
larity between tasks and transfer shared knowledge, they assume
that similar pathogens tend to target same biological process in
human. In other words, “commonality hypothesis” is introduced
that assumes pathway membership of human proteins in positive
PHIs should be similar between different tasks. To implement this
idea, optimization problem is conducted and dissimilarities are
penalized in the objective function. They use transfer learning in
Kshirsagar et al. (2013a) for the cases where no known interaction
is available by exploiting precisely chosen instances from a source
task.

DATA MINING BASED APPROACHES
Machine learning based methods which formulate PPI pre-
diction as a classification task use both interacting and non-
interacting protein pairs as positive and negative classes, respec-
tively. Constructing negative class is not straightforward due to
the fact that there is no experimentally verified non-interacting
pair. This has motivated some studies to overcome this problem
by removing the need for negative data through using alterna-
tive methods (Mukhopadhyay et al., 2010, 2012, 2014; Mondal
et al., 2012; Ray et al., 2012). They integrate bi-clustering with
association rule mining, utilizing only positive samples to predict
virus-human interactions.
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UTILIZED FEATURES
Various studies utilize different sets of biological information
through data integration to improve the prediction performance.
However, it should be noted that making use of a lot of fea-
tures without enriching training data may lead to over fitting in
the model (Mei, 2014). Table 2 summarizes the utilized features
within different studies on PHI prediction, providing all the cat-
aloged feature information is not always possible for all pathogen
systems. Furthermore, various features claimed to have different
predictive effects in PHI prediction. Outperforming other fea-
tures was the motivation for some studies to use GO features in
PHI prediction (Mei, 2013, 2014) while features extracted from
protein sequences, reported as not promising (Yu et al., 2010).

HANDLING MISSING DATA
Applying machine learning methods and specially supervised
learning for situations suffer from data scarcity is challenging.
Being limited to well-studied pathogen systems like HIV-1 is the
consequence of data dependency. Recently, some solutions are
proposed to overcome this limitation by offering substituted val-
ues for missing data. For instance, in Kshirsagar et al. (2012) two
different methods are proposed including information transfer
from other species and model-based imputation. First, they rely
on homologous proteins data to provide feature values like GO
annotations and gene expression data. This contributes a lot and
downgrades the missing data significantly. However, for proteins
with no available homolog, they have modeled gene expression
value distribution. They have compared the proposed “Cross
species imputation” with other imputation techniques. The first
method is called “RF” which initiates the missing data to mean
value and re-estimate it by choosing the nearest leaf node of the
created forest. Another intuitive method is choosing the average
of the feature values and the last compared method is discard-
ing any pair with missing value which leads to a reduced dataset.
Clear improvements are reported in comparison with the listed
imputation methods. It should be noted that using solely sta-
tistical methods for estimating features like GO values will be
hard due to high dimensionality. Mei (2013) uses homolog infor-
mation when the features of a protein is unavailable. They have
designed various experiments to show the performance of sub-
stituting homolog features. Pessimistic experiment, which uses
only homolog features to train and test without incorporating
any base proteins (called “target” in the article), has promising
results, indicating that using homolog information is an effective
substitute for the target information to tackle the problem of data
unavailability.

THE CHALLENGE OF NON-INTERACTING PPIs
Since there is no available verified non-interacting PPI to be used
for training the model, selecting negative data remains as a chal-
lenge for PPI prediction. Some studies try to circumvent the
obstacle by using methods which do not require negative samples
(Ray et al., 2012). However, ignoring non-interacting patterns
may increase the rate of false positives (Mei, 2013). The negative
set is not defined in Nouretdinov et al. (2012) and instead they use
unknown label for other pairs. Most of the studies which formu-
late the problem as a classification task, have to construct negative

class through randomly sampling the data. The rate of positive
to negative class is chosen in different manners to avoid biasing
classifier toward wrong predictions. A ratio of 1:100 is chosen in
Kshirsagar et al. (2012, 2013b) and Tastan et al. (2009) expecting
one interaction pair within 100 random pathogen-host pairs. Mei
(2013) chooses the same ratio for negative and positive classes,
however proposes different idea for choosing negative samples.
They put aside sub-cellular co-localized pairs from the negative
class and report better performance in comparison with random
sampling. The study in Dyer et al. (2011) conducted experiments
with different ratios and 10 randomly chosen sets for each ratio
and stated that beside clearly different results for different ratios,
variability of randomly selected negative samples for each ratio
does not have major effect on the result accuracy.

HOMOLOGY BASED APPROACHES
The rationale behind this type of methods is the expectation of
conserved interactions between a pair of proteins which have
interacting homologs in another species. The conserved interac-
tion is called as “Interolog.” The simple method of identifying
Interologs is as follows: Consider a template PPI pair (a, b)
in a source species, find the homolog a′ in the host and the
homolog b′ in the pathogen, conclude that (a′, b′) interact.
Simplicity and clear biological basis are the main advantages
of these methods. However, homology to known interactions
is not sufficient for evaluating the biological evidence of the
predicted results. Different filtering techniques should be con-
sidered for assessing the feasibility of the interactions under
an in vivo condition and consequently decreasing the false
positives.

A homology detection method using template PPI databases,
DIP (Salwinski et al., 2004) and iPfam (Finn et al., 2014), is pub-
lished in Krishnadev and Srinivasan (2008) to predict PHI pairs.
Searching the sequences of host and pathogen proteins within two
template databases are conducted to find a superset of all inter-
actions which are physically and structurally compatible. These
potential interactions are refined within two additional filtering
steps, to detect biologically feasible interactions including integra-
tion of expression and sub-cellular localization data. The authors
have applied the same procedure for different pathogens in their
subsequent works (Tyagi et al., 2009; Krishnadev and Srinivasan,
2011).

Another research uses the conceptually same approach by
exploiting sequence similarity augmented with domain-domain
interaction detection (Schleker et al., 2012a). They have two
compressive reviews of the computational approaches predict-
ing Salmonella-Host interactions (Schleker et al., 2012b, 2014),
which include comparing Salmonella-Human and Salmonella-
Plant interaction predictions.

Homolog knowledge can be used indirectly as a remedy for
data scarcity and data unavailability by homolog knowledge
transfer. Mei (2013) uses homolog information (features) when
the features of a protein is unavailable. They have designed differ-
ent experiments to show the performance of substituting homol-
ogy features. Pessimistic experiment, which uses only homology
features for train and test without incorporating any base proteins
(called as “target” in the article) has promising results, indicating
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Table 2 | Summary of the exploited features for prediction of PHIs.

Utilized feature Description References

Domain and motif information Set to be 1 every domain pair of each PPI in a binary feature vector of all
possible domain pairs

Dyer et al., 2011

Count possible interacting domains between pathogen and host proteins
using domain interactions database (3DID)

Kshirsagar et al., 2012,
2013b

Functional sequence motifs from ELM database checked in HIV-1 sequence Tastan et al., 2009; Qi
et al., 2010; Nouretdinov
et al., 2012

Suppose protein pairs as interacting when they have one or more interacting
domain

Coelho et al., 2014

Protein sequence n-mers
(n-gram)

For each pathogen-host protein pair concatenate their vectors. Each protein
vector count the number of times each distinct n-mer occurred in the
sequence

Dyer et al., 2011

Similar to Dyer et al. (2011) Kshirsagar et al., 2012,
2013b

Variant of the spectrum kernel based on sequence n-mers Kshirsagar et al., 2013a

Represent proteins by relative count of amino acid 3-mers Cui et al., 2012

Forming 7 amino acid classes and computing frequency difference through
343-dimensional vector

Wuchty, 2011

Forming 4 amino acid classes and computing standardized frequency
difference through 64 possible combination

Dong et al., in press

Observing each of different 20 amino acids within protein sequence Coelho et al., 2014

Network topology Two features for each pathogen-host protein pair including human protein’s
degree and its betweenness centrality

Dyer et al., 2011

Three features of human protein: degree, clustering coefficient, centrality Tastan et al., 2009; Qi
et al., 2010; Nouretdinov
et al., 2012

Similar to Tastan et al. (2009) Kshirsagar et al., 2012,
2013b

Degree and betweenness centrality in human PPI Dong et al., in press

Gene ontology Pairwise similarity between GO terms of host and pathogen and Neighbor
similarity for GO terms of pathogen and binding partners of human proteins

Kshirsagar et al., 2012,
2013b

Pairwise and neighbor GO similarity Tastan et al., 2009; Qi
et al., 2010; Nouretdinov
et al., 2012

Three aspects of Gen Ontology are the only used feature values and the
homolog GO features are used for missing data

Mei, 2013, 2014

Biological process similarity is computed for protein pairs Coelho et al., 2014

For every human protein within extracted biclusters find important GO terms Ray et al., 2012;
Mukhopadhyay and
Maulik, 2014

Using GO functional data for conducting two functional analysis Reid and Berriman, 2013

Gene expression Differential human gene expression infected by pathogen in seven control
conditions

Kshirsagar et al., 2012,
2013b

(Continued)
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Table 2 | Continued

Utilized feature Description References

Differential human gene expression across HIV-1 infected and uninfected samples Tastan et al., 2009; Qi et al., 2010;
Nouretdinov et al., 2012

Conserved pathways Find other known PHI, which pathogen is homolog and host proteins share a pathway Kshirsagar et al., 2012, 2013b

RNAi expression Utilizing human genes reported as “hits” by the RNAi screens

Homology
information

For each PHI count the number of interologs from other species

Forming orthologous groups through clustering host and pathogen proteins around
central orthlogous pairs

Wuchty, 2011

Use STRING to get clusters of orthologous groups and their scores Coelho et al., 2014

Pfam interactions Counts the possible interactions between Pfam families of host and pathogen
reported in the iPfam

Kshirsagar et al., 2012, 2013b

Use interacting pair of domains to predict gene interaction between malaria and its
hosts (mouse and mosquito)

Reid and Berriman, 2013

Protein sequence Sequence alignment between pathogen and host proteins computed using
PSI-BLAST

Kshirsagar et al., 2012, 2013b

Tissue feature Check infection susceptibility of tissues Tastan et al., 2009; Qi et al., 2010;
Nouretdinov et al., 2012

Virus protein type One feature for each HIV-1 protein to compute probability of interacting with human
protein

A feature vector formed by 11 types of HCV proteins and 9 types of HPV Cui et al., 2012

Pathways Pathway participation coefficient is calculated for each protein Wuchty, 2011

Use similarity of pathway memberships of human proteins to propose commonality
hypothesis across organisms

Kshirsagar et al., 2013b

For each human protein within extracted biclusters find important KEGG pathways Ray et al., 2012; Mukhopadhyay
and Maulik, 2014

Find other known PHI, which pathogen is homolog and host proteins share a pathway Kshirsagar et al., 2012, 2013b

that using homolog information is an effective substitute for the
target information to tackle the problem of data unavailability.

Another research uses high confidence intra-species PPIs to
detect Interologs using ortholog information (Lee et al., 2008).
The assumption is that when two orthologous groups are shared
between more than two species, there will be a potential Interolog
between those orthologous groups. The potential interactions are
filtered using gene ontology annotations followed by pathogen
sequence filtering based on the presence or absence of translo-
cational signals to refine the predictions. The notable point is
negligible intersection of the predicted interactions with those
of the reported predictions in Dyer et al. (2007) due to applying
different techniques and datasets for same pathogen-host system.

Zhou et al. (2014) introduces the “stringent homology” which
does not rely only on intra-species template PPIs to discover
interologs and make use of two different organisms as the source
of template PPIs to predict PHIs. They also claim that it is not
only for the targeted host proteins which tend to be hub in their
own PPI network and this is also true about targeting pathogen
proteins.

The most important obstacle for using homology based meth-
ods is scarcity of available homolog information. For instance,
the number of interologs within bacterial PPIs are not dignifi-
cant (Kshirsagar et al., 2013b) demonstrating that we cannot rely
only on homolog information for every situation without being
cautious about data availability. Clearly, it is reasonable to predict
more genomic and proteomic data will be available in the future
and consequently more accurate homologs are identified paving
the way of studying less-known pathogens. Table 3 summarizes
the published research for predicting PHIs based on homology
information.

STRUCTURE BASED APPROACHES
A number of studies are based on structural similarities and
use template PPIs to detect similar interacting pairs within host
and pathogen proteins. Preliminary ideas presented in Davis
et al. (2007) called comparative modeling and was based on
their prior work (Davis et al., 2006). Their method starts with a
set of host and pathogen proteins and then sequence matching
procedures are used to determine the similarities between the
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host or pathogen proteins with known structure or known inter-
action protein partners. Sequence similarity score is only used
when structure information is unavailable as a statistical poten-
tial assessment, to predict interacting partners. Filtering the set of
potential interactions is the last step which is performed using the
biological contexts of proteins and a network-level filter. The out-
come of this process is decreasing the potential PHIs by about five
orders of magnitude. The main drawback of this method is that
finding high similarity between pathogen proteins and proteins
with known structure is not guaranteed for all pathogen proteins.
Therefore, unavailability of the spatial structural information
would restrict the applicability of this method. Furthermore, they
have only the ability to collect limited number of benchmark PPIs
from literature to evaluate their prediction performance.

Authors in Franzosa and Xia (2011) claim to significantly
reduce the rate of false positives by presenting virus-human struc-
tural interaction network, in which, each PPI is associated with a
high confidence 3D structural model. Applicability of the method
is limited to human-human and virus-human PPIs for which 3D
structural models are available. The method starts with extract-
ing human interacting pairs from PDB and followed by mapping
virus proteins to them by sequence similarity. They emphasize the
importance of constructing a high-resolution, 3D structural view
of pathogen-host and within-host PPI networks to discover new
principles of PHIs through their review paper in Franzosa et al.
(2012).

Another research developed a map of interactions between
HIV-1 and human proteins based on protein structural similarity
(Doolittle and Gomez, 2010). A comparison of known crystal
structures is performed to measure structural similarity between

Table 3 | Homology based approaches for prediction of PHIs.

Method References

Homology detection method using template PPI
databases, DIP, and iPfam

Krishnadev and
Srinivasan, 2008

Interologs were inferred from ortholog
information obtained from high confidence
databases

Lee et al., 2008

Homology detection method using template PPI
databases, DIP, and iPfam

Tyagi et al., 2009

Homology detection method using template PPI
databases, DIP, and iPfam

Krishnadev and
Srinivasan, 2011

Introduce stringent homology which uses inter
species template PPI

Zhou et al., 2014

Conserved PHI network is generated using
interacting proteins of the common conserved
inter-species bacterial PPI

Barh et al., 2013

Obtain host-pathogen interactome using
sequence and interacting domain similarity to
known PPIs

Schleker et al., 2012a

Interolog and Domain based approaches are used
to predict PHIs

Li et al., 2012

The ortholog information for the four species are
integrated from different databases and
interspecies PPI network is constructed followed
by dynamic modeling of regulatory responses
leads to identifying interactions

Wang et al., 2013

host and pathogen proteins. Human proteins which have high
structural similarity to a HIV protein are identified and their
known interacting partners are determined as targets. The
assumption is that HIV proteins have the same interactions as
their human peers. These predicted results refined by two filter-
ing steps using data from the recent RNAi screens and cellular
co-localization information. They apply the same method for
developing an interaction network between Dengue virus and
its hosts (Doolittle and Gomez, 2011). Again, with a similar
idea those proteins with comparable structures share interac-
tion partners. The work suffers from the lack of assessment
data in a way that, very limited number of used benchmark
PPIs are specific to the viral pathogen. Table 4 summarizes
the conducted research for predicting PHIs based on structural
data.

DOMAIN AND MOTIF BASED APPROACHES
The idea of exploiting domains as building blocks of proteins
for predicting PPIs is well-studied for single organisms (Wojcik
and Schächter, 2001; Pagel et al., 2004) regarding the fact that
domains are the mediators of interactions. The approach pre-
sented in Dyer et al. (2007) is one of the pioneer published
research for predicting PHIs. However, small list of interactions
are presented and their biological relevance are not strongly eval-
uated. To predict interactions between host and pathogen pro-
teins, they present an algorithm that integrates protein domain
profiles with interactions between proteins from the same organ-
ism. For every pair of functional domains (d, e) which is present
in protein pair (g, h) respectively, the probability of interact-
ing (g, h) is assessed using Bayesian statistics. To apply this idea
to a pathogen-host system, they identify domains in every host
and pathogen proteins and compute the interaction probabil-
ity for each pair of host and pathogen proteins that contain
at least one domain. Assuming Mg as the set of domains con-
tained in protein g the interaction probability of proteins (g, h) is
computed as:

P
(
g, h

) = 1 −
∏

d ∈ Mg

∏

e ∈ Mh

(1 − P(g, h|d, e))

The authors have published another study which uses domain
profiles as features in supervised machine learning for predicting
interactions in HIV-Human system.

Table 4 | Structure based approaches for prediction of PHIs.

Method References

Comparative modeling of 3D structures Davis et al., 2007

Sharing interacting partners of structurally
similar human proteins to HIV proteins

Doolittle and Gomez,
2010

Structural similarity of Denv proteins to human
proteins having known interactions

Doolittle and Gomez,
2011

3D structural interaction network of
host-pathogen and within-host PPI networks

Franzosa and Xia, 2011

Assumes that structurally homologous
proteins have probably interactors in common

De Chassey et al., 2013

www.frontiersin.org February 2015 | Volume 6 | Article 94 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Infectious_Diseases/archive


Nourani et al. Computational prediction of PHIs

A similar knowledge source is chosen in Kim et al. (2007)
which makes use of domain information from InterProScan
(Quevillon et al., 2005). They predict PPIs using PreDIN (Kim
et al., 2002) and PreSPI (Han et al., 2004) algorithms based
on domain information. A study for prediction of interacting
proteins of rice and Xanthomonas oryzae pathovar oryzae (Xoo)
also uses domain information (Kim et al., 2008). They presented
XooNET which provides about 3500 possible interaction pairs as
well as the graphical visualizations of the interaction networks.

The work in Arnold et al. (2012) presents a method to pre-
dict and rank bacteria-human PPIs based on domain-domain
interactions. They collect a list of Pfam domains and bacterial-
human proteins which contains one of the listed domains. Then
the data was searched for experimentally verified effectors or
their homologs in another bacteria. The result is the possible
interactions between Salmonella effectors and host proteins.

Not all pathogen systems are appropriate for applying the
mentioned domain based approaches, since domains and the
related information are not available for all pathogens. For
instance, information on domains and the related statistics are
not available for a considerable number of the HIV-1 pro-
teins. Regarding this limitation, the work in Evans et al. (2009)
concentrates on protein interactions based on short eukary-
otic linear motifs (ELMs) for HIV-1 proteins interacting with
human protein counter domains (CDs). They do not accept
the idea of having relatively weak link among motif/domain
bindings and the actual virus-host PPIs which is presented
in Tastan et al. (2009). They predict two kinds of interac-
tions for each virus protein, including direct human pro-
tein targets (called H1) which bind to virus via a human
CD and a virus ELM and the second type includes indirect
interactions in which, host proteins that their normal interac-
tions with H1 proteins are potentially disrupted by competi-
tion with an HIV-1 protein. Table 5 summarizes the conducted

Table 5 | Domain and motif based approaches for prediction of PHIs.

Method References

PreDIN and PreSPI algorithms based on domain
information

Kim et al., 2007

Estimating PPI probability using combining
interaction probability of domains

Dyer et al., 2007

XooNET uses Structural Interactome MAP
(PSIMAP), Protein

Kim et al., 2008

Experimental Interactome MAP (PEIMAP) and
Domain-Domain interactions from iPfam

Based on ELMs on HIV-1 proteins interacting
with human protein counter domains (CDs)

Evans et al., 2009

Predict and rank bacteria-human PPIs based on
domain-domain interaction

Arnold et al., 2012

Build the virus-host interactomes by identifying
domain interactions between virus and host PPIs
followed by topological and functional analysis of
the network

Zheng et al., 2014

The viral-human interaction network is modeled
based on motif-domain interactions

Segura-Cabrera et al.,
2013

research for predicting PHIs based on domain and motif
knowledge.

PERFORMANCE EVALUATION
The lack of gold standard PHI data and the complexity of PHI
mechanisms lead to a hard assessment phase, in a way that pre-
dicted interactions are rarely supported by a biological basis.
Some studies validate their results by measuring the shared inter-
actions with other published materials (Mukhopadhyay et al.,
2012, 2014; Segura-Cabrera et al., 2013). Here we focus on com-
putational metrics which are widely used in publications to
evaluate the accuracy of their results, which are shown in Table 6.

CONCLUSIONS
Inter-species PPI predictions have gained more popularity in
recent years. Computational methods may have important roles
in paving the way for experimental PHI verifications by highlight-
ing the high potential interactions and limiting the experimental
scope which lead to expense reduction and probably the rapid
knowledge development. In this paper, we reviewed the stud-
ies which directly focused on computationally PHI prediction.
Published approaches are categorized based on pathogen-host
and the method they utilize. Clearly some pathogen systems are
well studied and targeted in more research regarding the avail-
ability of the required data. HIV-1 is the most distinguished
pathogen which studied specifically using data-requiring machine
learning methods. Therefore, the most important challenge for
computationally prediction of PHIs, is the lack of available veri-
fied interactions and the relevant feature information in most of
the pathogens systems. Data unavailability and scarcity refer to
verified interacting PPIs, lack of verified non-interacting protein
pairs and missing feature information for proteins. Recent stud-
ies have found a new source of data to overcome these limitations.
Knowledge transfer from related pathogen systems has shown to
be an effective remedy, even for situations with no available inter-
actions. These methods enlighten a promising future direction for
establishing computational methods which are augmented with
additional transferred knowledge.

Table 6 | Popular evaluation metrics used for PHI prediction.

Metric Formula References

Accuracy
TP + TN

TP + FP + TN + FN
Cui et al., 2012

Specificity
TN

TN + FP
Cui et al., 2012

Sensitivity (Recall)
TP

TP + FN
Dyer et al., 2011; Cui
et al., 2012

Precision
TP

TP + FP
Dyer et al., 2011

F1 score
2 ∗ Precision ∗ Recall

Precision + Recall
Kshirsagar et al., 2012,
2013b; Mei, 2013; Coelho
et al., 2014

AUC The area under the
ROC curve

Davis et al., 2007; Mei,
2013; Coelho et al., 2014

TP, True Positive; TN, True Negative; FP, False Positive; FN, False Negative.
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